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Abstract

The distributed gradient protocol is a common building
block to perform several tasks in a wireless sensor network.
The gradient calculates the minimum hop-distances between
each sensor and a specified set of anchor sensors. This
calculation is performed using a distributed greedy forward-
ing of messages in the network. Several virtual localization
protocols use gradients to compute the virtual coordinates of
the sensors. The quality of these coordinate systems depends
on the relation between the value of the gradient and the real
geographic distances between sensors.

In this paper a formal proof of such relation is provided
in the case of dense sensor networks with homogeneous
sensor communication range r. The minimum-hop distances
between a sensor and an achor is bounded to be in a range
defined by two geographic distances. The size of this range
decreases with increasing density of the network and it is
equal to the maximum resolution (the communication range
r) when the density is high enough.

1. Introduction

The effective development of reliable and efficient
communication mechanisms in Wireless Sensor Networks
(WSN) [1] is particularly challenging. In fact, due to their
limited transmission range, sensors must organize into a
multihop wireless network and each sensor must be able to
relay messages i.e., act as router in order to allow arbitrary
point-to-point communications. Given the meagre resources
of the sensors (in particular in terms of energy) and their
disposable nature, it is not feasible to use other routing
protocols (such as those created for ad hoc networks [2], [3])
where addressing hierarchies are created and maintained,
since they require network-wide exchange of routes infor-
mation and a considerable memory overhead to store routing
tables in the sensors.

For this reason most recent approaches exploit greedy
routing based on the physical position of the destination and

the neighbors of the forwarding sensor. This approach pro-
vides reasonable performance in densely, regularly shaped
networks but may fail in relatively low densities (4-8 neigh-
bors per sensor) or when obstacles hinder sensor connec-
tivity. In these cases these protocols switch to the face
traversal mode [4] (or similar rescue modes) in order to
turn around the void area and then to continue with greedy
forwarding. The main disadvantage of these approaches is
that the sensors must be aware of their physical coordinates,
an assumption that is not realistic in some settings (for
example indoor), and that requires additional costs since the
sensors must be equipped with GPS or other positioning
systems.

On the other hand, recent solutions base geographic rout-
ing on virtual coordinates rather than on physical coordinates
[5],[6],[7],[8],[9],[10],[11]. Virtual coordinates completely
disregard sensor positions and take into account only the
WSN connectivity to assign coordinates to the sensors.

A common building block used by this class of protocols
is the calculation of a gradient - an operation in which
each sensor estimates its shortest path distance from a set of
gradient sources or anchors. Gradients are used not only in
coordinate assignment but for several applications like data
harvesting (directed diffusion [12]) and routing [5], [7].

Gradients are generally calculated through the iterative
(distributed) application of a triangle inequality constraint.
In its most basic form the calculation of the gradient gx

j at
a sensor sensor x with respect to the anchor j is given by:

gx
j =

{
1 if x = j

min{gy
j + d(x, y) | y ∈ Nx} if x �= j

(1)

where Nx is the neighborhood of x (excluding itself) and
d(x, y) is the distance between neighboring sensors x and y.
Iterated applications of the above calculus converge in each
sensor to a stable value.

When the distance function among neighboring sensors
is defined as d(x, y) = 1 the protocols are called Range-
Free, i.e., they do not estimate geographic distances among
sensors, but, rather, they use only the information implied
by the connectivity.
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With virtual coordinates, each sensor is assigned a tuple
of coordinates, where each coordinate is the gradient with
respect to a different anchor. The coordinate assignment is
achieved by means of distributed protocols, and the different
virtual coordinate systems differ in the number and displace-
ment of the anchors and on small variations in the definition
of the gradients. It is important to note that the virtual
coordinate vector of a sensor is not necessarily unique. The
set of sensors sharing the same virtual coordinates is called
a zone of the network. Once the virtual coordinate system
is established, a geographic routing protocol delivers the
packets to their destination zone. Then each packet can
be delivered to the desired destination sensor using, for
example, a proactive ID-based approach within the zone.
For this reason, in order to efficiently support geographic
routing, the zones should be small and span a limited number
of hops.

The size and shape of zones depend on the number
of anchors and their position in the network, and on the
algorithm used to compute the gradients. Although it is
desirable to have small zones (possibly one zone per sensor),
this may be costly to achieve, since it may require a large
number of anchors, and thus a higher message complexity
of the protocol. Note that, for unambiguous geographic
forwarding we require at least three anchors (and thus the
resulting coordinate space is three dimensional). In fact, if
only two coordinates were used (say x and y), there would
exist physically distant sensors, symmetric to the directrix
connecting two anchors that would share the same virtual
coordinate (see Figure 1 for an example). A third anchor is
thus needed to break the symmetry. As a matter of a fact
any protocol that define a consistent coordinate system uses
at least three anchors.

The Virtual Coordinate Assignment Protocol (VCAP)
presented in [5] defines the coordinates of each sensor
using a variation of gradients where the anchor sensors are
elected jointly by means of a distributed protocol. Using this
approach it was formally proved that the radius of the zones
(in terms of number of hops) is probabilistically bounded by
a small constant. The proof is valid in dense sensor networks,
but it is based on a conjecture that relate the gradient, i.e.,
the minimum hop-count distance between a sensor and an
anchor, with the geographic distance between the sensor and
the anchor, and this conjecture has not been formally proven
yet. In this paper we remove such conjecture by providing a
formal proof of this relation, i.e., we show in a dense sensor
network the minimum hop-distance, defined as in gradients,
is geometric probabilistically related to geographic distance.
This result applies to any virtual coordinate system con-
structed by means of gradients (for example to [6] or [11])
since it provide bounds that can be used to determine the
maximum size of the zones for dense sensor networks. In
particular, it can be directly applied to the virtual coordinate
system defined by VCAP [5] since the analysis on the size

x=xi

y=yi

XY

Figure 1: If only two anchors (X,Y ) are used, sensors
within the gray areas receive the same coordinate (xi, yi).

of the zones depends on this result.
The paper is organized as follow: In Section 2 we review

the VCAP protocol and the virtual coordinate system that
it defines. In Section 3 we review part of the analysis done
in [5] that left as an open problem the relation between the
two distances. In Section 4 we present the proof of the above
statement. Finally in Section 5 we draw some conclusions.

2. The VCAP Protocol

We consider a sensor network composed of a large
number of sensors uniformly scattered in a sensing field. The
sensors are assumed static, or they have very low mobility
with respect to signal propagation speed. Every sensor has
the same transmission range r, and each sensor is able to
communicate with all sensors within its range.

The VCAP protocol [5] has four phases, each phase
jointly elects an anchor and computes the corresponding
gradients (as shown in Figure 2). The overall goal of the
protocol is to select three anchors that are near the border
of the network (the most external sensors).

In each phase the function that computes the gradients
uses also the values of the gradients computed in previ-
ous phases. The anchors are denoted with capital letters
W,X, Y, Z, the value of the gradient in each sensor with
respect to a given anchor is denoted with a small letter
corresponding to the anchor identity, i.e., w, x, y, z.

The first anchor W is any sensor in the network, i.e.,
it could be the sink or any other sensor specifically pro-
grammed. After the gradient calculation with respect to W ,
the border of the network is defined as the set of sensors
that have the maximum value of w within their two-hop
neighborhood. Since this phase is only used to determine
the sensors on the border it could be possibly replaced by
using any other protocol for the identification of the sensor
network borders (see for example [13]).

Each sensor in the border attempts to be elected as X
anchor. The election is done jointly with the calculation of
the gradient with respect to X . Only messages with a higher
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Figure 2: The three anchors elected by VCAP in a circular
sensor network.

w (or higher sensor ID) are used to update the value of the
gradient for X . At the end of this phase a single sensor on
the border of the network is elected as anchor X , and each
sensor know the gradient with respect to it.

The third phase is similar to the previous, it elects a
sensor Y among the sensors that are on the border and with
maximum distance with respect to X , i.e., maximum x. The
position of the anchor Y is therefore opposite to X in the
network. To avoid a situation in which Y is too close to
W (this situation may impair the correct selection of anchor
Z), Y is selected with the constraint that its w coordinate
is such that w > γ, where γ is a parameter of the protocol.

The fourth phase involves sensors that satisfy a specific
condition on the value of w, x, y. The best choice for Z
(formally proved in [5]) would be a sensor orthogonal to
the center of the XY directrix. The rule used in the last
protocol phase to choose Z is a heuristic aimed at finding
a sensor that satisfies this last constraint. In [5] a rule was
suggested that selects a sensor with maximum w among the
sensors with x = y ± 1.

When the last phase is completed, each sensor is assigned
with a coordinate triplet (x, y, z). The gradient with respect
to W is used to let anchors X , Y , and Z be close to the
boundary of the network with high probability, it is not used
in the definition of the virtual coordinates.

3. Properties of the VCAP protocols

The VCAP protocol [5] causes a partition of the network
into zones, where the sensors within a zone are labeled with
the same virtual coordinates. The size of a zone depends
on the position of the three anchors X , Y , and Z and on
the sensor node density, measured as the average number of
neighbors per sensor. As already mentioned in Section 2, in
order to efficiently support geographic routing, the size of
the zones should be bounded.

In [5] we proved that the size of a zone in a sensor network
with density Δ is limited. In particular, the Euclidean
distance d between two sensors in the same zone is bounded:

Theorem 1. Consider a sensor network deployed in a
circular space of diameter D, and assume that the anchors
X , Y , and Z are placed on the vertexes of an equilateral
triangle inscribed in the circle of diameter D. Let r be the
communication range of sensors. The maximum distance d
between two sensors in the same zone satisfy:

lim
Δ→∞

d =
8
3
r.

Although limited to circular domains, the result of The-
orem 1 indicates why VCAP selects the anchors as far
as possible from each other and on the boundary of the
network. In fact this choice contributes to reduce the size of
the zones and, in turn, reduce the number of sensors which
share the same set of coordinates.

Note that during the distributed calculation of the gradi-
ents the sensors forward messages using a greedy approach.
This is because, dissemination of the coordinates is such that
the message originated by an anchor proceeds via broadcast,
and only the message along the shortest path (with the
least hop count) is considered at a sensor. This implies that
the messages setting the gradients are forwarded at each
intermediate hop by the sensors that minimize the distance
from the respective anchors. In other words, the message
propagation is based on a greedy forwarding approach.

The proof of Theorem 1 in [5] is based on an assumption
that relate the hop distance between two sensors when using
a greedy forwarding approach with the Euclidean distance
between the sensors d. This assumption was verified only
by simulations. In this paper we remove the assumptions
and present a formal analysis of the above relashionship for
dense networks. In particular, given two sensors A and B at
hop distance h we show that their physical distance can be
approximated with high probability as a function of h, and
that the error of this approximation tends to be at most r
for dense sensor networks. This result is formally stated in
Theorem 2 in the next section.

4. Existence of bounds on Euclidean distance

In this section we discuss the relationship between a given
hop count and the bounds on Euclidean distance when using
a greedy forwarding approach. As shown in Figure 3, the
current distance between a sensor A and a destination B is
d. P(t, θ) is a potential neighbor of A and its distance to B
is z, which is a random variable.

The greedy approach that we consider chooses as next hop
the sensor P that minimizes z. We consider the sensor den-
sity to be sufficiently high to avoid any potential backward
movement at any step due to network holes.
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Figure 3: Remaining Euclidean distance to the destination in greedy forwarding approach.

Referring to Figure 3 and considering that a potential
forwarding sensor can be anywhere in the right half circle,
the joint probability density function (pdf) of the random
variables t and θ is

ftθ(t, θ) =
{

2t
πr2 , 0 ≤ t ≤ r and − π

2 ≤ θ ≤ π
2

0, elsewhere.

By transformation of variables, the pdf of remaining distance
z is obtained as

fz(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4z
πr2 arccos

(
d2+z2−r2

2dz

)
,

if d − r ≤ z ≤ d
4z

πr2

[
arcsin

(
d
z

) − arcsin
(

d2+z2−r2

2dz

)]
,

if d ≤ z ≤ √
d2 + r2

0, elsewhere

We denote the remaining distances from Δ/2 potential
forwarding sensors as z1, z2, · · · ,zΔ/2, where Δ is the
average number of neighbors of a sensor, also called network
(sensor) density. Since the sensors are uniformly random dis-
tributed, zi ∀ i = 1 to Δ/2 are independent and identically
distributed (i.i.d.) random variables. Therefore, the pdf of
least remaining distance ξ = min

{
z1, z2, · · · , z Δ

2

}
is

given by

fξ(·) =
Δ
2

fz(·)RΔ
2 −1

z (·),
where Rz is the complementary cumulative distribution
function (cdf) of z. The corresponding pdf of forward
progress in one hop ε = d − ξ is

fε(ε) = fξ(d − ε). (2)

Let G(d, ε, r) = arccos
(
1 + ε2−r2

2d(d−ε)

)
. Assuming high

sensor density such that ε is always positive, the pdf of
ε can be approximately expressed as

fε(ε) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δ
(

2
πr2

)Δ
2 (d − ε)G(d, ε, r)

[√
4r2d2−(r2−ε2+2dε)2

2

−(d − ε)2G(d, ε, r) + r2 arcsin
(

r2−ε2+2dε
2dr

)]Δ
2 −1

,

if 0 ≤ ε ≤ r

0, elsewhere.
(3)

The n-th moment of ε can be calculated from (3) via
numerical integration, εn =

∫ r

0
εnfε(ε)dε, from where the

standard deviation of ε, σ =
√

ε2 − (ε)2, is obtained. As
shown in Figure 4, especially at large sensor density, σ is
largely independent of d. Therefore, we take σ approxi-
mately as a constant, and compute it using d as the expected
distance between any source-destination pair dS−D. For
example, it was shown in [14] that the expected distance
between any two randomly located points within a circular
disc of diameter D is dS−D = 64

45πD.

Theorem 2. Consider two sensors at minimum hop distance
h. For any fixed probability p there exist two values l(h)
and u(h) such that the Euclidean distance d between the
two sensors is bounded in probability, i.e., l(h) ≤ d ≤ u(h)
with probability p. The quality of the bound depends on the
network density Δ and the probability p. At sufficiently large
network density,

lim
Δ→∞

u(h) − l(h) = r,

where r is the transmission range of the sensors.

Proof: Assume that the forward progress in each hop
is independent of the progress in previous hops. The total
progress in first h − 1 hops is a random variable, ε′ =
ε1 + ε2 + · · · + εh−1, where εi, ∀ i = 1 to h − 1, are
i.i.d. random variables with mean ε and variance σ2. For
moderately large network (with h > 3), by central limit
theorem, ε′ is normal distributed, with mean (h − 1)ε and
variance (h−1)σ2. Thus, the standard deviation of Euclidean
distance progress in h − 1 hops is

√
h − 1σ.

Since ε′ is normal distributed, a proper multiplication
factor k can be chosen such that the distance ambiguity
u(h−1)−l(h−1) in first h−1 hops lies within 2k

√
h − 1σ

around the mean with probability p, where p is a function
of k.

To study the limiting case, we obtain the cdf of one hop
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Figure 4: Variation of standard deviation of one hop progress with d. r = 10.

progress ε from (2) and (3):

Fε(ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ε < 0[
2

πr2

{√
4r2d2−(r2−ε2+2dε)2

2

−(d − ε)2 arccos
(
1 + ε2−r2

2d(d−ε)

)
+r2 arcsin

(
r2−ε2+2dε

2dr

)}]Δ
2

,

if 0 ≤ ε ≤ r

1, ε > r.

Denote

x = 2
πr2

{√
4r2d2−(r2−ε2+2dε)2

2

−(d − ε)2 arccos

(
1 + ε2−r2

2d(d−ε)

)
+ r2 arcsin

(
r2−ε2+2dε

2dr

)}

By the property of cdf, for all ε < r (i.e., x < 1), Fε(ε) <
1, and for all ε ≥ r, Fε(ε) = 1. Since limΔ→∞ xΔ/2 =
0 for all x < 1, the cdf Fε(ε) is a step function at Δ → ∞;
Fε(ε) = 0 for all ε < r and Fε(ε) = 1 for all ε ≥ r. Thus,
in the limit, the pdf fε(ε) is a shifted delta function: fε(ε) =
δ(ε− r), and correspondingly, ε = r, a constant. Therefore,
the standard deviation of ε, and hence the distance ambiguity
u(h − 1) − l(h − 1) tends to 0 in the limit.

One way to capture the effect of last hop is explained
through Figure 5, which shows one dimensional hop counts
and distance coverages. Say, a sensor with x-coordinate xi

needs to reach an h-hop away sensor B (with x-coordinate

xi+h). There are two extreme cases involving the two nearly
r distance apart sensors, A1 and A2. At very high sensor
density, in first h − 1 hops, the sensor C is reached from
sensor A1, whereas the sensor B′ is reached from sensor
A2. In both cases, the distance covered is (h − 1)r (since
limΔ→∞ u(h−1)− l(h−1) = 0). To reach sensor B, in the
first case the distance covered is r (C to B), whereas in the
second case the distance is nearly zero (B′ to B). Therefore,
in total, limΔ→∞ u(h) − l(h) = r.

Since the distance coverage in the last hop is uniformly
distributed in (0, r], the maximum distance ambiguity in the
last hop is r, irrespective of the sensor density. Thus, at finite
sensor density, u(h)− l(h) = 2k

√
h − 1σ + r in probability

p, where p is a function of k.

5. Conclusions

In this paper we have considered the problem of determin-
ing the relationship between the distances calculated with
gradient, i.e., the minimum hop distances between a sensor
and an anchor calculated by a distributed greedy forwarding
algorithm, and the respective geographic distances.

This relationship is of great practical importance since
an important class of virtual coordinate systems assign the
coordinates to the sensors based on hop distances (i.e., based
on gradients range free), thus using this result it is possible
to determine the physical distance between sensors of given
coordinates. This result can also be exploited in the formal
analysis of localization protocols and in other distributed
protocols based on gradients. An immediate application of
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Figure 5: One dimensional schematic showing the maximum difference in distance coverage in h hops at very large sensor
density. r is the nodal range. All sensors within two consecutive vertical lines have the same virtual coordinate (hop count).

this result is related to the VCAP protocol. In fact this
protocol defines zones (i.e., set of sensors assigned with
the same virtual coordinates), and the size of the zones is
critical to the performance of routing. The proof given in
[5] that defines a bound on the size of the zones is however
dependent on an unproven assumption on the relationship
between the gradient distances and the geographic distances.
The proof given in the Theorem 2 in this paper fills this gap
and shows that this relationship is also dependent on the
network density. Future work include the extension of such
results to network of heterogeneous sensors having different
communication and energy capabilities.
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