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Abstract— In this paper we consider the problem of construct-
ing a coordinate system in a sensor network where location infor-
mation is not available. To this purpose we introduce the Virtual
Coordinate assignment protocol (VCap) which defines a virtual
coordinate system based on hop distances. As compared to other
approaches, VCap is simple and have very little requirements in
terms of communication and memory overheads. We compare by
simulations the performances of greedy routing using our virtual
coordinate system with the one using the physical coordinates.
Results show that the virtual coordinate system can be used to
efficently support geographic routing.

Index Terms— Wireless sensor network, virtual coordinates,
hop based greedy routing, performance analysis, simulations

I. INTRODUCTION

A sensor network is a specialized ad hoc network composed
by a large number of low power, low cost nodes (also
called sensors) [1]. A sensor comprises one or more sensing
units, a processor and a radio transceiver, and is powered by
an embedded battery. Sensors collect information about the
surrounding environment (sensor field) and they self-organize
into a wireless ad hoc network in order to exchange sensed
data and to connect with external sink nodes that issue queries
to the network.

Typical applications of sensor networks are environ-
ment sampling, monitoring disaster areas, health monitoring,
surveillance, security, inventory management, and they have
also been envisioned as an architectural support for applica-
tions of pervasive computing [2].

The effective development of scalable sensor networks
presents a number of research challenges ranging from routing
protocols to algorithms for data collection, fusion and stream
processing. Current sensor networks employ a query distribu-
tion and data collection based on a simple model known as
data diffusion [3], [4]. This model assumes that the sink node
has a permanent connection with the network and performs
most of the data analysis, while the role of the network is
limited to data acquisition and, in some cases, to simple data
processing. This assumption is motivated by the fact that, with

the current technologies [5], sensors are unable to perform
complex data processing and storage. However, in the effort
of improving the management of data streams produced by
sensor networks, it has recently been proposed to integrate
database and sensor network technologies [6], [7], and the
concept of data-centric storage has been introduced in [8]. The
integration of database technologies with sensor networks, and
the use of data-centric paradigms, requires support of efficient
and robust routing protocols, more general than those used to
support data diffusion.

To this purpose, routing protocols based on geographic
information of the sensors [9], [10], [11], [12] have been
proposed as a viable alternative to existing routing protocols
for wireless ad hoc networks such as [13], [14], in order to
reduce the burden of maintaining routing tables in the sensors
and avoiding the cost of route discovery.

Although geographic routing may contribute to reduce the
routing overhead on the sensors, it requires that the sensors
be aware of their physical position. This information can be
obtained by equipping all the sensors with devices such as
GPS, however, cheapest (and approximate) solutions may be
obtained by equipping with GPS only a limited subset of
sensors and using this information to infer the position of the
other nodes. For this reason, the problem of inferring nodes
location in sensor networks in which just a few (or no) nodes
know their geographic position is of great practical interest.
Proposed solutions are based on different assumptions on node
capabilities and knowledge, and each offers a different result
accuracy.

Traditional approaches were aimed at deriving coordinates
resembling as close as the real ones, when services like
GPS are not present. Measures of goodness of a solution
are computational and communication complexities, precision
and accuracy. A complete survey of methods and solution to
approximate real position of nodes is presented in [15].

Commonly, a few nodes (often called anchors) are assumed
to know their exact position, by means of special hardware or
because they were positioned in well known points, and con-



sequently programmed. The other nodes infer their positions,
using techniques like time of arrival, time difference of arrival
[16], [17], angle of arrival [18], [19], signal strength [20], [21],
or hop distance [22]. A survey can be found in [23].

In [24], [25] the requirements of the coordinate assignment
are somehow relaxed. In fact, authors study how to find virtual
coordinates that preserve some interesting properties of the
network.

In this paper, we reconsider the approach of [25] and [22].
In particular we focus on sensor networks composed by a very
large number of sensors, deployed with relatively high density
in the sensing field, and where the sensors do not have any
information about the network boundary and position. In this
scenario we introduce a new Virtual Coordinate assignment
protocol (called VCap) to support geographic routing which
defines coordinates exclusively based on hop distances. As
compared to [22], we do not attempt to approximate physical
coordinates based on hop distances. Rather, we construct a
virtual topology which is possibly unrelated to the physical
topology of the network.

The VCap protocol exploits four rounds (based on broad-
casts) to identify three anchor nodes (namely X, Y and Z),
and it assigns each node with a triplet of coordinates given by
the hop distances from the anchors. The storage overhead for
each sensor is limited to the storage of the triplet of coordinates
it is assigned.

We show that, for a given density of the network, this
coordinate system is consistent, i.e., nodes with the same
coordinates lie within a limited number of hops from each
other, and we show by simulation that this coordinate system
can efficiently support geographic routing.

The rest of the paper is organized as follows. Section II
reports related works and Section III describes the Virtual
Coordinate assignment protocol. In Section IV the protocol
overhead is discusses. Correctness analysis of the protocol
is presented in Section V. Simulation results are reported in
Section VI and Section VII draws the conclusions.

II. RELATED WORKS

In [24], authors define a virtual coordinate system where
coordinates do not need to be a precise representation of real
ones: the authors assume that the nodes have only proximity
information, i.e., every node knows the order of proximity
to every neighbor, and they define a coordinate system that
respect such a proximity. If the nodes also have information
about real distances from their neighbors, coordinates may be
enhanced in order to reflect real ones. With this approach
anchor nodes are not necessary, but, if present, they can be
used to improve the solution accuracy.

The coordinate assignment proposed in [24] is based on
a multidimensional scaling (MDS) [26], [27], which is a
technique to map a set of points in a multidimensional space
to a space with another number of dimensions, using a dis-
tances matrix computed in the starting space. The coordinate
assignment in [24] is composed by three steps:

1) Compute shortest paths between all pairs of nodes.
When no distance information is known, length 1 is
assumed for every link.

2) Apply MDS to the distance matrix, in order to get a 2D
or 3D map respecting distances.

3) Given sufficient anchor nodes, map relative coordinates
into real ones (if needed).

The main drawbacks of this protocol are its complexity
(in a network with n nodes the first step have complexity
O(n?)) and, most importantly, that it is based on a centralized
approach which is not quite feasible in a wireless sensor
network scenario.

To overcome these drawbacks, a distributed protocol of
coordinate assignment with lower complexity has been intro-
duced in [25]. This solution, which exploits graph embedding
[28], aims at assigning the nodes with virtual coordinates,
i.e., coordinates unrelated to real ones, which, however, can
efficiently support geographic routing algorithm such as [9] or
GPSR [10].

In [25] the authors introduce a family of coordinate as-
signment protocols with increasing complexities suitable for
different scenarios.

In the first scenario, the nodes positioned on the borders
of the network know their physical position. Every node itera-
tively computes its coordinates as the average of its neighbor’s
coordinates until it converges toward a virtual coordinate.
Simulations show that after 1000 iterations, a geographic
routing relying on these coordinates achieves a success ratio
over the 99% and the average path length is only slightly worse
than when real coordinates are used. A similar performance
can be achieved if only some of the perimeter nodes are aware
of their positions.

In the second scenario, the perimeter nodes know they
lie on the network border, but they are not aware of their
physical position. In this case the protocol runs a preliminary
round in which the hop distances among any pair of border
nodes are discovered. To this purpose, each perimeter node
floods the network with a beacon containing a hop counter.
When a perimeter node receives all the beacons, it fills a
perimeter vector with the distances between itself and all the
other perimeter nodes. In a second stage each perimeter node
sends its perimeter vector to all the other perimeter nodes,
which can then fill a hop-distance matrix containing the hop
distances between any pair of perimeter nodes. In turn, the
distance matrix is used to compute the virtual coordinates of
the perimeter nodes. Since non-perimeter nodes learn distances
between perimeter nodes before starting the protocol, they can
also compute approximate initial coordinate for themselves.
Simulations show that this approach is rather effective.

The authors also consider the case in which the nodes do
not have any information about the network boundary nor they
have information about their physical position. This case is
managed using two bootstrap nodes: the sensors execute a
preliminary distributed protocol to evaluate the hop distance
from the bootstrap nodes, then the sensors which are at a max-
imum distance from the bootstrap nodes in their neighborhood
assume to be in the border of the network. Simulations show
that, if the network is dense enough, just a few interior nodes
take the wrong decision, and that the virtual coordinates are



accurate enough to achieve a high success rate after a few
iterations.

Although the approach of [25] leads to a coordinate system
which can efficiently support geographic routing, the coordi-
nate assignment protocol can be quite complex. In particular,
in the scenario where the perimeter nodes have knowledge of
their physical location, the proposed protocol requires a large
amount of iterations to converge (in their example more than
1000 iterations). On the other hand, in the cases where the
nodes are not aware of their physical location, the perimeter
nodes should store the hop-distance matrix which have a size
in the order of n (where n is the number of nodes in the
network), and each perimeter node should perform O(+/n)
broadcasts to communicate to all the other perimeter nodes its
perimeter vector.

III. THE VIRTUAL COORDINATE ASSIGNMENT PROTOCOL
(VCAP)

We consider a sensor network composed of a large number
of nodes uniformly scattered in a sensing field. The nodes
are assumed static, or they have very low mobility with
respect to signal propagation speed. Every node has the same
transmission range, and each node is able to communicate with
all nodes within its range. For the sake of simplicity we also
assume that every node has a unique ID. This is used to break
ties in the protocol, however this assumption can be easily
removed as will be discussed later.

The coordinate assignment protocol has four phases, each
of which selects one anchor node. The first anchor W is only
used to enhance the chance of right selection of the other three
anchors X, Y, and Z. At the end of the four phases each node
is assigned with a triplet of coordinate (z,y,2), where each
coordinate represents the hop distance of the node from one
anchor.

The protocol proceeds as follows:

1) Election of W: Once the network is deployed, the
sink node (or any other node programmed for this
purpose) generates a W_SET message containing an hop
counter initially set to 1. The counter will be called
the w coordinate and its value is incremented by the
forwarding nodes. If a node receives more than one
message, it will consider (and forward) only the one
with smaller w.

2) Election of X: This phase initiates after all nodes have
been assigned with the w coordinate (To this purpose
the nodes waits for a time larger than the time required
to propagate the W_SET message in the network). The
nodes that have the maximum value of w within a two-
hop neighborhood (in case of parity the nodes that have
the maximum ID) decide they are in the boundary and
generate an X_ELECT message containing their ID, their
w and an hop counter initially set to 1. This counter will
be called the = coordinate and its value is incremented
by forwarding nodes. If a node receives more than one
message, it will consider (and forward) only the one with
larger w and, in case of equal w, the one with larger!

! Any other tie breaking rule may be used.

source ID. Note that also in this case the X_.ELECT is
generated after a random time in order to reduce the
number of messages generated in the network.

3) Election of Y: This phase is similar to the Election of
X. The difference here is in the rule used to select the
nodes eligible to become Y. The rule selects the nodes
that, within a two-hop neighborhood, have maximum z
and that satisfy w > -y for some parameter v which will
be discussed in the rest of this section. In case of parity
the nodes with maximum ID are selected as eligible. The
eligible nodes generate a Y_.ELECT message containing
their ID, their z and an hop counter initially set to 1.
The Y_ELECT message will set up a y coordinate. Its
propagation is achieved by propagating the messages
sent by the node with maximum z, and, in case of parity,
with maximum ID.

4) Election of Z: This phase is similar to the previous
with the difference that only the nodes whose z and y
coordinates satisfy some given rule ¢(z,y) (which will
be discussed below), and whose w is maximum within
a two-hop neighborhood, will generate a Z_ ELECT mes-
sage containing their ID, and which will set up a
z coordinate. The propagation of the z coordinate is
achieved by propagating the messages sent by the node
with maximum ID.

It should be observed that node W is used to let X, Y, and
Z be close to the boundary of the network. This is achieved
since only the nodes with maximal coordinate w and thus (with
high probability) close to the network boundary are eligible
as X, Y, or Z. After Z has been established, W is no more
needed.

Note also that the ID of the sensors is used to break the ties
in the protocol. However, if the sensors are anonymous, each
sensor could generate an ID as a random number chosen on
a range large enough in order to have a probability close to 0
that different sensors choose the same ID.

During the protocol execution, at high enough densities,
coordinates propagate as circular coronas centered on the
initiator node. In particular, the first hop resembles a circle
with radius equal to the communication range (or better, the
intersection between the circle and the network area). The P
hop resembles a circular corona with inner radius equal to
¢ — 1 times the communication range, and outer radius equal
to the inner one plus the communication range (again, the
intersection of such a corona with the network area).

When the last phase is completed, each node will use the
assigned triplet (z,y,2) as coordinate. However, in general,
the same coordinates will be shared by a set of nodes.
Hereafter we will call a set of nodes with the same coordinate
as a zone.

With this coordinate system, a geographic routing protocol
delivers a packet to its destination zone. Then the packet is
delivered to the desired destination node using a proactive ID-
based approach.

For this reason, in order to efficiently support geographic
routing the zones should span a limited number of hops.



Fig. 1. If only two anchors are used (X,Y’), nodes within the gray areas
receive the same coordinate (X;,Y;).

This is also the reason for which all the three coordinates
z, y, and z are necessary. In fact, if only two of them
were used (say z and y), there would exist physically distant
nodes, symmetric to the directrix connecting X and Y, which
would share the same virtual coordinate. (see Figure 1 for an
example). Thus, coordinate z is needed in order to break the
symmetry.

As will be proved more formally in Section V, to enforce
consistency of the coordinate system, the best choice for Z
would be a node orthogonal to the center of the XY directrix.
Thus, Z must be near to the network border, and almost
equidistant from X and Y.

The rule ¢(z,y) used in the last protocol phase to choose
Z is a heuristic to find a node satisfying this last constraint.
In our experiments, the rule selects nodes with maximum w
and z = y = 1. Such a rule gave good results in simulations.

However, there is still a case in which ¢ is not enough to
select only nodes on the network border. In fact, if W is on
the network border, X will be chosen with high probability on
the opposite border. If only distance from X was considered
in order to select Y, it would be possible to have Y very
near to W. In this case, the zone with nodes with z =y + 1
and maximum w would be quite large, and could include also
nodes aligned with X, Y and W (Figure 2). For this reason
the constraint w > <y, for some constant v, used in the third
protocol phase, ensures that Y is not aligned with X and W.

IV. VCAP OVERHEAD

In this section we discuss the communication and memory
overheads of VCap. First we study the communication over-
head considering the four phases of VCap. The first phase uses
a broadcast originated by one node (typically the sink node)
to identify nodes located on the boundary of the network.
In practice the effect of the first phase and the rule used to
select nodes eligible as X is similar to the technique used
n [25] (using two bootstrap nodes) to locate the perimeter
nodes. Still referring to the protocol used in [25], in the
case where nodes don’t know their location, we can compare
the stages 1,2 (a triangulation phase among perimeter nodes)
with phases 2,3 and 4 of VCap. However, while in [25] each
perimeter node should broadcast some information to all the
other perimeter nodes, in VCap it is sufficient that only one
perimeter node broadcasts some information to all the other
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Fig. 2. An example of possible anchor alignment. Without an appropriate
rule to distance anchor Y from W, anchor Z may be aligned with X and Y.

nodes. This means that, in practice, VCap may require the
same number of broadcasts as the first two steps of [25] in the
worst case, but it may require a smaller number of broadcasts
on the average.

To reduce the number of broadcasts required in phase 2
some well known technique on trading time for communica-
tion can be used. A simple protocol requiring one broadcast
per phase is as follows. Let us assume that an upper bound
of the time needed to propagate a message throughout the
network ¢ is known and that the nodes have integer IDs ranging
from 0 to n—1 where n is the number of nodes in the network.

After having received the W_SET message from the sink
node, node i waits for a time equal to (n — i) - 2t before
generating its X_.ELECT message. However, if it receives an
X_ELECT message from another node with a value greater than
or equal to w, it avoids to generate its X_ELECT message.

Let ¢y be the time at which the sink generates the W_SET
message, and j be the largest ID of the nodes eligible as X.
Then j generates its X_-ELECT message at most at time t; =
to+ (n—j)-2t+1t, where the last term accounts for the largest
time that the W_SET message may take to reach j. Note also
that the X_ELECT generated by j will reach any other node
by the time #; +¢.

It is easy to see that any other node eligible as X and thus
with an ID k with k£ < j would generate the X_.ELECT message
at least at time tj, = ¢o + (n — k) - 2¢ > t; + ¢, and thus it will
not generate the X_.ELECT at all.

This means that this simple protocol would require only one
broadcast per phase but in the worst case it may take a time
close to n - 2t to complete.

In practice, an effective approach is to delay the generation
of the X_ELECT messages for a random time chosen within a
given range. Clearly, a large range has the effect of reducing
the number of broadcasts but it would also increase the latency
of the protocol.

Another issue is the memory overhead. The protocol pre-
sented in [25] requires each perimeter node to store a distance
matrix, i.e., a matrix containing the distances between any
arbitrary pair of perimeter nodes. A rough approximation of



the number of perimeter nodes is O(y/n), which implies that
the distance matrix have a size O(n). This is clearly an
heavy burden if the protocol is applied in sensor networks.
Furthermore, although the size of the distance matrix could
be reduced by preventing some perimeter node to participate
to the protocol, this solution does not appear to scale well with
n. On the contrary, the memory overhead of VCap is constant
as it requires each node to store only its assigned values of
w,z,y, and z.

V. PROTOCOL CORRECTNESS ANALYSIS

The VCap protocol presented in the previous section does
not avoid that the two nodes have the same triplet of co-
ordinates. Thus, instead of dividing the network in points,
it causes a division in zones, and the nodes within a zone
are labeled with the same virtual coordinates. The size of
such a zone, depends on the node density and position of
the anchors X, YV, and Z. As we have already noticed, in
order to efficiently support geographic routing, size of the
zones should be bounded. In this section we will show that
the position of the anchors should be such that if two nodes
are assigned the same virtual coordinates then they should
belong to a bounded physical area, the size of which depends
on the network density. First, we prove that such a bounded
zone indeed exists under the assumption that the minimum
hop distance between two nodes is somehow related to their
Euclidean distance. Next, we will show that such a relationship
exists.

A. Effect of anchor positions on zone of ambiguity

We define the network density as the average number of
neighbors per node, and we make the following assumption:

Assumption 1: Consider two nodes at minimum hop dis-
tance h, there exist two values [(h) and u(h) such that the
Euclidean distance dg between the two nodes is bounded, i.e.,
I(h) < dg < u(h). The quality of the bounds depends on the
network density A. In particular for each h > 0 holds:

lim u(h) —1I(h)=r
A—o0
where r is the transmission range of the sensors.

If Assumption 1 holds and a node has the virtual coordinate
(z,y,2), anchor X (respectively, Y, Z) must be positioned
within a circular corona centered on the node itself, with inner
radius I(z) (I(y), I(2)) and outer radius u(z) (u(y), u(z))
(Figure 3(a)).

Let us consider two nodes n; and ny which are assigned
with the same virtual coordinate (z,y,z). We will show a
bound to the physical distance between n; and ns.

Without loss of generality, we assume that the physical
coordinate of ny is (0,0) and that the physical coordinate
of no is (d,0), hence ny and no are positioned at Euclidean
distance d from each other (Fig. 3(b)).

Since the two nodes have the same x coordinate, the anchor
X must be positioned in the intersection of the circular coronas
previously described. Let us define d; (dz) be the Euclidean
distance between ny (nz) and X. Then it follows that I(z) <

(a) (®)

Fig. 3. Position feasibility zone for X and the intersection of two feasibility
zones of two nodes sharing the same coordinate.

dy < u(x), and I(z) < d2 < u(x), and four cases may happen
(the same cases also hold for Y and Z):

a) 0 < d < u(z) — I(z): when the nodes’ distance is
less than the uncertainty on X position (Figure 4(a)),
then X itself lies on a feasibility zone whose size is
bounded by the circular corona.

b) u(z) — l(z) < d < 2l(z): in this case (Figure 4(b)),
there are two feasibility zones, equidistant from n4,
and no.

c) 2l(z) < d < l(z) +u(z) : in this case (Figure 4(c)),
there is a unique feasibility zone for X.

d) I(xz) + u(z) < d < 2u(z) : also in this case (Figure
4(d)), there is a unique feasibility zone for X.

Letting (z,y, ) be the physical coordinates of anchor X,
it follows that, in all cases, it will be d/2 — a, < X, <
d/2+ a, for some a, (Figure 3(b)). Hereafter, we define the
feasibility zone for X (respectively, Y, Z) as the area such that
z € [d)2 — ay,d[2 + ay].

In case b) holds the following lemma.

Lemma 1: 1f u(x) — I(x) < d < 2I(zx) then a, = (u(z)? —
I(z)?)/2d.

Proof: As shown in the trapezoid drawn in Figure 5, the
width of the feasibility zone (i.e., 2a;) is the size of the upper
base of an isosceles trapezoid having lower base size d, sides
size [(z), and diagonals size u(z).

With some simple trigonometric considerations, it is possi-
ble to find the angles § and ¢, obtaining:

arccos <l2 (ZE) + d2 — UQ (ZE))

b = 2dl(z)

¢:

With the cosine rule for triangles, it is possible to obtain
the upper base width by solving the following second degree
equation:

T™—0

1?(z) + d* — u?(x)
d

(205)% + (2a,) + I2(z) — u?(x) = 0.
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Fig. 4. Intersection between position feasibility zones of anchor X: Four
possible cases depending on the distance between nodes sharing the same x
coordinate.

Defining a = u?(x) —I?(x), the equation assumes the more

compact aspect:

&2 —-a

(2a,)* + —a=0

(2az)

This second degree equation has two solutions, given by
2a; = a/d and 2a, = —d. Since we are interested in
the positive2 solut;zion, the upper base width of the trapezoid
i % — Y@-1(@) Hence we can conclude that Qp =
T

1(Z( ) — l($)2§/2d. n

Fig. 5. Determining the width of feasibility zone.

With an argument similar to that used in Lemma 1 it can
be concluded that in case (c) holds a = (u(z)? —I(z)?)/2d,
while in case (d) holds a, = u(z) — d/2.

Lemma 2: Let us suppose anchors X,Y, and Z form a
triangle whose minimum height is H. Then if two points
at Euclidean distance d share the same coordinates (z,y, 2)
(with, say, > y and x > %), it must hold either

d < max (u(a:) —l(z), %) or H < u(z) — l(z).
Proof: Without loss of generality we assume that:

u(z) —U(z) 2 u(y) —U(y)
u(z) — l(z) 2 u(z) — ()

and @))

and we consider the four cases shown in Figures 4(a)-4(d).

a) If 0 < d < u(z) — I(z) then the Lemma is trivially
true.

b) If u(z) —l(z) < d < 2l(x), let (z4,y,) be
the physical coordinates of anchor X. Thus, from
Lemma 1, the feasibility area for anchor X is de-
limited by: d/2 — a, < z, < d/2 4+ a,, where

az = (u(@)? —1(x)?)/2d.

Note also that from 1 the feasibility zones for Y
and Z are included in the feasibility zone for X.
Then, since maz(z,,z,,r,) < d/2 + o, and
min(z,,zy,,%,) > d/2 — a, it must hold (see Fig
3b)): |z — 2| < 20y, |2y —z,] < 204, and
|z, — 2y | < 20.

But, since the minimum height of the triangle whose
vertexes are X,Y, and Z is H, it must also hold:

max(|z, —z,|,|zx — z,|,|z, —2z,|) > H. From
which 2a, > H. ) )
Since 2a, = M follows that d <
v’ (2)—1%(x)

.

c) If 2l(z) < d < u(x) + l(z), exactly the same
argument as b) applies.
d) Ifu(z)+l(z) < d < 2u(zx), let (z,,y, ) be the phys-
ical coordinates of anchor X. Thus, from Lemma
1, the feasibility area for anchor X is delimited by:
d/2—a, < X, <d/2+a,, where a, = u(z)—d/2.
As in case (b), from z = max(z,y, z) we have that
the feasibility zone for Y and Z is included in the
feasibility zone for X, and in particular it must hold:
|2y — x| < 20y, |ty —2,| < 2a,, and |z, —
zy| < 2a, and, by the hypotheses of this Lemma:
max(|$x — Ty |7 |"Ex - $Z|, |$Z — Ty |) 2 H.
Since 2a, = 2u(z) —d < u(z) — I(z), it follows
H < u(x) —Il(x).
|
Note that the bound of Lemma 2 does not depend on the
network size. Furthermore, we deduct that the best position for
the three anchors is the one that maximizes H. In particular,
as will be shown in the following theorem, if the network is
circular with diameter D, then the best placement of X,Y and
Z is on the vertexes of an equilateral triangle inscribed in the
circle.

Theorem 1: Let us consider a sensor network in a circular
space of diameter D, and assume that the anchors X, Y and Z
are placed on the vertexes of an equilateral triangle inscribed
in the circle of diameter D. If Assumption 1 holds then the
maximum distance between two nodes in the same zone d
satisfy:

.8
A d=3r

Proof: Since the anchors X,Y and Z are placed on the
vertexes of an equilateral triangle inscribed in the circle of
diameter D, the minimum height of the triangle is H = %D.

From Lemma 2 it holds that either d < max(u(z) —

I(z), C@LE)) or B < u(z) — I(x).



Observe that, provided that r < %D, from Assumption 1,
for a sufficiently large A it holds: u(z) —I(z) < 2D = H.

Hence must be:

d < max (u(m) —I(z), M) _

P . u?(z)—13(x)
Notice that, if u(z) — I(z) > —ZF—=, then from
Assumption 1 the Theorem is trivially proved.
Then we consider the case:
i< @)~ L) _ (u@) +1())(u(z) — ()
- H H
Since u(z) < D (i.e., the distance of X from any node is
trivially bounded by the network diameter) and I(z) < u(z),

it must hold:
2D(u(x) - (=)

|
T

and since H = 2D, d < 3(u(z) — I(z)). Then, under
Assumption 1 we have:

B. Existence of bounds on Euclidean distance

The analysis of the previous subsection relies on Assump-
tion 1 to prove that the distance between nodes in the same
zone approaches %r as the network density increases.

To validate Assumption 1, we study the relationship be-
tween a given hop count and the bounds on Euclidean distance
using an approach that minimizes the distance from the next
node to the destination. As shown in Figure 6, the current
distance between a node A and the destination B is d. P is
potential neighbor of A and its distance to B is z, which is a
random variable. A greedy approach chooses as next hop the
node P that minimizes z. We consider the node density to be
sufficiently high to avoid any potential backward movement
at any step due to network holes.

Fig. 6. Remaining Euclidean distance to the destination from the next hop
node in greedy approach.

Given a distance d between the next hop node and the
destination, following [29], we have the probability density
function of progress in Euclidean distance x per hop using the
greedy approach fy(z) is given by Equation (2). Using fx(z)
we obtain the bounds on Euclidean distance for different hop
counts by numerical simulations.

A set of representative data are shown in Table I. It is noted
that the bound gets tighter with higher node density.

T
—*— A=10

10 15 20 25 30 35 40 45 50 55 60
Hop count, h

Fig. 7. Ambiguity in Euclidean distance in unit of nodal range.

TABLE I
BOUNDS ON EUCLIDEAN DISTANCE IN UNIT OF NODAL RANGE FOR
DIFFERENT NODE DENSITIES.

A =10 A =30 A =50
Hop count | I(R) w(h) | I(h) wu(h) | I(h) wu(h)
20 12.3 16.6 | 155 182 | 163 18.7
40 26.5 320 | 324 36.1 342 371
60 40.7 474 | 495 536 | 521 553

Numerical results plotted in Figure 7 show the ambiguity
in Euclidean distance for a given hop count. We observe that
with higher node density, the ambiguity in distance becomes
nearly saturated beyond a certain hop count. Therefore, for
all practical purposes, for a given network size and a given
node density, we can consider the maximum limit of distance
ambiguity u(h) — [(h) as the near-saturation limit.

VI. SIMULATIONS

In this section we present the outcome of our simulation
experiments with two aims:

« To study the properties of the virtual coordinate system
and compare the simulation outcomes with analytical
results. In particular, we study statical properties of the
largest zone, i.e. the largest set of nodes sharing the same
virtual coordinates.

o To evaluate the reachability of nodes using a simple
routing algorithm based on virtual location information.
We measure the success rate of path construction for
random source-destination pairs and obtain the average
hop count. These results are compared with the same
measures collected using physical coordinates, where the
actual location of the nodes are assumed to be known.

A. Distance of nodes sharing the same coordinates

These simulations are aimed at the evaluation of the worst
case, i.e. the case in which the zones span the largest number
of hops.

To this purpose, for a given density, the simulator randomly
generates 1000 networks, it assigns the virtual coordinates
using VCap and it measures the maximum distance dy be-
tween two nodes with the same coordinate. The simulation
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Fig. 8. Average distance between points sharing the same coordinates.

evaluates the average E(dy), the maximum Maz(dy), and
the minimum min(dy).

The simulation results obtained in a circular network of
radius 1, transmission range r = 0.05, and uniform distribution
of nodes are shown in Figures 8 and 9. Figure 8 shows
the values of E(dn)/r, Maxz(dn)/r, and min(dy)/r for
network densities in the range of 10 to 70, and Figure 9 show
the frequency of the different values of d grouped in buckets
of size r/4 for density 10 and 60.

It is seen from Figure 8 that for low density (i.e., 10
neighbors on average) results are quite dispersed, but as
density increases, E(dy) approaches 2.35r, i.e., it is slightly
more than twice the transmission range, while M ax(dy) tends
to decrease with the network density and is slightly above
3r for density 70. Furthermore, as shown in Figure 9(b), the
cases in which Maz(dy) is above 3r are rather infrequent.
This appears to confirm the result of Theorem 1, which states
that for high enough densities the upper bound to Maz(dy)
should approach 8r/3.

B. Performance of geographic routing with virtual coordinates

The simulation experiments in this section are aimed at the
evaluation of the effectiveness of the virtual coordinate system
when used to support a simple geographic routing algorithm.
In particular, we study the greedy geographic routing with our
hop-based virtual coordinates and compare the network per-
formance with the standard physical coordinate based greedy
routing.

Note that our aim is to evaluate the possibility of setting
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a path, from the source to the destination, using virtual
coordinates in very large networks. We do not concern with
the problem of actually routing data packets. For this reason
our simulation model does not include details of a realistic
MAC protocol. In particular, we do not consider neither packet
loss nor signal propagation, and we assume that the nodes
transmission range is a perfect circle of radius 7.

The simulator uses a simple greedy geographic routing
which selects as next hop the node for which the distance to
the destination is minimum. In the virtual coordinate system,
we have defined the distance between two nodes of coordinate

(z1,91,21) and (T2,Yy2, 22) as:

V(w2 —21)2 + (Y2 —y1)% + (22 — 21)2.




A local detour rule is introduced to improve on pure greedy
approach by allowing backward progress, if needed. If the
routing protocol reaches a node v which is local minimum
and it cannot progress toward the destination, the local detour
rule allows for a limited number of times the possibility to
forward the packet to the node in the neighborhood of u that
is closest to the destination, even if w is farther than v to
the destination. This rule improves the success rate of packet
delivery but increases the average path length.

In the experiments we considered square domains with side
L and circular domains of radius R. The simulator takes as
parameter the side L of the square area (or the radius R
of the circular area), the transmission range r of the nodes,
the network density A expressed as the average number of
neighbors per node, and the maximum number ¢ of allowed
local detours per packet, and returns the reachability rate, i.e.,
the probability that the routing algorithm is able to find a path
between an arbitrary pair of nodes and the average path lengths
with both physical and virtual coordinates.

In each simulation experiment, the simulator generates a
random sensor network and executes the VCap protocol to
assign the virtual coordinates. Then it applies the routing
algorithm to 100 randomly selected source-destination pairs
using both virtual and physical coordinates. The simulation is
repeated with 10 different seed values to evaluate success rates
of routing and average path lengths with the two coordinate
systems (physical and virtual). Recall that, with the virtual
coordinate system the simulator considers that a node is
reachable when it is possible to reach the zone to which the
destination belongs.

The simulation results about reachability in square and
circular domains are shown in figures 10-11, while the results
about path lengths in square and circular domains are shown
in figures 12-13.

It is seen that the behavior of routing in circular networks is
slightly better than than in square domains. This is probably
due to a border effect which is smaller in the case of the
circular location space.

With both virtual and physical coordinates the reachability
approaches 100% as the network density increases, however
the routing with physical coordinates performs generally bet-
ter. Routing with virtual coordinates approaches the perfor-
mance obtained with physical coordinates with ¢ = 1 (i.e.,
the number of allowed local detours per packet). Parameter
c appears to have negligible effect on routing with physical
coordinates.

However it is interesting to note that, with very low density,
routing with virtual coordinates performs better. This is due to
the fact that, at low network densities, the virtual coordinates
propagate through the available paths, and in some cases, turn
around holes in the networks.

The path length with virtual coordinates is around 30% —
50% larger than with physical coordinates. This is due to the
fact that physical coordinates give more information about
the relative distance to the destination as compared to virtual
coordinates. On the other hand, virtual coordinates do not
require GPS equipped nodes.
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Fig. 10. Reachability of nodes with greedy geographic routing using virtual
and physical coordinates in square domains with: L = 200, r = 8, A ranging
from 8 to 50, and ¢ € {0,1,2}.
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Fig. 11. Path lengths of greedy geographic routing using virtual and physical
coordinates in square domains with: L = 200, r = 8, A ranging from 8 to
50, and ¢ € {0, 1,2}.
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Fig. 12. Reachability of nodes with greedy geographic routing using virtual
and physical coordinates in circular domains with: R = 100, r = 8, A
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Fig. 13. Path lengths of greedy geographic routing using virtual and physical
coordinates in circular domains with: R = 100, r = 8, A ranging from 8 to
50, and ¢ € {0, 1,2}.

VII. CONCLUSIONS

In this paper we have considered the problem of con-
structing a coordinate system in a sensor network where
location information is not available. We have introduced the
VCap (virtual coordinate assignment) protocol which selects
three anchors to define a virtual coordinate system based on
hop count metric. Compared to other approaches, the VCap
protocol is simple and have little requirements in terms of
memory overhead.

The virtual coordinate system do not assign individual
coordinates to nodes, rather, it defines zones of nodes assigned
with the same coordinate. We have shown that the size of
the zones is bounded and the upper bound approaches 8r/3
(where r is the transmission range of the nodes) as the density
approaches to infinity. This result have also been confirmed by
simulation.

We have evaluated the impact of the virtual coordinate
system on routing by simulation, and it is observed that
the performance of a simple greedy geographic routing with
virtual coordinates is slightly below the routing performance
with physical coordinates, but that this difference becomes
negligible as the network density increases.

Futures work includes the study of our virtual coordinate
system using more realistic simulation models and considering
mobility. Another area of investigation is the study of routing
protocols with guaranteed delivery rather than greedy routing.
This may turn to be a non trivial problem, since the three
dimensional coordinate system defined by VCap may require
a generalization of the three-hand rule exploited by [9], [10].
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