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Abstract—Wireless sensors networks (WSNs) are gaining enor-
mous attention for monitoring physical conditions in various
application. WSNs equipped with power-hungry senors often
suffer from energy sustainability. Hence, an efficient smart
sensing approach is required to enhance the energy sustainability
of such WSNs. A wireless node equipped with a sensor monitoring
the variation of a particular parameter in time often exhibits high
temporal correlation that can be studied to smartly sense the
parameter. To optimize the energy consumption of these sensors
and increase the network lifetime, this paper presents a learning-
based adaptive sampling framework that explores the sparsity in
the time series data and finds optimal sampling instants for the
next measurement cycle. Principal component analysis (PCA) is
used to sparsify the time domain signal and the sparse signal is
reconstructed from its low-dimensional signal using the sparse
Bayesian learning (SBL) method. An optimization function is
formed that solves the trade-off between accuracy and energy
consumption and finds the optimal sampling instants for the next
measurement cycle. The performance of the proposed adaptive
sampling framework is tested on air pollution monitoring dataset.
The simulation results validate the energy efficiency of the
proposed method. Compared to the existing adaptive sampling
algorithms the proposed learning-based algorithm saves up to
58% energy with a marginally higher computational complexity
while maintaining an acceptable range of sensing error.

Index Terms—Adaptive sampling, energy efficiency, machine
learning method, smart sensing, temporal correlation.

I. INTRODUCTION

Wireless sensor networks (WSNs) have multiple applica-
tions across the various industries, such as health-care surveil-
lance, environment sensing, smart city, smart agriculture, and
border surveillance [1]. The sensors used in these applications
consume huge energy in sensing and transmission. In many
cases, sensing energy is higher than communication energy.
Thus, it is required to smartly handle those power-hungry
sensors by optimizing the data collection approach to increase
the energy sustainability of such WSNs [2].

Owing to the nature of sparsity, the parameter being moni-
tored by the sensor often possess temporal correlation, which
can be exploited to remove redundancy in the data. Various
adaptive sampling mechanisms are being used either directly
in the sensor node or in the central entity (CE) that controls
the operations of the field nodes either in a centralized or
de-centralized manner [3]. It helps to reduce the number
of samples to be measured which in turn reduces energy
consumed by the sensors. The data stored in the sensor

modules can be transmitted to the CE on periodic basis or
non-periodically [4]. In the densely deployed WSNs, machine
learning-based adaptive sensing strategies are used to select
some optimal number of sensors to activate in the next cycle
based on the spatio-temporal correlations among the signals.
These approaches increase the energy sustainability of the
network. However, the selected sensors collect data either at
a fixed rate or based on some adaptive sampling methods
such as Nyquist-based adaptive sampling [5]. Thus, the time-
series data collected by the selected sensors often possess a
high temporal correlation. To remove the redundancy in the
time series data, a learning-based smart sensing technique can
be applied to find the optimal sampling instants when the
sensors will collect sample. In many fields such as industrial
applications, data can be sent to the CE periodically. Thus,
machine learning methods can be implemented for online
estimation of the optimal sampling instants for the next cycle
by studying the sparsity of data collected at the present cycle,
which can enhance the energy sustainability of WSNs.

A. Related Work

Significant studies have been reported on data collection
from a sensor node by adaptive sampling that optimizes energy
consumption in both sensing and transmission compared to
fixed-rate sampling. Numerous works are dedicated to node-
level optimization where adaptive sampling algorithms are
applied directly on the sensor node. The algorithms explore
the temporal correlation on the data and vary the sampling
rate with the variation of environmental phenomenon [4]–[6].
On the other hand, in network level optimization, adaptive
sensing strategies are applied to find some optimal number of
sensors in a densely deployed WSN [7]–[10].

Nyquist-based adaptive sampling algorithm, proposed in [5]
applied in a snow monitoring sensor node. The algorithm sets
the optimal sampling frequency based on Nyquist criteria by
detecting the maximum frequency of the signal using Fast
Fourier transform (FFT). The change in frequency of the signal
is detected for some samples and a new sampling rate is
assigned based on Nyquist criteria. The algorithm presented
in [6] used Kalman filter (KF) to estimate the next state
of the system and adjusts the sampling rate based on the
estimation error. In [4], an adaptive sampling algorithm was
proposed using one-way Anova model and Bartlett test, for



industrial process monitoring applications. The algorithm finds
the variance in the data by dividing the samples into multiple
sets and compute T -statistic value using the Anova-based
model.

An optimization problem was formulated in [7] for a
densely deployed WSN, which selects an active set contains
few sensor nodes among all the nodes available in the cluster.
The optimization function minimizes the Bayesian Cramer-
Rao bound (BCRB) which is the lower bound of mean squared
error (MSE) of the estimated sparse signal and selects an
optimal active sensor set. BCRB is computed from the spatio-
temporal variations of that specific signal. Finally, sparse
Bayesian learning (SBL) is used to estimate the sparse signal
from the measurement vector. Two different algorithms were
proposed respectively for centralized and decentralized sensor
selection in [8]. The centralized sensor selection approach is a
greedy method that becomes complex with the increase of the
number of measurements, whereas, the decentralized approach
reduces the complexity of the network by deciding its activity
in the node itself without the intervention of the central node.
B. Research Gap

As noted above, several works have been found on node-
level adaptation [4]–[6], where a sensor node adapts its sam-
pling rate by studying the variations in the previously collected
samples. Although these algorithms reduce the number of
samples acquired to reconstructed the signal compared to the
fixed sampling rate or Nyquist rate, the sensor nodes with
power-hungry sensors still suffer from energy sustainability.
The time series data collected by applying these algorithms
still exhibits a high temporal correlation, which indicated
the sparsity in the data. The signal may not be sparse in
its actual domain, hence optimal adaptation of the signal
in its real domain is quite challenging. However, the signal
can be transformed in some other domain and sufficiently
sparsify to find its principal components. Thus, by doing
compressive sensing in time series data collected over a cycle,
the number of samples need to acquire can be further reduced.
Principle component analysis (PCA) is a popular technique
to transform the signal into a sparse domain and find its
significant components, which can be used to find optimal
sampling instants. Several methods available in the literature to
recover the original signal from its relatively low dimensional
features. However, learning-based methods such as SBL, used
in [7] performs superior in terms of signal estimation.

Although many works have been found on applying
learning-based compressive sensing in densely deployed
WSNs that optimizes the number of samples in space required
to reconstruct the spatial signal, none of these works applied
compressive sensing particularly in time series data to find
optimal sampling positions. Thus, learning-based adaptive
sampling by exploring the temporal correlation in the data
to find optimal sampling instants is yet to be studied.
C. Contributions

The key highlights of this paper are as follows:
1) This paper presents an adaptive sampling algorithm to

choose optimal sampling instants of a sensor by using

PCA-based sparse signal representation and the signal is
reconstructed using Sparse Bayesian learning method.

2) An optimization function is formulated that jointly opti-
mizes the trade-off between the reconstruction error and
sensing energy consumption. It explores the temporal
correlations among the signal and finds an active set
that contains optimal sampling instants for the next
measurement cycle.

3) The proposed adaptive sampling algorithm is tested on
temperature and particulate matter sensor data, collected
by deploying an air pollution monitoring node in the
campus.

4) The proposed framework saves up to 58% and 79%
energy respectively compared to the adaptive sampling
algorithms given in [4] and [5] with relatively higher
computational complexity, while maintaining a sensing
error on the same order as in [4].

Organization: Section II contains the preliminaries that
includes the data acquisition model, sparse signal represen-
tation and SBL based signal recovery model, followed by the
proposed adaptive sampling framework presented in Section
III. Section IV outlines the experimental setup used for data
collection and results, followed by concluding remarks in V.

Notations: Z and Z ∈ RM×N respectively denotes a set and
a real valued matrix of size M × N , z ∈ RN×1 represents a
vector having N elements. Cardinality of setM is represented
as |M| = M .

II. PRELIMINARIES

This section contains the data acquisition model for the
proposed framework followed by the sparse representation
of the signal using PCA and application of sparse Bayesian
learning method for signal recovery.
A. Data Acquisition Model

Consider a wireless sensor node equipped with multiple
sensors to capture the variation of multiple parameters in the
environment. Let a sensor collects data at a fixed sampling
interval and transmits periodically at the central entity (CE)
which is placed at a fixed point nearby. Let the period between
two data transmission, called measurement cycle is divided
into N equal number of intervals. The sensor collects a sample
at the end of each interval. Thus, there are N sampling instants
at every measurement cycle of length T = Nt, where t is
the sampling interval. Since the time series data exhibits a
strong temporal correlation, the signal can be reconstructed
with M << N number of samples, where M is the number
of optimal sampling instants. The value of M and the optimal
sampling points changes with the dynamics of the system.
A fixed length of measurement cycle is required to maintain
a fixed feature dimension (N ), for the simplicity of the
operation. If T is same for all the sensors in the node, the
values of N and M are larger for the fast-varying signals
compared to the slowly-varying signals.

Let Mx be the set contains the optimal sampling instants
of a particular sensor at the xth measurement cycle, called
active set and |Mx| = Mx. For N samples total 2N number
of active sets can be constructed. Mx ⊆ P , where P =



{1, 2, · · · , N} contains all the sampling instants. Each active
setMx corresponds to a binary sensing matrix Mx ∈ RMx×N

and a diagonal matrix M̃
x

= MxT Mx ∈ RN×N . Each
row of Mx represents one sampling instant. If n is the
mth element of Mx, Mx(m,n) = 1;∀n,m ∈ Mx. Thus,
M̃

x
(n, n) = 1; ∀n ∈Mx.

If zx = {Zx
1 , Z

x
2 , · · · , Zx

N}T ∈ RN×1 is the vector contains
the true values of the N samples andMx is the optimal active
set, the measurement vector at the xth measurement cycle is
given by[11], ỹx = Mxzx + nx, (1)

where nx ∈ RMx×1 is the additive white Gaussian noise
vector. Each component of nx is identically and independently
distributed having mean zero and variance σ2.

B. Sparse Signal Representation and Signal Recovery

Let, initially K number of samples are collected by the
sensor with fixed sampling interval t. The samples are divided
into I = round(K/N) number of sets. Thus, the initial
training matrix is formed as Z ∈ RI×N . If z̄ ∈ RN×1 and
Σ̂ ∈ RN×N are respectively the mean vector and covariance
matrix of Z, then each component of z̄ and Σ̂ are calculated
as,

Z̄n =
1

I

I∑
i=1

Zi
n;∀n ∈ P, (2)

Σ̂(m,n) =
1

I

I∑
i=1

(Zi
m − Z̄n)(Zi

m − Z̄n)T ;∀m,n ∈ P. (3)

The covariance matrix can be represented by its eigen values
and eigen vector as Σ̂(m,n) = AxT ΓxAx, where Ax is a
sparsifying matrix that transforms the true signal vector zx to
a sparse vector sx. Thus the sparse representation of zx using
PCA is given by, zx = z̄ + Axsx. (4)

Γx is a diagonal matrix whose diagonals elements are the eigen
values of Σ̂. The equivalent measurement vector corresponds
to the sparse signal vector sx is given by [7],

yx = Θxsx + nx, (5)

where Θx = MxAx is the dictionary matrix. Let, S ∈ RI×N

is the equivalent sparse matrix of the training matrix Z. yx
can be calculated from ỹx as,

yx = ỹx −Mxz̄ (6)

Given ỹx and Ax, the sparse signal vector sx can be estimated
using sparse Bayesian learning method described in [7]. Since
zx is unknown, Ax can not be estimated. Due to the slowly-
varying nature of the temporal signal Ax ≈ Ax−1 can be
estimated to find sx at the xth measurement cycle. Ax−1 is
estimated from the covariance matrix Σ̂

x−1
which is calculated

from Zx−1 ∈ RI×N which is formed by the immediate
previous K samples. Similarly the updated mean vector z̄x−1
for Zx−1 is also calculated using (2).

SBL can estimate the high-dimensional sparse signal from
its low-dimensional signal vector by using iterative expectation
maximization (EM) algorithm. At each measurement cycle,
SBL assigns a Gaussian prior on sx, parameterized by the
variance of each component of sx, which fits well on sensing
signals. Considering sx as a latent variable, EM estimates the

hyperparameter vector γx, where γx(n) is the variance of the
nth column vector of Sx. Thus, the posterior distribution of sx
in the ith iteration is p(sx|yx; γx(i)) ∼ N(µ

(i)
sx ,Σ

(i)
sx ), where

µ
(i)
sx ∈ RN×1 and Σ

(i)
sx ∈ RN×N are respectively the posteriori

mean vector and the covariance matrix. In the ith iteration µ(i)
sx

and Σ
(i)
sx can be calculated using (7) and (8), respectively [7].

µ
(i)
sx = σ−2Σ

(i)
sx ΘxT yx, (7)

Σ
(i)
sx = (Γ̂x(i) − Γ̂x(i)ΘxT (σ2IMx + ΘxΓ̂x(i)ΘxT )

−1
ΘxΓ̂x(i)),

(8)

γ̂x
(i+1)

(n) = Σ
(i)
sx (n, n) + µ

(i)
sx (n, n)

2
. (9)

Γ̂x(i) is the diagonal matrix having γ̂x
(i)

(n) as the nth diag-

onal element. Γ̂x(i+1)
for the (i+ 1)

th iteration is calculated
from (9). After L number of iterations the final mean vector
µ
(L)
sx is estimated as sparse vector sx which is further used to

find zx using (4) [7].

III. ADAPTIVE SAMPLING FRAMEWORK

This section outlines the formulation of optimization func-
tion to find an active set contains optimal sampling instants
for the next cycle followed by the proposed adaptive sampling
algorithm.

An active set Mx at the xth measurement cycle has to be
chosen such that it minimizes both the signal reconstruction
error and sensing energy consumption. Assuming the sensing
energy consumption of a sensor is time-independent, the total
energy consumed by the sensor increases linearly with the
increase of Mx. Whereas, the reconstruction error reduces
with the increase of Mx. Thus an active set has to be
chosen that solves the trade-off between the two performance
parameters of the system.

Let ŝx be the sparse signal vector recovered using SBL,
discussed in Section II-B. The mean-squared error is calculated
as, MSE=E{||sx−ŝx||}. MSE is considered as the performance
metric that determines the signal estimation accuracy. By
minimizing the estimation error on sx, reconstruction error
on zx can be minimized.

Bayesian Cramer-Rao bound (BCRB) provides a lower
bound on the MSE to estimate sparse vector sx. Since,
E{||sx − ŝx||} ≥ BCRB, by minimizing BCRB the MSE of
sx can be minimized. As discussed in [7] BCRB is calculated
as,

BCRB = Tr{(σ−2AxT M̃
x

Ax + (Γx)
−1

)
−1
} (10)

Thus a joint optimization function to solve the trade-off
between error and energy consumption to find optimal active
set Mx for the xth measurement cycle is formed as,

minimize
˜Mx
∀Mx⊆P

Tr{(σ−2AxT M̃
x

Ax + (Γx)
−1

)
−1
}(

N∑
i=1

M̃
x
(n, n))En

s. t. BCRB ∈ [α, β] and

M̃
x
(n, n) ∈ [0, 1].

(11)
En is the energy consumed by the sensor to collect one

sample. In the above formulation, equal weight is given to



Algorithm 1: Adaptive sampling algorithm
Input: Sampled data received from the sensor node Initialize:
e = 1, N , K, t, Z

if e=1 then
Calculate z̄ and Σ̂ using (2) and (3) for Z.
Find A0 and Γ0 for Σ̂.
Find Γ̂

0
for S1

Set A1 = A0, Γ̂
1

= Γ̂
0

Obtain M1 by solving (11).
Set T = Nt, e = 0, x = 0

else
Calculate yx using (6)
Estimate ŝx from Ax, Γ̂

x
and Mx using (7), (8) and (9).

Calculate ẑx from ŝx and Ax using (4).
Update Zx and find z̄x, Σ̂

x
for the updated Zx

Find Ax and Γx for Σ̂
x

.
Update Sx and find Γ̂

x
for the updated Sx

Set Ax+1 = Ax, Γ̂
x+1

= Γ̂
x

Obtain Mx+1 by solving (11).
Set T = Nt, e = 0
while Mx+1 ≥Mth do

Set T = Kt, e = 1
end

end
Set x = x + 1
Output: Transmit T ,Mx, e to the node

both the performance parameters, however M̃
x

is chosen such
that the BCRB remains within a bound [α, β] given in the
constraints. The values of α and β have to be chosen such
that the MSE remains within an acceptable range. According
to the analysis given in [7], BCRB is convex, hence the
optimization function, given in (11) always returns an active
set that contains the optimal sampling instants. The active set
Mx of the corresponding diagonal matrix M̃

x
contains the

optimal sampling instants of that measurement cycle.
The proposed algorithm, given in Algorithm1 is pro-

grammed at the CE that works based on a feedback mech-
anism. The CE receives data from the node periodically,
executes the algorithm, and transmits information containing
the active set and status flag e. Since MSE increases with
time, more number of samples need to be taken to maintain
the BCRB within the limit. This is solved by retraining the
model upon detecting Mx higher than a user-defined threshold
Mth.

Let, ∆ be the total communication energy required for one
transmission. ∆ = ∆1 + ∆2, where ∆1 and ∆2 are the
wake up and data transmission energy, respectively. ∆1 is
assumed to be fixed and ∆2 increases with the increase in
the number of samples to be transmitted. Since ∆1 is the
initial energy required to turn on the communication module,
it is much higher than ∆2. Thus, total communication energy
up to some measurement cycle reduces with the increase in
T . On the other hand, if T increases the signal estimation
error increases due to the large variation in environmental
conditions between two cycles. To maintain good accuracy
more number of samples need to be collected, which in turn
increases the sensing energy consumption. Thus T has to be
chosen by considering the trade-off between the two energy

consumptions of the system. The fixed sampling interval (t)
can be obtained from the the power spectral density of the
signal as discussed in Section IV-B. While retraining the
model, these parameters are also updated based on the current
samples.

A. Complexity of the Proposed Framework
The computational complexity of SBL model with L num-

ber of iterations is O(LMx3), where Mx is the number of
optimal sapling instants at the xth measurement cycle. While
complexity in finding optimal sampling instants using the
optimization function is O(2NN3). On the other hand, the
complexity of the adaptive sampling algorithm given in [4] is
O(Mx).

IV. EXPERIMENTAL SETUP AND RESULTS

A brief overview of the experimental setup used for data
collection and the simulation results of the algorithm is dis-
cussed in this section.

A. Experimental Setup for Data Collection

Fig. 1: Prototype of air pollution monitoring sensor board.

To validate the efficiency and efficacy of the proposed
learning-based adaptive sampling algorithm explained in Sec-
tion III on real-life applications, an air pollution monitoring
sensor node is deployed in the campus. The node is equipped
with a DHT11 sensor to measure the temperature and hu-
midity, and an alphasence OPC-N3 sensor to measure the
concentration of the particulate matters having diameter less
than 2.5µm (PM2.5). The energy consumed by the DHT11 and
OPC-N3 to collect one good sample are 0.012 J and 0.25 J,
respectively [12]. In the current study, the time-series data of
only the temperature and PM2.5 signals are considered.

The temporal correlations of the temperature and PM2.5

sensor data are explored independently and it is observed
that the signals exhibit high temporal correlations between
two consecutive samples. The temporal correlation coefficients
for temperature and PM2.5 are respectively in the range of
0.88−0.95 and 0.81−0.9, which indicates the sparsity nature
of data [13]. A set of raw data is collected at a fixed sampling
rate higher than the Nyquist rate from the experimental setup
and the algorithm described in Section III is applied on that
dataset for both the parameters individually. The simulation
results are explained in IV-B.
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Fig. 2: (a) Power spectral density of the sensing signals, (b) measurement cycle versus sensing and communication energy,
and (c) Number of samples collected for temperature and PM2.5 parameters at various measurement cycles.
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Fig. 3: Comparison of (a) number of samples, (b) reconstruction error of temperature, (c) reconstruction error of PM2.5, and
(d) Total energy comsumed by the node at different measurement cycles in the proposed framework, Anova-based adaptive
sampling [4], and Nyquist-based adaptive sampling [5].

TABLE I: Performance comparison

Parameters Proposed
framework

Anova-based
model

Nyquist-
based model

Average energy
consumption (J)

26.92 66.67 131.18

Average error
of temperature
(MRE)

4.73×10−4 4.13×10−4 9.35×10−5

Average error of
PM2.5 (MRE)

8.51×10−4 6.74×10−4 4.96×10−5

B. Results and Discussions
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Fig. 4: Reconstruction performance of the proposed algorithm.

The adaptive sampling algorithm proposed in III Algorithm1
is applied on the time series data of temperature and PM2.5

signals collected by the experimental setup given in Section
IV-A. The simulation results of the algorithm are presented in
Fig. 3 and Fig. 2.

The power spectral densities (PSDs) of the temperature
and PM2.5 signals are studied to find optimal fixed sampling
intervals for both the parameters to divide the length of
measurement cycle T . In Fig. 2(a) it can be observed that
99% power of the temperature and PM2.5 signals lies within
0− 0.025 Hz and 0− 0.08 Hz frequency range, respectively.
Hence a fixed sampling interval of t = 30 sec and t = 12 sec
are considered, respectively for simulation. The wake up and

transmission energy are set as ∆1 = 24 mJ and ∆2 = 0.23
mJ, respectively [14]. Fig. 2(b) shows the trade-off between
sensing and communication energy with the change in T . The
total sensing energy increases with T while communication
energy decreases with T . Hence, the crossover point T = 26
min is set as the length of measurement cycle for both the
parameters which is updated at every retraining point. Thus,
the total number of sampling instants are chosen as N = 52
for temperature and N = 130 for PM2.5. The noise variance
for both the parameters are set as σ2 = 10−6, as given
in [15]. Different value of T can be chosen for different
parameters, which increases the communication energy, as the
communication module has to be turned ON at different point
of time. Thus, the length of measurement cycle is chosen
to be equal for both the parameters to optimize the energy
consumption.

The optimization function finds different active sets at
different measurement cycles based on the dynamics of the
system. Fig. 2(c) depicts that the optimal number of samples
are different for different parameters. Since, the temperature
signal is slowly-varying it can be reconstructed from less
number of samples. Where as, due to the fast-varying nature
of PM2.5 signal, it requires more number of samples to
reconstruct. Thus, the proposed algorithm is adaptive to the
dynamics of sensing signals. The optimal samples vary in
terms of position as well as the number, which can be obtained
by solving the proposed optimization function.

Fig. 3(a) presents a comparison between the total number of
samples collected by the node at various measurement cycle.
The total number of samples collected in the proposed method
at a particular measurement cycle is much lower than the other
two cases. However, the signals are reconstructed efficiently



from these few samples as shown in Fig. 4.
To analyze the performance of the proposed algorithm, the

mean relative error (MRE) of the reconstructed signals at the
CE is considered. The MREs are compared with the MRE
achieved by the other adaptive sampling algorithms given in
[4] and [5]. Since the proposed framework is dedicated to the
analysis of a time series signal, the above two works are found
to be most appropriate for comparison. According to [5], MRE
below 10−2 is acceptable. However, the MRE achieved by the
algorithm given in [4] is taken as a benchmark to compare the
performances. By exploring different values of α and β, it is
decided that BCRB ∈ [9.5 × 10−5, 3.1 × 10−4] gives MRE
below 10−3 for both the parameters, which is similar to the
error performance of Anova-based model.

The MRE in the xth measurement cycle is given by,

MREx =
1

N

N∑
i=1

|zxi − ẑxi |
|zxi |

, (12)

where zxi and ẑxi are respectively the ith samples of the actual
and reconstructed data sequence in xth measurement cycle.

Fig. 3(b) shows that the MRE achieved in case of tem-
perature signal with proposed algorithm slightly higher than
Nyquist-based model [5] but similar to the Anova-based model
[4]. Similarly the MRE for PM2.5, shown in Fig. 3(c) is
comparable with the Anova-based model.

A comparison of total energy consumption at the node
using the proposed method with the Nyquist-based model and
Anova-based model is shown in Fig. 3(d). It can be clearly
observed that the total energy exhausted from the battery at
the end of every measurement cycle is much lower in the
proposed case compared to the other two cases. The energy
efficiency is calculated using (13).

Energy saved =

[
1

X

X∑
x=1

Ex
a − Ex

p

Ex
a

]
× 100%. (13)

In (13), Ex
p and Ex

a are respectively the total energy
consumed by the sensor up to x measurement cycles using
the proposed model and the existing models. The proposed
adaptive sampling algorithm saves up to 58% and 79% energy
compared to the Anova-based [4] and Nyquist-based [5]
adaptive sampling algorithms, respectively.

The performance comparison in terms of error and energy
consumption is listed in Table-I. It can be observed that the
average of the total energy consumed by the two sensors in
sensing up to a large number measurement cycles is minimum
in the proposed framework with 14.5% and 26% increase in
MRE for temperature and PM2.5, respectively compared to the
Anova-based model [4]. However, the average errors are less
than 10−2 which indicates a good estimation of signals [5].

Remark 1: The simulation results demonstrate that the pro-
posed learning-based adaptive sampling algorithm is highly
energy-efficient while choosing optimal sampling instants
within an error bound based on the process dynamics.

V. CONCLUDING REMARKS

The temporal correlation of a dynamic sensing signal has
been studied in this work. Considering pollution monitoring

as a use case, it has been demonstrated that the proposed
learning-based adaptive sampling framework outperforms the
existing competitive methods in terms of significantly higher
energy efficiency without compromising on the sensing qual-
ity. The proposed framework intelligently exploits the re-
dundant information content in a slowly-varying signal. In
particular, the present states caries a lot of information about
the next states. Thus, by exploring the sparsity in the data
collected at the present cycle, optimal sampling instants for the
next cycle can be decided. Extensive simulation results have
validated the efficacy of the proposed algorithm. We intend to
pursue incorporation of the proposed smart sensing along with
ambient energy driven operation, leading to green and energy
sustainable WSN as a future direction of research.
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