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Abstract—This paper proposes a novel approach for optimal
placement of phasor measurement units (PMUs) targeting smart
grid controllability under perturbed system conditions while
ensuring system observability. In determining the optimal num-
ber of required PMUs, as a practical consideration, PMUs are
considered to have limited number of input channels. A weighted
least square optimization problem with a continuous relaxation
is considered for the discrete binary constraint. A perturbation-
robust algorithm is developed for a global optimal solution that
achieves optimal PMU placement. The efficacy of the proposed
smart grid monitoring instrumentation approach is validated on
IEEE 6, 14, 30, 57, and 118-bus systems. The grid perturba-
tions are represented with node weights using a small signal
modeling approach. The results demonstrate that, unlike the
conventional system observability-aware PMU deployment, the
proposed instrumentation strategy ensures system controllability
under generic perturbation conditions with with revised PMU
placement vector in all the test cases.

Index Terms—Grid controllability, grid monitoring instrumen-
tation, limited input current channels, optimal PMU placement,
perturbation, phasor measurement unit (PMU)

I. INTRODUCTION

Proliferation of power electronic switching based loads
and renewable energy sources into the conventional power
grid has led to manifold increase of sustained as well as
sporadic perturbations in the recent years [1]. Prevalence of
such perturbed system states motivates the need for a revised
instrumentation for real-time monitoring and estimation in the
modern power networks [2]. The advanced instrumentation of
the power grid includes the integration of phasor measurement
units (PMUs), which communicate the real-time measurements
of critical grid attributes to a phasor data concentrator (PDC),
for the purpose of monitoring and control [3]. System state
estimation at the PDC is compounded by the errors due to
electromagnetic noise from power lines during PMU data
transmission [4]. Therefore, beyond ensuring observability
under normal operating conditions, PMU deployment strategy
also needs to guarantee accurate system state estimation at the
PDC under perturbed grid conditions. In this work, controlla-
bility is defined as the ability of the optimally deployed PMUs
with limited input current channels to estimate a perturbed grid
health at the PDC within acceptable error bounds.

A. Literature Review and Motivation

The related work on smart grid monitoring instrumentation
can be broadly divided into three sets. The first set [5],
[6] presents various strategies for optimal PMU placement

at minimized deployment cost while maintaining a basic
grid observability. They do not consider the notion of grid
controllability owing to proper system state reconstruction at
the PDC under perturbed system conditions. This limits the
applicability of such approaches in modern grids where renew-
able penetration causes sustained oscillations. These studies
also do not consider the practical constraint of limited input
current channels of the PMUs. Therefore, optimized PMU
deployment solutions rendered by these existing approaches
need to be revisited to address the practical scenarios.

The second set of work employ different statistical ap-
proaches [7], [8], and evolutionary algorithms [9], [10], for
optimal PMU placement in various grid topologies. They aim
at devising unique optimal placement solutions within a given
time constraint. Though time complexity reduction in optimal
PMU placement is an important objective, the key practical
aspects, namely, realistic PMU capabilities, accounting for grid
perturbation, and grid controlability beyond only observability,
require further research attention.

The final set [11], [12] look into the optimal PMU place-
ment considering different system adversities. These works
analyze the PMU placement variations under different line
and PMU outages. The studies in [13] and [14] analyze a
multi-stage PMU installation process for co-phasing while
ensuring complete system observability. The work in [15]
further analyzed the use of the installed PMUs in outage
detection in power networks. However, with the notion of
micro-grid, perturbed grid states are more predominant over
grid faults now-a-days. Thus, a continuum between ideal
and faulty grid states are of current interest, which call for
revisiting the optimal PMU placement strategy.

As highlighted above, optimal PMU placement under grid
perturbation is an important aspect that requires research
attention. Additionally, to the best of our knowledge, the
impact of limited input current channels in practical PMUs
on the estimation accuracy of real power networks under
perturbation remains unexplored in the literature. To this end,
this paper proposes perturbation-immune optimal placement of
PMUs with limited input current channels, from a redefined
notion of grid controllability.

B. Contributions and Significance
In view of the lacuna in the literature on instrumentation of

smart grid for monitoring and controllability under perturba-
tions, we revisit the optimum PMU deployment strategy. The
key contributions of this work are as follows:
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Fig. 1: (a) N -node smart grid network graph, (b) incidence diagram
for node i with k incident lines.

1) The notion of line observability reward and node weight
vector is proposed for efficient grid health characteriza-
tion under random perturbations.

2) A minimum-cost non-linear weighted least square (WLS)
minimization problem is formulated ensuring grid con-
trollability under perturbations.

3) A novel polynomial grid observability constraint is pro-
posed while considering the presence or absence of zero
injection bus (ZIB), followed by the modeling of line
observability reward and node weights.

4) The two-stage optimization problem formulation is val-
idated for IEEE 6, 14, 30, 57, and 118-bus systems,
establishing the importance of the proposed perturbation-
robust PMU placement strategy.

Simulation results demonstrate that the proposed grid
controllability-aware PMU deployment is able to capture the
grid health under perturbations, which is otherwise not possi-
ble in the conventional deployment strategy.

II. SYSTEM MODEL FOR OPTIMAL PMU PLACEMENT

Consider a power grid with a set of buses indexed by
N := {1, 2, · · · , N}. The buses are connected through a set
of transmission lines L ⊂ N ×N , i.e. , bus i is connected to
bus j iff (i, j) ∈ L . Accordingly, Ai is the set of buses inci-
dent to bus i, with the element j represented as Aj

i , such that
∥Ai∥ = ki is its incidence order as shown in Fig. 1(b). Further,
let us define the grid incidence matrix A = [ai,j |i, j ∈ N ],
such that ai,j = 1, iff nodes i and j are connected, and 0
otherwise. Controllability in this work implies the ability to
reconstruct the system image at the PDC for monitoring under
perturbed system conditions. We consider voltage and current
phasor perturbations while formulating the perturbation-robust
optimal PMU placement strategy. Perturbations amounting to
∆vi, ∆ϕi, ∆ii,j , and ∆δi,j against the i-th node’s steady state
voltage magnitude vi, voltage phase ϕi, current magnitude ii,j ,
and current phase δi,j is considered in the mentioned order, as
shown in Fig. 1(a), and propagation through all incident lines
to node i is considered.

All PMUs are considered to have a limited number of input
current channels, typically 1, that is less than the minimum
node order of the grid. A 50 Hz grid is considered, where
the input voltage and current readings are recorded at 19200
samples per second and reported at 200 fps to the PDC. It
is expected that PDC along with supervisory control and data
acquisition take necessary control actions based on the PMU
data at the local and central data center.

III. OPTIMAL PMU PLACEMENT ANALYSIS

This section outlines the prerequisites for the controllability-
aware optimal PMU placement problem, followed by the
optimization problem formulation.

A. Line Observability Reward Formulation

Let us define a variable zi s.t, zi = 1 or 0 implies the
presence or absence of PMU at the i-th bus respectively. Let
R out of N grid nodes have a PMU, with the PMU installed at
the i-th node having li input channels with node order ki, s.t.
li < ki. If Pr(Li,j) signifies the probability that link i-j gets
monitored, then we have Pr(Li,j)

∆
= I (Li,j = 1)(zixi + zjxj),

where I(Li,j = 1) is a binary indicator function that takes 1 iff
node i and j are connected and xi denotes the random variable
representing the probability of link i-j getting monitored by
the PMU installed at node i. The randomness results from
random selection of lines to be monitored using a PMU with
limited input channels, as there is no defined norm for such
a selection. Therefore, the average reward for observing the
link i-j is given as µi,j = ci,jE[Pr(Li,j)] = ci,jE[I(Li,j =
1)(zixi+zjxj)], where ci,j is the reward for observing link i-j,
and relates to the importance of that node. Further, the order of
installation also plays a role in defining this probability. Con-
sidering all such orders, the average line observability reward
is µi,j = ci,jI(Li,j = 1)(ziE[xi] + zjE[xj ]) = ci,jI(Li,j =

1)(ziSi + zjSj), where Si = E[xi] =
∑li

xi=1 xi
1

ki−(li−xi)
=

1
ki−li+1 + 2

ki−li+2 + · · ·+ li
ki

. On simplifying, we get

Si =
li
ki

+
li − 1

ki − 1
+· · ·+ 1

ki − li + 1
= 1−

li−1∑
j=1

(ki − li)

ki − j

≈ 1−
∫ li−1

ki

0

(ki − li)

1− x
dx = 1− (ki − li) ln

(
1− li − 1

ki

)
.

(1)

Si denotes the average number of input current channels
monitoring the link i-j using a PMU installed at node i. Thus,
the average line observability reward matrix is given as

Al =


µ1,1 µ1,2 · · · µ1,N

...
...

. . .
...

µN,1 µN,2 · · · µN,N

 = c⊙A⊙ d (2)

where ⊙ denotes a Hadamard product, A is the grid incidence
matrix, c is the reward matrix with the (i,j) entry defined
as ci,j , and d = vT 1 + Iv such that 1 = [1, 1, · · · , 1]TN ,
I = diag (11,12, · · · ,1N ) is a matrix of dimension N × N
with its i-th diagonal entry 1i being a vector of ones having
a zero only at i-th position. Using the above formulations in
(2), we get Al = c ⊙ A ⊙

(
vT 1 + Iv

)
. Further, v = Sz is

defined for the sake of concise representation, such that S is
diagonal, and the (i, i) entry in S is defined as Si, as in (1).
Let the node weight vector be defined as ω with ωi the weight
for the i-th node. Then, the aggregate grid observability index
(AGOI) is defined as ωT c⊙A⊙

(
zTST 1 + ISz

)
ω.

Further, the importance of observing the link i-j stems from
the Thevenin equivalent impedance between the nodes. The
Thevenin equivalent impedance between node i-j ∀i, j ∈ N
given by Zi,j is calculated using the Z bus matrix algorithm.
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It gives a sense into the ability of a node pair to destabilize
the network under perturbation, as can be inferred from (??).
In the scope of this work, we define ci,j =

Zi,j∑N
i=1 Zi,j

, as the
reward for observing link i-j. Further, controllability for the i-
th node is defined as oi =

∑
j∈Ai

µi,j , with the controllability
vector defined by OT . The definition of node weight vector
by considering perturbations in the voltage magnitude of the
concerned node is proposed in Lemma 1.

Lemma 1. The weight of the j-th node is defined as

ωj = (sin(ωt+ ϕj)

kj∑
r=1

z−1
jr,j

)(

kj∑
r=1

sin(ωt+ ϕjr )z
−1
jr,j

αjr )
−1

where ∆vjr = αjr∆v0, where ∆v0 is the instability grid node
voltage change and αjr is a constant of multiplication, ω =
2πf is the angular grid frequency, t represents time, zi,j =√
r2i,j + x2

i,j is the impedance of link i-j, with ri,j , and xi,j

denoting the link resistance and reactance, respectively.

Proof. See Appendix A.

B. Formulation of Optimal PMU Placement Problem

A non-linear WLS minimization problem is formulated in
F1 which aims at making the grid observable with minimum
number of PMUs, and optimum network controllability, based
on maximizing the grid controllability under perturbation, is
ensured by maximizing F2 in (3) as follows

F1 : Min {zTCPz+G(z)TVG(z)}
F2 : Max OT cO s.t. C1 : z ∈ DR

(3)

where C1 defines the possibility space of the variable z
representing the presence of PMU at N nodes, s.t. DR :={
z ∈ {0, 1}N

∣∣∑
i∈N zi = R

}
, CP = cIN, with c denoting

the per PMU cost, G(z) = [g1(z), · · · , g2(z)]T , V = vT⊙IN,
with v = [v1, · · · , vN]

T denoting the unobservability cost for
the nodes i ∈ {1, · · · ,N}, O = [o1, o2, · · · , oN ], with oi =∑

j∈Ai
µi,j , and c = [ci,j ]i,j∈{1,··· ,N}, with ci,j =

Zi,j∑N
i=1 Zi,j

,
where Zi,j denotes the Thevenin equivalent impedance of link
i-j. This cost is set high to ensure a binary (0 or 1) PMU as-
signment to the respective buses. In this work we define a poly-
nomial observability function gi(z) ∈ {gi,ZIB(z), gi,ZIB(z)}
for node i, with the two functions capturing the aspect of
not considering or considering the impact of ZIB respectively.
Neglecting ZIB we have

gi,ZIB(z) = σi − zi −
∑
j∈Ai

zj , ∀i ∈ {1, · · · , N} (4)

where σi is the redundancy order for the i-th node, denoting
total PMUs monitoring that node, and Ai is the set containing
nodes incident to node i. A joint weighted optimization
problem from (3) can be formulated as

(P1) : Min J(z) = F1 − λF2 s.t. C1 (5)

where λ ∈ {0, 1} is a binary weight, outlining the choice
seeking either a controllability-aware optimal PMU placement
solution with λ = 1, or conventional optimality with λ = 0. It

Algorithm 1: Penalty-aware Perturbation Robust Optimal
PMU Placement Algorithm
1 : Initialization: Set κ = 0. Choose a feasible point
z(0) ∈ (0, 1)N using Algo. 2

2 : Find δ s.t. f(z(0)) and 1
R
− 1

ϕ(z(0))
get equal significance.

3 : Set κ → κ+ 1.
4 : Solve (9) using Algo. 2 for the next feasible point z(κ+1).
5 : Until convergence.

is notable that the controllability-aware optimization perspec-
tive dwells on optimum grid observability and control under
perturbed grid conditions using limited number of practical
PMUs with one input channel. Furthermore, ZIBs are the
nodes that cause no current injection into the system. Thus,
if all buses incident to a ZIB are observable except one, the
unobserved bus can be made observable by applying KCL at
the ZIB. Further, if all buses incident to the ZIB are observable
except the ZIB, it can be made observable by applying KCL at
the ZIB. Let ti be a binary parameter taking 1 iff bus i is a ZIB,
and yi,j be an auxiliary binary variable corresponding to bus i
and j, such that j ∈ Ai. If Yi = {yi,j}, then ∥Yi∥ = ∥Ai∥+ti.
Therefore, the observability constraint defined in (4) modifies
to (6) under the considerations of ZIB

gi,ZIB(z) = σi − zi − tiyi,i −
∑
j∈Ai

(zj + tjyi,j) (6)

with all notations as defined previously. Thus, the proposed
PMU placement problem including ZIB can be given by
updating gi(z) in (3) and substituting in (5). The next lemma
provides a continuous relaxation for the constraint C1.

Lemma 2. For a polytope Poly(DR), the discrete con-
straint C1 is equivalent to the continuous constraint z ∈
Poly (DR) , ϕ(z) ≥ R for ϕ(z) :=

∑
i∈N zβi with β > 1.

Proof. See Appendix B.

Since, ϕ(z) is convex in z, the constraint ϕ(z) ≥ R is
a reverse convex constraint. As such, it is a difference of
two convex sets, Poly(DR) and {z|ϕ(z) < R}. Also, as β
decreases, ϕ(z) tends to a linear function. However, as β → 1,
the function ϕ(z)−R approaches zero very quickly.

Proposition 1. ϕ̃(z) = 1
ϕ(z) −

1
R can be used to measure the

degree of satisfaction of the discrete constraint C1 in the sense
that ϕ̃(z) ≥ 0 ∀z ∈ Poly(DR) and ϕ̃(z) = 0 iff z ∈ DR.

C. Solution to Optimal PMU Placement Problem

This subsection details the analysis of the optimal solution
to (P2). Using Lemma 2 and Proposition 1 in (P2), we
formulate a penalized optimization problem as

min
z

Fδ(z) :=J(z) + δϕ̃(z) s.t. z ∈ Poly(DR) (7)

where δ > 0 is a penalty parameter. This penalized opti-
mization problem is exact with a sufficiently large δ. It is
notable that (7) is a minimization of a non-convex function
over a convex set. However, by achieving the minimum for
Fδ(z), an efficient PMU deployment strategy can be obtained
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Algorithm 2: Feasible Point Generation Algorithm
1 : Fetch generation counter t = κ
2 : If t = 0, create initial population of P vectors P0 = {z01,
z02, · · · , z0P } ⊂ DR, s.t. ∥Pt∥ = P ∀t

Otherwise, Use Pt+1 generated in previous iteration
3 : Compute fitness value αt

i of each vector in Pt

4 : Choose z(κ) → zti having maximum αt
i and set t → t+1

5 : pt0 := no. of vectors in Pt with αi ≥ ηαmax

6 : Vt
P := set of those pt0 vectors from Pt

7 : Set pt1 = 2, pt2 = 1; generate crossover and mutation
vectors using steps 8-9

8 : Crossover vectors: Vt
CO = C

(
Vt

P , p
t
1

)
9 : Mutation vectors: Vt

M = M
(
Vt

P , p
t
2

)
10 : Calculate fitness for these vectors, increment
pt1 → pt1 + 1 and pt2 → pt2 + 1

11 : Repeat steps 8-11 till fitness for all vectors ≥ ηαmax

12 : Choose best P vectors from these based on fitness
13 : Update: Pt → Pt+1 using the selected P vectors.

under perturbed grid conditions with ambient grid estimation
at the PDC. The pseudo-code for the proposed computational
procedure used in finding the optimal solution to (P2) is given
in Algorithms 1. However, as ϕ(z) is convex, we have

ϕ(z) ≥ϕ(κ)(z) := ϕ(z(κ)) + ⟨∇ϕ(z(κ)), z− z(κ)⟩

=− (β − 1)
∑
i∈N

(z
(κ)
i )β + β

∑
i∈N

(z
(κ)
i )β−1zi

(8)

where ⟨u, v⟩ denotes the inner product between the vectors
u and v. Therefore, an approximate upper bound for 1

ϕ(z) at
z(κ) can be obtained as 1

ϕ(z) ≤ 1
ϕ(κ)(z)

over the trust region
ϕ(κ)(z) > 0. Thus, at the κ-th iteration, following convex
optimization needs to be solved to generate z(κ+1)

(P3) : min
z

F
(κ)
δ (z) :=J(z) + δ

(
1

ϕ(κ)(z)
− 1

R

)
s.t. z ∈ Poly(DR), ϕ(κ)(z) > 0.

(9)

(P3) is solved using Algorithm 2 to generate the next feasible
point. We compute the fitness of the i-th vector in Pt as the
normalized value of f(z) in (P2), given by αi =

f(zt
i)∑P

i=1 f(zt
i)

.
Partially matched crossover and simple inversion mutation are
used respectively in crossover and mutation operations. In this
work, η = 0.9 is chosen to generate successive feasible points.

IV. RESULTS AND DISCUSSION

The proposed optimal PMU placement strategy is compared
with the conventional approaches with sufficient input current
channels [5], [6], and with limited input current channels [16],
[17], [18]. The results are verified for IEEE 6, 14, 30, 57, and
118-bus systems. Algorithm 1 is implemented in E3-1285 v6
CPU; the optimal hyper-parameters are listed in Table I. No
direct redundancy was offered to any node, i.e., σi = 1, ∀i.

A. Test Case: Demonstration of Optimal Placement of PMUs
with Limited Input Current Channels in IEEE 6-Bus System

For an IEEE 6-bus system, by setting λ = 0 we get the
optimal PMU placement considering grid observability only,
as given in Table II. However, when a perturbed system is

TABLE I: Optimal hyper-parameter settings and convergence details
of Algorithm 1; β = 1.45, c.t.: convergence time.

Test system ϵ δ
c.t. (s)
(λ = 1)

c.t. (s)
(λ = 0)

IEEE 6-bus 0.27 0.09 43.12 43.37
IEEE 14-bus 0.36 0.10 62.94 60.77
IEEE 30-bus 0.57 0.10 79.14 76.53
IEEE 57-bus 1.00 1.00 80.47 80.37
IEEE 118-bus 1.20 1.00 216.31 216.19

TABLE II: Optimal PMU placement in perturbed IEEE 6-bus system;
Conv.: conventional, Rev.: revised, CC: current channels

No. of CC per
PMU (rev.)

Conv. opt. PMU place-
ment (suff. CC)

Rev. opt. PMU
placement

1 4, 5 1, 3, 5
2 4, 5 3, 6
3 4, 5 4, 5

considered, line observability gains significance over node-
based grid observability. From the updated solution using (7),
the optimum PMU placement changes, both in number and
locations. This proves that the conventional placement strategy
is insufficient to monitor actual power grids, considering its
perturbations. In contrast, with the notion of controllability-
aware PMU placement strategy as proposed in this paper, it
is able to provide better line observability with increased grid
observability index, as observed from Fig. 2(b).

From Table II we infer that, for a perturbed system the
optimal PMU deployment locations and the number of PMUs
depend on the number of input current channels in a PMU.
Typically the number of input current channels is considered
unlimited thus far in literature. In the simulations, it was
noted that, for a 6-bus system, optimum controllability is
attained when PMUs are installed at bus {2, 4, 6} with 1 input
current channel per PMU, while the vector updates to {3, 6}
considering 2 input current channels. However, as the number
of input current channels per PMU reach 3, the maximum node
incidence order equals the input current channels available per
PMU. In such a case, the optimal PMU placement vector
reorients to {4, 5}, which is the same as that rendered by
the conventional placement strategy, owing to fulfilling the
sufficiency assumption on the input current channels per PMU.
These results demonstrate that optimal PMU placement vector
changes with limited number of input current channels per
PMU, which is the case in practical PMU devices.

B. Variation of Optimal Placement Policy with PMU’s Input
Current Channel Limitations in Perturbed Power Networks

Table III shows the optimal PMU placement for standard
IEEE test systems suggested by the proposed strategy under
normal and perturbed grid conditions. It can be seen that, with
the proposed perturbation-robust optimal PMU deployment,
the location as well as the number of minimum required PMUs
change. Further, contrasting the proposed controllability-aware
optimal PMU placement solution with the optimal placement
of PMUs with 1 input current channel, it can be noted
that the proposed strategy is able to achieve optimum grid
observability and controllability at a lesser number of PMUs,
placed strategically at different nodes.
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TABLE III: Controllability-aware optimal PMU placement (OPP) for different IEEE test systems under perturbation without considering ZIB

Test Conventional OPP (λ = 0) Controllability-aware OPP (λ = 1)
(1 current channel)system Sufficient current channels [5], [6] 1 current channel [16], [17], [18]

14-bus 2, 6, 7, 9 1, 3, 4, 6, 9, 11, 12, 14 2, 4, 6, 7, 9, 13

30-bus 1, 7, 8, 10, 11, 12, 18, 23, 26, 30 1, 2, 4, 5, 6, 10, 12, 13, 15, 16, 18, 19, 24,
27, 29

1, 5, 6, 9, 10, 12, 17, 19, 22, 24, 25, 27,
29

57-bus 2, 6, 10, 12, 19, 22, 25, 27, 32, 36,
41, 45, 46, 49, 52, 55, 57

1, 3, 5, 6, 9, 11, 12, 14, 15, 17, 19, 20, 21,
24, 25, 28, 29, 30, 32, 35, 38, 41, 43, 45,
49, 50, 51, 53, 54, 56

1, 2, 4, 6, 9, 12, 15, 19, 20, 22, 24, 26, 29,
30, 31, 32, 35, 36, 41, 45, 46, 50, 51, 53,
54, 56, 57

118-
bus

2, 5, 9, 11, 12, 17, 21, 24, 25, 28,
34, 37, 40, 45, 49, 52, 56, 62, 63,
68, 73, 75, 77, 80, 85, 86, 90, 94,
101, 105, 110, 114

1, 3, 6, 8, 10, 11, 12, 15, 17, 19, 20, 21,
23, 27, 28, 29, 32, 34, 35, 40, 41, 43, 45,
46, 49, 50, 51, 52, 54, 56, 60, 62, 65, 66,
70, 72, 75, 76, 77, 78, 80, 83, 85, 86, 87,
89, 90, 92, 94, 96, 100, 101, 105, 106, 108,
110, 111, 112, 114, 117

1, 2, 5, 9, 10, 11, 12, 15, 17, 21, 22, 25,
26, 28, 29, 34, 35, 37, 40, 45, 46, 49, 52,
53, 56, 62, 63, 68, 72, 75, 76, 77, 80, 84,
85, 87, 89, 92, 94, 96, 100, 105, 107, 110,
114

TABLE IV: Controllability-aware OPP for different IEEE test systems under perturbation considering ZIB

Test Conventional OPP (λ = 0) Controllability-aware OPP (λ = 1)
(1 current channel)system Sufficient current channels [5], [6] 1 current channel [16], [17], [18]

14-bus 2, 6, 9 1, 4, 9, 11, 13 2, 4, 6, 9, 13
30-bus 2, 4, 12, 17, 19, 24 1, 3, 5, 9, 11, 12, 17, 19, 23, 24, 29 1, 2, 4, 6, 7, 12, 17, 19, 24

57-bus 1, 6, 9, 19, 29, 30, 32, 38, 51, 54,
56

1, 3, 6, 9, 12, 15, 19, 20, 25, 28, 29, 30, 32,
35, 38, 41, 49, 50, 51, 53, 54, 56

1, 3, 5, 9, 12, 15, 19, 20, 25, 29, 31, 32,
42, 49, 50, 51, 53, 54, 56

118-
bus

2, 11, 12, 17, 21, 23, 28, 34, 40, 45,
49, 52, 56, 62, 71, 75, 77, 80, 85,
87, 90, 94, 102, 105, 110, 115

1, 3, 6, 11, 12, 15, 17, 19, 21, 22, 24, 26,
27, 29, 31, 32, 34, 36, 40, 42, 43, 45, 46,
49, 50, 51, 52, 54, 56, 59, 62, 66, 70, 75,
76, 77, 79, 80, 83, 85, 86, 89, 90, 92, 94,
96, 100, 101, 105, 107, 109, 110, 114

1, 2, 6, 11, 12, 17, 21, 23, 27, 28, 32, 34,
36, 40, 42, 45, 46, 49, 53, 56, 62, 71, 75,
76, 77, 79, 80, 84, 85, 87, 89, 90, 92, 94,
96, 100, 102, 105, 107, 109, 110, 115

(a) (b)
Fig. 2: (a) Normalized node observability versus total monitored
lines, (b) aggregate grid observability for different IEEE test systems.

Table IV shows the change in optimal PMU deployment
considering a perturbed grid in the presence of ZIBs. It was
observed that the number of PMUs for optimal grid monitoring
drop in this case. However, the optimal deployment vector
still differs from the conventional placement scenario. Again,
comparing the proposed PMU placement with the conventional
deployment of single channel PMUs, it can be inferred that the
proposed PMU deployment vector provides superior deploy-
ment strategy with reduced number of PMUs and robust grid
monitoring under perturbations. Next subsections establish this
fact in further details using MMSE, mutual information, and
contingency analysis for various deployment scenarios.

C. Variation of Grid Observability with Controllability-Aware
Optimal PMU Placement

Fig. 2(a) shows the variation of normalized node observabil-
ity reward defined as ξi =

∑
j∈Ai

µi,j∑N
i=1

∑
j∈Ai

µi,j
for various IEEE

standard test systems, with the total lines monitored in the grid.
It provides a very important observation with the number of

lines being monitored by the PMUs. It has been considered
thus far in literature that all PMUs have sufficient current
cards to monitor all incident lines to the nodes on which they
are installed. However, with the increase in grid size, such
an assumption is not practical. It can be seen from Fig. 2(a)
that an optimum normalized node observability reward can
be attained with a limited number of direct monitored lines,
which translates to limited current cards per PMU. As we
try to monitor more than optimal number of lines, the cost
of installation increases, leading to a decrease in the reward
against observing a node. Thus, a revised placement vector
with limited current channels is proposed in Section IV-B.

Fig. 2(b) shows the aggregate grid observability index
ωT c⊙A⊙

(
zTST 1 + ISz

)
ω for different IEEE standard test

systems, and contrasts the different optimal PMU deployment
scenario. It can be observed that, for conventional PMU
deployment, as achieved with λ = 0 in this work, a normalized
aggregate grid observability index of unity is achieved for all
grid sizes. It can also be observed that as the assumption is
relaxed to achieve the practical device constraint, we observe
a significant drop in the grid observability index. This, results
in an inefficient grid estimation at the PDC under perturbed
system state, as detailed in the next subsection. However, it
can be noted that, for the proposed controllability-aware opti-
mal PMU deployment, a normalized grid observability index
tending to unity is achieved for all standard grid topologies.

V. CONCLUDING REMARKS

This paper proposed a novel power grid monitoring in-
strumentation strategy for grid controllability under perturbed
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conditions, wherein for optimal PMU deployment estimation
practical constraint of limited number of input current channels
was considered. Line observability reward, node weight vec-
tor, and polynomial observability constraint were separately
defined that capture a generic grid situation, wherein the
grid controllability feature in the optimization was presented
through a binary multiplier. The proposed grid monitoring
instrumentation strategy gives a handle to define system node
weights based on their degree of instability. Simulation of
perturbation in different IEEE bus systems of varied size
demonstrated that the minimum number of PMUs increases
and their optimal PMU placement location vary to deal with
the perturbed system conditions. It was also demonstrated
that optimal PMU placement based on observability constraint
alone is not sufficient to capture grid health under perturbation.

APPENDIX

A. Proof of Lemma 1

Applying energy balance on link j-jr, where j ∈ Ai, r ∈
[1, · · · , kj ], we have

vj sin(ωt+ ϕj) =vjr sin(ωt+ ϕjr )

− ijr,jzjr,j sin (ωt+ δjr,j + θjr,j)
(A1)

where ω = 2πf is the grid frequency, zi,j =
√

r2i,j + x2
i,j is

the impedance of link i-j, δi,j is the load angle, and θi,j =

tan−1
(

xi,j

ri,j

)
with ri,j , and xi,j denoting the link resistance

and reactance, respectively. Dividing (A1) by zjr,j and adding
it for all incident nodes we have

kj∑
r=1

vj sin(ωt+ ϕj)

zjr,j
=

kj∑
r=1

vjr sin(ωt+ ϕjr )

zjr,j

−
kj∑
r=1

ijr,j sin (ωt+ δj1,j + θj1,j) .

(A2)

Applying Kirchoff’s current law (KCL) at node j in (A2) we
have

∑kj

r=1
vj sin(ωt+ϕj)

zjr,j
=

∑kj

r=1
vjr sin(ωt+ϕjr )

zjr,j
. Introducing

small perturbations and linearizing, we get

DT
j

[
∆vj

∆ϕj

]
=

kj∑
r=1

ET
jr

[
∆vjr
∆ϕjr

]
1∑kj

r=1
1

zjr,j

(A3)

where Dj = [sin(ωt+ ϕj), vj cos(ωt+ ϕj)]
T and ET

jr
=

[
sin(ωt+ϕjr )

zjr,j
,

vjr cos(ωt+ϕjr )
zjr,j

]T . From small signal stability, we
know that the voltage angle change is very small owing to high
inertia in rotating parts. Therefore, from (A3) we get

∆vj =

kj∑
r=1

sin(ωt+ ϕjr )z
−1
jr,j

∆vjr

sin(ωt+ ϕj)

kj∑
r=1

z−1
jr,j

−1

.

Let the instability grid node voltage change be ∆v0, such that
∆vjr = αjr∆v0, where αjr is a constant of multiplication.
Substituting this in the previous equation, we get

ωj =
∆v0
∆vj

=
sin(ωt+ ϕj)

∑kj

r=1 z
−1
jr,j∑kj

r=1 sin(ωt+ ϕjr )z
−1
jr,j

αjr

. (A4)

B. Proof of Lemma 2

It is notable that zβi ≤ zi ∀ zi ∈ [0, 1], so ϕ(z) ≤∑
i∈N zk = S ∀z ∈ Poly(DR). Therefore, constraint C1

forces ϕ(z) = R, which is possible iff zβi = zi, i ∈ N ,
i.e., zk ∈ {0, 1}, i ∈ N , implying z ∈ DR.
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