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Abstract—Smart electricity meter is an example of the Internet
of Things (IoT) device which is nowadays being installed in do-
mestic and industrial premises to monitor the power consumption
along with various other services such as billing, load forecasting,
and dynamic pricing. Usually, these IoT devices sample at a high
rate and report the whole data to the cloud. In this process
a large amount of energy is consumed at the IoT node for
transmission of the data and a large bandwidth is used for
transmission over the Internet, though for storage saving some
compression is performed at the destination. To this end, we
aim to prune the IoT data at the source node by providing
some intelligence, thereby aiding to the wireless IoT node’s
energy sustainability and efficient channel bandwidth usage for
scalable deployment. The IoT devices measuring/reporting single
parameter or multiple parameters are judiciously pruned within
an acceptable reconstruction error limit. In this paper, we report
embedded implementation of data-driven dynamic pruning of
multi-parameter smart meter data as an example demonstration
of data-smart IoT nodes. Our performance results show that
the energy and bandwidth savings with multiple univariate data
pruning are respectively about 19% and 36%, whereas the savings
with multivariate data pruning are respectively about 36% and
98%. The developed embedded data pruning module is 99.09%
more energy efficient than the implementation on Raspberry Pi.

Index Terms—Advanced metering infrastructure, data-driven
smart IoT, energy efficiency, prototype design and implementa-
tion, smart meter

I. INTRODUCTION

An electric power grid is an interconnection of power gener-
ation sources, electric transmission network, transformers, and
distribution network to deliver power to the consumers. The
operation of conventional electric grid has become obsolete
due to the lack of automated analysis; it is unsuitable for
meeting the fast-growing and dynamic demand for electricity.
Hence, the concept of Smart Grid (SG) has gained prominence
which is touted as the next generation of electric power system.
SG is considered for interconnecting the various components
of electric grids using communication networks [1]. It aims to
provide electricity supply to the end users in a safe, reliable,
efficient, and secure way. In SG, two-way communication is
established between the various components and it allows the
end user to not only consume power but also supply excess
power to the SG. This is achieved with the the help of smart
meters that monitor and measure the bi-directional flows.

Smart Meter provides electricity consumption or supply
data to the Head End System on routine basis as well as on

demand [2]. Demand side management and load limiting are
two key features aided by the smart meter that enables the
utility provider to estimate the trend on energy usage of a
particular customer or entity [3].

Advanced metering infrastructure (AMI) is a collective term
to describe the whole infrastructure that collects and analyzes
in near real-time data from smart meters and control center
equipment using two-way communication. This data is used to
manage various applications and services intelligently. A smart
meter is capable of measuring power consumption at a fine
granularity as compared to a conventional meter. It periodically
sends the collected information to the utility provider for
billing, monitoring of load, and demand-response mechanisms
by the control center. It also enables consumers to monitor and
control their power consumption. Hence, through customer
participation, it may be possible for the utility provider to
provide electricity at dynamic and relatively low prices. Smart
meter is also capable of providing various instantaneous infor-
mation on circumstances, such as power theft detection and
tampering, thus offering to secure the utility [4].

A. Motivation

The huge amount of data generated by the smart metering
framework helps in understanding and modeling the patterns
of energy usage. However, resource-efficient transmission and
storage of this vast data remain a challenging task. Due
to limitations in the handling of this vast amount of data,
methodologies for smart meter data reduction need to be
exploited. While the smart energy meters have been introduced
in SG with the view of remote and autonomous two-way
data connectivity, it does not have node-level data handling
smartness. In other words, data-driven resource optimization
techniques have not been exploited in smart meters. Recent
research studies indicate that the incorporation of data-level
smartness at the smart energy meters can significantly reduce
the communication bandwidth requirements [5], [6]. Yet, these
studies did not delve into the implementation details and
the associated challenges. Moreover, they did not address
the energy footprint aspects from the additional node-level
processing and reduced communication requirements.

B. Key contributions

In this work, we have developed a cost-effective end-to-
end smart energy metering solution prototype with a data



pruning subsystem at the source node. The data pruning
subsystem employs dynamic data-driven resource optimization
techniques depending on the allowable level of compression
for a given error toleration. As a use case study, a smart energy
meter has been chosen to demonstrate the concept as it makes
available multiple parameters that can be used to achieve high
levels of compression. This concept can be easily extended
to similar IoT devices generating time-series data consisting
of single or multiple parameters. To make the prototypes
commercially viable, our designed smart data handling and
communication module has the following features:
• Reduced implementation complexity: Space complexity

of the algorithm arises since the system needs to work in
near real-time, extra memory will be required to store the
intermediate values generated during the operation of the
algorithm. So, optimized implementation of the algorithm
will play a crucial role in reducing the cost as it will have
a small memory footprint.

• End-to-end solution for commercial deployment: The sys-
tem should support popular communication technologies.
It should also be upgradable to support technologies to
be deployed in the near future. This will tend to increase
the cost of the product. This should be made flexible in
order to cater to different markets.

• Energy minimization: By designed energy efficient smart
IoT node consumes 19.7% and 36% less energy during
transmission by incorporating univariate and multivariate
data pruning algorithms respectively.

• Cost minimization: The choice of the hardware compo-
nents were in such a way that we can achieve a reasonable
performance at a minimal cost. The designed smart
IoT node is 3 times cost-effective than the conventional
Raspberry Pi (R-Pi) based implementation.

II. BACKGROUND AND STATE-OF-THE-ART

Smart IoT communication [7] proposes a data-driven ap-
proach. In this framework, each IoT device has been imparted
some intelligence to fulfill a certain objective. One approach
of doing so is to impart the capability to the edge IoT device to
understand the dynamics of the underlying process to convert
bulk data into smart data. Imparting data pruning intelligence
at the edge node level has two benefits, these are reduced traffic
in the communication network and reduced the data storage
requirements at the cloud.

In [8], proposes a technique to improve the energy sus-
tainability of the edge IoT node by incorporating data prun-
ing intelligence. Data-driven resource optimization techniques
can be employed in commercial smart meter to make them
intelligent in the context of data bandwidth saving. Paper [9]
suggests that by learning the channel variability and using a
dynamic channel coding scheme, the transmission reliability
of IoT data can be improved. Implementation of metering
systems with various communication technologies are de-
scribed in [10], [11]. In [10] , a LPC2148 microcontroller
incorporating GSM technology based smart home controller

is proposed to do net metering and smart appliance control.
A single phase energy meter is described in [11] where the
communication medium is WiFi. However, none of the works
have incorporated any data compression algorithm to reduce
the data or memory footprint.

Currently, deployed commercial IoT devices lack the intelli-
gence to exploit data reduction techniques at the source node;
it transmits all the sensed data, thereby sending redundant
information content. These IoT devices can be considered
as conventional sensing devices with network connectivity.
With the advent of 5G, there is expected to be a very dense
deployment of IoT devices, and the data sampling rates are
going to increase [12]. Hence, the need arises to make these
devices smarter in some context. To the best of our knowl-
edge, currently there are no such subsystems available with
commercial smart meter which can exploit data bandwidth
saving strategies.

III. DATA DRIVEN RESOURCE OPTIMIZATION
APPROACHES

Commercial smart meters sense various energy consump-
tion parameters such as current, voltage, apparent power,
frequency, etc. along with meter health-related parameters.
Unlike conventional analog meters, these automated meters
follow a high-speed data sampling approach, thereby gener-
ating a huge chunk of data. Data compression approaches
employed in smart meters can be classified based on whether
they operate at the IoT device or the aggregator in the AMI.
Techniques employed at the aggregation point have a high
compression ratio since the aggregation point has access to
vast amounts of data from many meters connected to it.
The sampling rate is typically half-hour, and hence it aids
in identifying various energy consumption patterns such as
daily, weekly, seasonal, or behavioral. Various compression
techniques have been suggested in literature and can be studied
under two heads: lossless compression techniques and lossy
compression techniques. The lossless compression techniques
lead to an accurate reconstruction of data whereas, the lossy
techniques report a higher compression ratio and are suitable
for error-tolerant scenarios. Our study reveals that a data
pruning subsystem employing these algorithms has not been
integrated into commercial smart meters.

A. Non-real-time univariate approach

The work in [5] proposes a lossy data compression tech-
nique based on compressive sampling on a single time-series
data. Compressive Sensing makes use of the sparsity in the
given data or time-series to compress it and also provides
fairly accurate reconstruction from fewer samples as compared
to that required by Nyquist sampling theorem. Consider a data
transmission window of n number of samples, where the ith

sample is denoted by xi. Hence, f = (x1, x2, . . . , xn) are the
samples comprising x. So x can be represented as:

x = ψf, (1)



Fig. 1: Flow diagram of univariate approach.

where ψ is a matrix of size n× n representing the sparse
basis matrix and the column vector of coefficients correspond-
ing to ψ are denoted by f . Out of n samples in a given batch
of data, only m (m << n) samples are randomly chosen for
transmission. In order to save transmission bandwidth over the
communication channel, this data downsizing is performed.
Using 1, the samples which are transmitted can be represented
by, y = φx = φψx, (2)

where φ is sensing matrix of size m× n. To accurately
reconstruct the signal using the received samples, the problem
of an underdetermined system of linear equations needs to be
solved. Subspace pursuit algorithm has been employed in this
work to reconstruct the original signal at the cloud server. For
signal reconstruction, Random Gaussian Matrix and Discrete
Fourier Transform (DFT) are chosen as sensing matrix and
sparse basis, respectively, such that restricted isometry and
incoherence property are satisfied. In this scheme, the sparsity
is computed for each batch of data by calculating the number
of DFT coefficients comprising 99.99% energy of samples.
This helps in capturing the erratic nature of smart meter data
and also plays an important role in compressing the data by
decreasing the number of samples which are transmitted with-
out comprising the information content or the reconstruction
accuracy. Hence, this scheme is adaptive as compared to the
conventional technique of compressive sampling, where the
sparsity is inferred and remains the same. Accordingly, m= s
log n are randomly chosen and transmitted.

B. Non-real-time multivariate approach

This technique utilizes the cross-correlation among different
variables of the multivariate data sensed by a smart meter
to decrease the dimensionality of the data. Once the di-
mensionality is reduced, for each stream/dimension, temporal
compression is exploited. Since the data is fluctuating in
real-world conditions, the vital parameters, namely temporal
sparsity and a minimum number of required dimensions are
computed for each batch. The algorithm operates in two steps
as explained below.

1) Principal component analysis: PCA is a technique to
reduce the dimensionality of the data by transforming it
from n-dimensions to p-dimensions. With this operation, the
strongly related features in the input and a major portion of

Fig. 2: Flow diagram of multivariate approach.

the variance of the whole multivariate data are preserved in
p-dimensions. From the input data matrix, eigen vector eigen
values are computed. In the transformed space, eigen vector
serves as an orthogonal basis. The basis vectors are dependant
on the input data, unlike other transformation techniques.
The principal components obtained are arranged in decreasing
order of variance and are uncorrelated.

2) Compressive sensing: It is a technique that provides
a compressed representation of data without much loss of
information content. The signal is reconstructed by finding
a solution to an under-determined linear system. The con-
densed representation provides saving in data storage and
transmission. The properties of sparsity and incoherence are
used in mathematical algorithms to reconstruct the signal from
a few number of measurements. For reconstruction purpose,
Subspace Pursuit Algorithm [13] has been used for data
reconstruction since it is accurate and has low computational
complexity.

3) Adaptive multivariate data compression (AMDC):
Adaptive multivariate data compression [6] executes in two
stages at the transmitter, i.e., the source IoT node. It processes
data in batches. It operates on 2-D data, where one dimension
represents the parameter type, and the other dimension repre-
sents the time scale. PCA is applied to decorrelate the input
variables. Using the eigen value eigen vector combination,
the principal components are obtained. Since this operation
preserves the variance in the data in a few dimensions,
so only those principal components are considered for the
purpose of recovering the data depending on a predefined
threshold. Then each stream of principal component is sent
for temporal compression where sparsity is determined by the
number of DFT coefficients that contribute at least 99.99%
energy of the samples. The adaptive part of the algorithm in
each stage is the number of principal components, and the
number of transmitted samples are determined for each batch.
Reconstruction at the receiver is also a two-stage process. The
compressed version of the principal components is recovered
using Subspace pursuit algorithm to yield the principal com-



ponents. These are further fed to a PCA reconstruction block,
which yields the actual data with reasonable accuracy.

IV. PROTOTYPE IMPLEMENTATION OF DATA-SMART IOT
MODULE IN ENERGY METER

This section covers the hardware components that were
selected for building the prototypes. Cost-effectiveness was the
primary factor in the selection of a particular hardware module.
Fig 4 shows the experimental setup of different prototypes.

A. Prototype I: Implementation on R-Pi

At first we have started implementing the smart meter
data pruning algorithm in a R-Pi based platform with WiFi
connectivity. The primary components are described below.
Table I portrays the cost estimation for this implementation.
Additional cost of SIMCOM NB-IoT HAT for NB-IoT con-
nectivity of R-Pi is about USD 25.0, which is not included in
Table I.
• Enersol MFR 2810 with RS485 port: This power meter is

cost-effective, easy to operate, and compact in size. It is
capable of measuring basic parameters that are required
to monitor an electrical installation. The collected param-
eters with the meter are voltage, current, frequency and
apparent power. This meter provides a RS 485 Modbus
RTU compliant port whose data from various registers
can be read. A programming manual [13] is provided to
configure the various parameters of the meter, including
the Modbus slave configuration.

• R-Pi development board: The R-Pi is a cheap and small-
sized single-board computer that runs a full-fledged OS.
It provides connectivity to common peripheral devices
like a monitor, a standard mouse and keyboard and runs
Raspbian OS, a variant of Linux OS. It also provides
GPIO pins to control electronic devices for physical
computing and develop IoT devices. It also provides
UART pins for serial communication and having inbuilt
WiFi.

TABLE I: Unit cost of prototypes

Unit cost of prototype I
Component Price (USD)
Enersol MFR 2810 3 phase meter with RS 485 port 48.86
R-Pi Development Board 38.96
PVC Meter Enclosure 6.72
RS 485 - USB Converter 2.55
Total 97.10

Unit cost of prototype II
Enersol MFR 2810 3 phase meter with RS 485 port 48.86
STM32 Nucleo-64 Board 14.79
PVC meter enclosure 6.72
RS 485 - RS 232 Bi-dir converter 4.44
SIMCOM NB-IoT HAT 25.54
Total 100.35

Unit cost of prototype III
Enersol MFR 2810 3 phase meter with RS 485 port 48.86
Smart IoT Node 26.89
PVC meter enclosure 6.72
RS 485 - RS 232 Bi-dir Converter 4.44
Total 86.91

Fig. 3: Designed data-smart IoT module.

Design decision: Various low power wide area network
(LPWAN) technologies like NB-IoT, SigFox, LoRa WAN are
gaining the importance because of their extreme low power
consuming nature during communication. As a part of IoT,
implementation of these technologies are applied in smart
meters also [14]. NB-IoT based connectivity will improve the
energy efficiency of smart meter which will serve both the
goals of cost effectiveness and commercial sustainability [15].
As our designed module will be in sleep mode for maximum
time period, we will prefer to use Narrow Band-IoT (NB-IoT)
communication protocol over WiFi for its low power budget
during sleep and idle mode.

B. Prototype II: Implementation on microcontroller develop-
ment board

Due to the high power consumption of R-Pi, we have revised
our implementation methodology and come up with a more
energy efficient, commercially acceptable design incorporating
STM32 microcontroller exploiting the NB-IoT technology
as communication medium. Cost estimate of this prototype
incorporating low power NB-IoT is shown in Table I.
• NUCLEO - L476RG development board - The

STM32L476RG [16] is a microcontroller based on
the high-performance Arm Cortex 32-bit RISC core.
It is an ultra low power microcontroller operating at a
frequency of up to 80 MHz.

• SIMCOM 7020E NB-IoT module - The SIM7020 is
a Multi-Band NB-IoT module. This module provides
a rich interface like UART, GPIO etc. for issuing AT
commands. It can be easily integrated with the user
hardware modules. Therefore, it reduces the investment
of the customer and also shortens the time-to-market.

C. Prototype III: Our designed data-smart IoT module

To reduce the energy consumption even further and provide
a complete commercial cost effective solution, we have de-
signed the low energy consuming smart IoT node. The node
comprises of mainly two modules: low power STM32L476RG



(a) Setup with R-Pi (b) Setup with STM32 Neucleo board (c) Setup with designed smart IoT node

Fig. 4: Experimental setup of different prototypes.

(a) (b)

(c) (d)

Fig. 5: Actual and reconstructed data collected from the cloud having overall RMSE 0.0004.

microcontroller to program the device and SIM7020C NB-IoT
communication module. Once connected with the meter, the
node will process the data collected from the meter and send
it to the cloud platform through NB-IoT connectivity. Figure 3
shows the node. Table I estimates the cost of the smart meter
with developed pruning subsystem.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Reconstruction performance

For the proper reconstruction of data, RMSE value should
not cross the permissible threshold. The error threshold differ-
ent kind of application of the smart meter data. RMSE below
0.2 is considered to be acceptable as described in [17]. In the
present work, the RMSE value is 0.0004 for reconstruction
of all variables. Fig 5 shows the comparison between actual
and reconstructed (after decompression) data at the receiver. In
can be observed that, in all cases, the actual and reconstructed

data are overlapping which indicates a high reconstruction
accuracy.

B. Energy efficiency

The designed smart IoT node exploits in many fold energy
reduction of the smart meter implementation. By incorporating
the two data pruning algorithms in the existing metering sys-
tem we are able to reduce the processing energy significantly.
We can observe from Table II that, implementing univariate
and multivariate pruning algorithms on the designed smart IoT
node, saves 19.7% and 36% more energy respectively than that
of without any pruning algorithm. Further, the developed node
is 99.09% energy sustainable than the R-Pi based counterpart.

C. Bandwidth saving

We have captured the plotting engine and showing it in Fig
6. We can observe that along with accurate reconstruction,
we have achieved 31% bandwidth saving applying univariate
data pruning approach [ref to III-A], however, it can go up



TABLE II: Energy consumption comparison

Univariate data pruning
Hourly energy consump-
tion (J)

Prototype I
(R-Pi)

Prototype
II (STM32)

Prototype III
(Developed
data-smart
IoT module)

Without data
intelligence

6832.92 63.45 62.15

With data intelligence 6769.77 61.96 49.89
Multivariate data pruning

Without data
intelligence

6514 59.13 58.79

With data intelligence 6448 54.79 37.54

Fig. 6: Plotting engine showing actual and reconstructed data
plots with bandwidth saving.

to 36% depending on the data variation profile. This we can
further extend and can reduce the bandwidth requirement for
multivariate data transmission by up to 98.5% using AMDC
technique (refer to Section III-B3).

VI. CONCLUDING REMARKS

IoT has emerged as a leading-edge technology for au-
tomation, process monitoring, and system control. Hence the
growth of IoT is undeniable. In this work, through the proto-
type implementation and testing studies we have highlighted
that incorporating intelligence in IoT devices would make
these devices smart in the context of data handling, thereby
saving energy consumption as well as bandwidth footprint.
Another contribution of this work is the design and implemen-
tation of a cost-effective data-smart IoT module in the example
case of smart energy metering application. The benefit of
the proposed data-smartness at the IoT nodes and the design
principles of the smart data handling module is generically
applicable in the other IoT applications dealing with non-real-
time data.
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