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Abstract—Distributed beamforming is a promising technique
for transferring power to a node wirelessly, as it allows optimal
design of waveforms at each transmitter such that they interact
constructively at the receiver node. In this paper, we propose a
distributed RF beamforming scheme which involves phase detec-
tion and prediction for the sources participating in beamforming
process. The proposed method is capable of tracking source drifts
and statistical fluctuations of the channel. The phase detection
process requires one feedback for synchronizing all the sources
to the receiver pairs and provides a closed-form solution for
the phase offsets between a pair of received beams under the
presence of RF power measurement errors. Autoregressive (AR)
model is used for phase prediction which avoid feedback in
synchronization process all together. Performance of the proposed
detection and prediction model is quantified in terms of average
received power, efficiency, and number of message exchange
between the sources and the receiver.

Index Terms—Autoregressive process, distributed RF beam-
forming, phase beamforming, wireless energy transfer.

I. INTRODUCTION

Massive rise in Internet-of-Things (IoT) devices is driving
up the demand for energy resources. Though, the senor nodes
are equipped with batteries to enable long-term operation,
their performance is constrained by limited battery capacity.
Consequently, sustainable and green powering technologies
are gaining importance due to energy crisis and greenhouse
effect [1]. In order to cut the carbon emission and cost of
battery replacement, energy harvesting via wireless power
transfer (WPT) provides an alternative to charging process.

The general concept behind distributed radio frequency
(RF) beamforming is to design the carrier waveforms such
that they combine constructively at the receiver after passing
through wireless channel [2]–[4]. In distributed beamforming,
N independent sources each of transmit power Pt can co-
operatively transmit maximum power of N2Pt to a particular
node. Therefore, distributed beamforming proves to be a green
technique allowing N -fold gains in received power with the
same hardware footprint. Carrier synchronization in terms of
phase and frequency is crucial for achieving these gains. The
authors in [2]–[5] captured achievable gain by distributed
beamforming but did not provide any means of achieving it.

A. Literature Review and Motivation

The work in [6] proposed a distributed ascent algorithm
based on random perturbations involving multiple one bit
feedbacks for synchronization. In [7], authors presented the
performance of distributed WPT with and without frequency

and phase synchronization, and demonstrated that distributed
charging improves coverage probability. However, none of
these works harness the correlation in phase data, thus necessi-
tating periodic feedbacks. In [8], RF distributed beamforming
was proposed which used a master-slave architecture for
synchronization. However, the presence of a master controller
compromises the premise of distributed beamforming.

In [9], the authors proposed feedback independent receiver-
end distributed beamforming scheme with orthogonal trans-
mission of signals with one transmission per slot. However,
the application is limited to baseband level. The authors in
[10] proposed channel training methods involving sequential
and parallel synchronization to achieve energy beamforming
(EB). Here, the accuracy of beamforming between two sources
depends on number of forward transmissions and feedbacks,
which has been contrasted by [6]. The work in [11] proposed
scatterMIMO technique to achieve spatial multiplexing gain
from the scattered signal in MIMO systems. But its depen-
dence on estimating the path length between the two antennas
becomes sensitive to the initial source and channel phase
variations, which is difficult to model in practice.

Moreover, the aforementioned beamforming algorithms
generally assume memoryless channel and requires synchro-
nization in subsequent coherence intervals. However in practi-
cal wireless communication scenarios, channel exhibits strong
temporal correlation, leading to correlated phase data. This
channel property can reduce the number of feedbacks, thereby
reducing the performance degradation due to delays and errors
in the feedback packets. In [12], two beamforming algorithms
namely predictive vector quantization and successive beam-
forming algorithm were proposed using auto-regressive (AR)
dynamic fading model for transmit beamforming scenario
in multiple-input single-output systems. Though this paper
uses the AR(1) model in compensating the phase aberrations
induced by the fading channel, their inability to capture the
measurement error poses a pertinent deployability issue.

As noted above, the existing literature did not consider
estimation-regression based approach by using the correla-
tion in phase data, which is expected to reduce the number
of transmitter-receiver interactions while accounting for the
practical measurement inaccuracy/noise.

B. Contributions and Significance

This paper proposes a deterministic closed-form phase es-
timation, followed by a generalized AR(p) based phase re-
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Fig. 1. Generalized system model for distributed beamforming based WPT.

gression, while judiciously accounting for power measurement
noise in the process. The key contributions of the work are:

1) A deterministic closed-form expression for initial phase
estimation using 3 subsequent power measurements is pro-
posed, while accounting for the measurement error. 2) The
estimated phase is fine tuned using the past phase measure-
ments, and an AR based phase prediction is employed. 3)
Performance of the AR prediction filter is analyzed in terms
of time-averaged received power for N sources. 4) Finally,
the efficacy of the complete setup is contrasted against the
state-of-the-art for varying block lengths and measurement
error statistics. 5) It is shown that AR based phase tracking
compensates for the measurement errors and eliminates the
repeated transmission over long duration.

The work in this paper is significant in offering energy
efficient information communication and power transfer by
facilitating constructive interference of multiple sources at
the receiver. Our simulation results demonstrate that the
beamforming process is considerably agnostic to the channel
phase variation and the power measurement noise. This is
by the virtue of data correlations extracted by the AR model
employed in the proposed setup.

Layout of the paper is as follows: Section II discusses the
underlying system model. Section III proposes the distributed
beamforming method and protocol, followed by results, and
conclusion in Sections IV and V, respectively.

II. SYSTEM MODEL

Fig. 1 depicts the distributed beamforming system with
N independent transmitters and a receiver. The transmitters
are deployed at random locations, each equipped with a
single antenna, with the nth transmitter denoted as Txn. Each
transmitter is viewed as a power beacon which generates an RF
signal for wireless power transmission. Receiver is assumed to
be a battery equipped sensor node. We consider narrowband
Rician fading channel in which propagation is dominated by
the LOS link and all the multipath components reach roughly
on top of one another. Since objective of this work is to
demonstrate phase beamforming, we assume that transmitter
generates an unmodulated carrier signal, given by sn(t) =
ℜ{An exp (j(2πfct+ ϕsn))}, where An and ϕsn respectively
denotes the peak amplitude and fixed phase offset of nth

sources’ transmit signal, and fc is the carrier frequency. Under
the assumption of frequency synchronized transmitters, the
resultant signal from the interference of N sources is expressed
as rn(t) = ℜ{

∑N
n=1Anαn exp(j(2πfct+ϕsn+βn))}, where

αn and βn denote accumulated gains and phase shifts due to
multipath components in the wireless channel, respectively.
Therefore, the average power received is given as

PR =
1

T

∫ T

0

|r(t)|2 dt = 1

2

N∑
n=1

Pn+

1

2

N∑
m=1

N∑
n=1,n̸=m

√
PmPn cos(ϕm − ϕn)

(1)

where Pn = (Anαn)
2, ϕn = ϕsn + βn and T = 1

fc
. If ϕsn =

−βn, then PR is optimal which is expressed as

Popt =
1

2

N∑
m=1

N∑
n=1

√
PmPn (2)

In practical scenarios, perfect CSI is not available, increasing
the possibility of inaccuracy in phase determination. Further-
more, even the availability of perfect CSI at individual trans-
mitter does not guarantee near-optimal power gains owing to
the phase offsets between the sources. In the next section, we
propose a phase beamforming method which can jointly tackle
the source phase offsets and channel statistical fluctuations
allowing near optimal beamforming.

III. PROPOSED DISTRIBUTED RF BEAMFORMING

In this section we first present a closed-form phase detection
algorithm which computes the phase corrections for individual
source followed by application of AR model in phase predic-
tion in time varying channels.

A. Phase Detection Scheme

The proposed phase detection scheme is a method of
synchronization that seeks to identify the phase difference
between the transmitters involved in the beamforming process.
It is based on sequential transmission wherein the transmitters
take turns for phase adaptation while adhering to a prede-
termined order. Within each sequential transmission, every
source adapts its phase to the common phase of the active
sources. In this process, receiver computes the phase correction
and sends it back to the transmitter; emulating two-source
beamforming in each synchronization slot. The subsequent
part of this section describes the synchronization of a single
transmitter to a set of beamformed transmitters.

Let us assume that (n − 1) out of N sources are synchro-
nized, and the algorithm wants to synchronize the nth source.
In the first transmission slot of (n − 1)

th synchronization
interval, Txn transmits with arbitrary phase and let the cor-
responding received phase is ϕn. The total received power is

Prn = P s
n−1 + Pn + 2

√
P s
n−1Pn cos θn + ϵn (3)

where Pn the nth source power, P s
n−1 =

[∑n−1
k=1

√
Pk

]2
denotes the collective power received by the (n− 1) syn-
chronized sources, θn = ϕ1 − ϕn denotes the offset and
ϵn ∼ N (0, σ2

n) denotes the power measurement error. In the
next two transmission slots, Txn transmits with preassigned
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Fig. 2. Illustration of selection of the quadrant in which ∆ϕn lies.

phase shifts of −ψ and ψ. Power received by the receiver in
both the transmission slots individually is given by

P a
rn = P s

n−1 + Pn + 2
√
P s
n−1Pk cos(θn + ψ) + ϵan (4)

P b
rn = P s

n−1 + Pn + 2
√
P s
n−1Pn cos(θn − ψ) + ϵbn (5)

where ϵan, ϵ
b
n ∼ N (0, σ2

n) are the measurement errors in the
respective slots. The synchronization unit uses Prn, P a

rn and
P b
rn to obtain θn . Subtracting (5) and (3) from (4), we get

P a
rn − P b

rn = −4
√
P s
n−1Pn sin θn sinψ + ϵan − ϵbn. (6)

P a
rn − Prn = 2

√
P s
n−1Pn[cos θn (cosψ − 1)

− sin θn sinψ] + ϵan − ϵn.
(7)

Solving (6) and (7) simultaneously we obtain θn as

θn = tan−1

[
ζ(P a

rn − P b
rn − ϵan + ϵbn)

(2Prn − P b
rn − P a

rn − 2ϵn + ϵbn + ϵan)

]
(8)

where ζ = (cosψ − 1)/sinψ. The value of phase offset θn
obtained using (8) will lie in the range [−π/2, π/2]. Thus,
it is not sufficient to determine the correct offset θn. Fig. 2
shows the conditions for the selection of quadrants in which
the phase obtained using (8) lies. Adding (4) and (5) we get,

P a
rn + P b

rn = 2(P s
n−1 + Pn)

+ 4
√
P s
n−1Pn cos(θn) cosψ + ϵan + ϵbn.

(9)

Then, solving (9) and (3) simultaneously, we obtain

P s
n−1 + Pn =

P a
rn + P b

rn − ϵan − ϵbn − 2Prn cosψ

2(1 + cosψ)
. (10)

Now, if Prn > P s
n−1 + Pn, we infer that cos θn is positive.

Thus, the phase determined using (8) is correct. But if Prn <
P s
n−1+Pn, implying cos θn < 0, then the value of θn obtained

using (8) is updated to either θn + π or θn − π. Thus, the
ambiguity in exact phase estimation in [11], resulting from the
range presented by the inverse tangent function, is resolved.

The phase is then sent back by the receiver to Txn for
correction. Therefore, the alignment of the nth transmitter’s
phase with Tx1, requires three synchronization slots and one
feedback slot. Thus, each synchronization interval involves
4 message exchanges resulting in a total synchronization
duration of 4Ts, where Ts denotes length of each transmission
slot. The transmitter stores the phases at each synchronization
interval, which is used to train filter described in next subsec-
tion for predicting the future corrections.

Remark 1: The number of synchronization slots needed
for two-source beamforming is independent of the number of
sources involved in the beamforming process.

Phase offset obtained in (8) can be written as

θn = θan + eθn (11)

where θan is the actual phase offset obtained by putting ϵn =
ϵan = ϵbn = 0. Using first-order approximation of the Taylor
series expansion of θn, we obtain

∆θn =
∂θn
∂Prn

∆Prn +
∂θn
∂P a

rn

∆P a
rn +

∂θn
∂P b

rn

∆P b
rn. (12)

Using (3), (4), (5) and (11), the above equation is written as

eθn =
∂θn
∂Prn

ϵn +
∂θn
∂P a

rn

ϵan +
∂θn
∂P b

rn

ϵbn

= ζ/{(2Prn − P b
rn − P a

rn)
2 + (ζ(P a

rn − P b
rn))

2}
× [2(Prb − Pra)ϵn + (2Prn − P b

rn − P a
rn − 1)ϵan

+ (P b
rn + P b

rn − 2Prn + 1)ϵbn].

(13)

The accuracy of the computed offset θn will depend on
the variance of eθn . Although, in block fading scenarios the
measurement errors are not significant, but future corrections
based on erroneous current predictions lead to unacceptable
phase estimates over time. Next subsection details the use of
error statistics in the estimation of source phases.

B. Autoregressive (AR) Based Phase Prediction
This section demonstrates the use of an AR model in phase

predictions for N sources. Let a generalized regression model
AR(p) be employed at time t − 1, to predict the value at t
based on p past values. Then, the estimate of the actual phase
corrections in regression form is written as

θ̂an(t) =

p∑
i=1

biθ̂an(t− i) + e(t) (14)

where θ̂an(t) is the predicted value at time index t and
e(t) ∼ N (0, σ2

e) is a white noise. The generalized mathe-
matical equation which relates the AR (p) model parameters
to the autocorrelation function of the phase estimates is [13]

rθ̂[k] =


r∗
θ̂
[−k], for k < 0

−
∑p

i=1 birθ̂[k − i] + σ2
e , for 1 ≤ k < q

−
∑p

i=1 birθ̂[k − i], for k > q

(15)

where, rθ̂[k] = E[θ̂(t)θ̂(t− k)] denotes the autocorrelation of
the phase estimates. This relation gives rise to the Yule Walker
equations [14] which allows us to estimate these coefficients
in terms of correlation of the past samples. To obtain the filter
coefficients we write the above equation in matrix form as

b = −R−1r (16)

where, b = [b1, b2, · · · , bp], r = [rθ̂[1], rθ̂[2], · · · , rθ̂[p]] and

R =


rθ̂[0] rθ̂[−1] · · · rθ̂[1− p]
rθ̂[1] rθ̂[0] · · · rθ̂[2− p]

...
...

. . .
...

rθ̂[p− 1] rθ̂[p− 2] · · · rθ̂[0]

 .
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From (16), we observe that AR filter parameters depend upon
the correlations of actual phase corrections. But at receiver,
observations are θn. Therefore, using (11) we modify (14) as

θ̂an(t) =

p∑
i=1

biθ̂n(t− i)−
p∑

i=1

bieθn(t− i) + e(t) (17)

where b0=1. The filter coefficients are obtained using training
data generated using phase detection scheme proposed in sub-
section III-A. Thus, (17) can be visualized as an autoregressive
moving average (ARMA) model. Root mean square error
(RMSE) is used to determine the optimal model order .

Remark 2: With the incorporation of measurement error,
AR(p) manifests into ARMA(p, p + 1) model, which allows
compensation of the measurement error in the phase estimates.

C. Beamforming Protocol

In this subsection, we present the protocol for the proposed
phase beamforming algorithm which consists of two stages: 1)
phase offset detection using synchronization scheme as shown
in Fig. 3, and 2) phase offset prediction using AR model.

1) To initiate the beamforming process, receiver first sends
a ‘green’ signal to all the transmitters.

2) Once the transmitters receive the green signal, all the
transmitters except Tx1 and Tx2 stop transmitting. Tx1

and Tx2 transmit with arbitrary phases s.t. the phases
received at the receiver are ϕ1 and ϕ2, respectively.

3) The synchronization unit at the receiver aligns the phase
of Tx2 with Tx1 using the phase detection scheme given
in Section III-A. Synchronization unit then feeds back
the phase offset θ2 to the Tx2, and Tx2 continues to
transmit with the adapted phase ϕ1 thereafter.

4) In the next synchronization interval Tx3 aligns via phase
detection scheme to match its phase with Tx1 and Tx2.

5) (1)-(4) is repeated until all sources are aligned with Tx1.
6) (1)-(5) is repeated for Ls synchronization intervals, the

data of which is used to train the AR model.
7) The synchronization is done using the predicted phase

corrections from the AR model until the received power
drops below a defined threshold.

8) If the average received power falls below the threshold,
the filter is retrained on the past predicted values.

9) If the retraining on the past predicted samples still leads
to received power level below the desired threshold, the
protocol sequence (1)-(7) is repeated.

The combined framework for phase detection and prediction
is outlined in Algorithm 1. Steps 1-5 entail phase estimation,
step 6 involves data collection and AR model training, step

Algorithm 1: Phase beamforming algorithm
Data: Initialize ψ = π

2
, Tc = 1, p = 1, M = 1000, η = 3%.

for n = 1 :MTc do
while n < Ls do

for k=1:N do
Txk → {θk,n, θk,n + ψ, and θk,n − ψ}
Rx stores Prk, P a

rk, and P b
rk and calculates

θk,n ∈ [0, 2π] from (8) using wrapping
if Pr < Pn + P s

n−1 and ∆ϕk,n ≤ π then
θk,n = θk,n + π;

elseif Pr < Pn + P s
n−1then θk,n = θk,n − π ;

end
end

end
if n ≥ Ls then

AR(∆ϕn, p) is implemented in parallel ∀ k.
Step 1: Train AR(∆ϕ, p); Step 2: Predict ∆ϕ.
if Pt(1 : n) < 0.01ηPth then Move to Step 1 end

end
if Continuous retraining required then n = 1 end

end
end

7 does phase prediction, with model retraining in steps 8 and
9. Note that, the output of the proposed beamforming scheme
does not vary with the sequence of transmission. Therefore,
any sequencing protocol such as token-ring can be used.

IV. RESULTS AND DISCUSSIONS

In this section, we verify the results of the proposed phase
detection scheme and analyze the performance of AR model
based phase predictions using MATLAB simulations, and
contrast its performance with the most competitive approach
in literature. In the context of distributed beamforming, we
model ϕsn ∼ U(0, 2π). Since, optical communication entails
a single LOS path between the source and receiver, we model
it as path loss only, with attenuation αn = K(dn/do)

−γ ,
where do is the reference distance for the antenna far field,
dn is the distance between the nth transmitter and receiver,
and K is the unitless constant which depends on the antenna
characteristics and path-loss exponent. We consider do = 1m,
K = −20 dBm, path loss exponent γ = 2, and distance
dn ∼ U(5, 15). Further, we model the statistical RF channel as
Rician distributed with the phase distribution as given in [15].
In this work, we analyze the performance of the proposed
beamforming method for the time correlated block fading
channel of different block lengths. Length of the block is
determined by the channel coherence time. Each channel block
is assumed to be static, i.e., negligible phase variations.

A. Performance of Phase Detection Scheme

We now study the performance of the proposed phase detec-
tion scheme operating within a single block, in synchronizing
a set of transmitters involved in the beamforming process.

1) Variation of power with N : Fig. 4(a) shows the variation
of received power with number of sources, N . We observe that
N -fold beamforming gains are achieved using the proposed
phase detection scheme. However, under the presence of the
measurement errors this gain reduces as shown in Fig. 4
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Fig. 4. (a) Variation of power with number of transmitters. (b) Efficiency comparison of the proposed phase synchronization scheme with scheme in [10] for
two-source beamforming. (c) Power deviation with measurement error. DRFB: Distributed RF beamforming.

for σn = 1.5 × 10−5. We contrast our proposed scheme
with sequential training scheme for energy beamforming (EB)
proposed in [10], which requires 2BNw synchronization slots
for two source beamforming, where 2B denotes the count of
sequence of phases applied to source signal for power trans-
mission, and Nw denotes the required number of feedbacks.
For fair comparison, we consider the cases B = 1, Nw = 2,
and B = 2 and Nw = 1, as they require 4 synchronization
slots. Performance comparison of the two schemes show that
the proposed scheme gives 17.26% higher power compared to
that of sequential EB.

2) Efficiency of proposed scheme: Fig. 4(b) shows the
efficiency of proposed synchronization scheme with number of
training slots required in 2-source beamforming. It is observed
that the efficiency tending to 1 is achieved from the proposed
synchronization method in just 4 slots. We also contrast our
performance with the EB method. From Fig. 4(b), we observe
that (B = 1, Nw = 4) and (B = 2, Nw = 4) require
a minimum of 8 synchronization slots to reach efficiency
close to 1, with 4, 1, and 4 feedbacks, respectively. Though,
(B = 2, Nw = 1) requires 1 feedback, but single source
synchronization requires adaptation through a sequence of 4
different phases. Also, (B = 1, Nw = 2) requires 4 syn-
chronization intervals, and achieves a maximum efficiency of
0.95. From these observations, we conclude that the proposed
beamforming scheme outperforms the sequential EB method.

3) Effect of Measurement Error: Fig. 4(c) shows the de-
viation of the received power from the optimal derived in
(2) with measurement error variance. We observe that the
deviation increases with N . For σn up to 10−3, variation is not
prominent for small N . However, for N = 16 this deviation
becomes significant, degrading the received power. Thus, we
conclude that as N increases, error in θn accumulates.

B. Performance with AR based Phase Predictions
Under realistic time varying channel scenarios, a one time

data collection at the start of the beamforming process is
sufficient. Once the data is collected, the prediction of the
phase for the next instance is done using the AR model. The
AR model is first trained using the lag samples of previous 5
fading blocks obtained using the proposed detection scheme.
The order of the AR model p ∈ {1, · · · , 5} is obtained by
maximizing the fit of the coefficients to the training data such

that the RMSE remains lower than 6.4 × 10−3. The model
is retrained whenever the received power drops to 0.97 times
of the maximum power. The performance of the system is
analyzed for the channel coherence time of 1 msec and 0.5
msec. σn is taken to be 1.5× 10−5.

1) Average Power Received over Time: Fig. 5(a) shows
the phase tracking performance of the AR(p) model and the
time averaged power at the receiver node for a channel with
coherence time of 1 msec in two source beamforming. The
phase correction trajectory has the correlation of ρ = 0.995.
For the time averaged power as shown in Fig. 5(a), the power
threshold lies at 30.45 µW and the model is retrained 9 times
for the given phase trajectory with RMSE = 4.84× 10−4.

2) Effect of Coherence Length: Here, we analyze the per-
formance of the proposed distributed beamforming method in
time correlated block fading channel with varying coherence
lengths. Fig. 5(b) shows time averaged power transferred
collectively by N sources for two different block lengths. We
observe that the performance is slightly better for the channel
with coherence time of 1 msec compared to the channel with
the coherence time of 0.5 msec. This is due to the fact that a
channel with a high coherence interval will exhibit increased
temporal correlation in channel phase variations. As a result,
the AR filter’s phase predictions will be more accurate.

3) Number of Message Exchanges over Time: The overhead
analysis of the proposed AR-based beamforming is shown
in Fig. 5(c). Since the coherence time of the channel is on
the order of ≈ 10−3 sec, we contrast the performance of
the proposed beamforming approach based on the number of
messages exchanged over a span of 150 msec with [10]. Here,
we assume that phase detection is done at every 0.05 msec.
As each phase detection requires 4 message exchanges, a total
of 40 and 80 message exchanges are required for the block
lengths of 0.5 msec and 1 msec, respectively. Since the filter is
trained over 5 previous blocks, a total of 200 and 400 message
exchanges are required to collect the data for training. Once
the filter is trained, no further message exchanges are required.

We also compare the overhead performance of the proposed
beamforming method with the EB scheme, which requires
transmission at the start of every block. For fair comparison
we compare our method with their case requiring least number
of exchanges, i.e. 4. From Fig. 5(c) we observe that in
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Fig. 5. (a) Time-averaged performance of 2 source beamforming. (b) Time-averaged power for different coherence length. (c) Number of message exchange
over time (tc represents coherence length of channel).

EB scheme, there is a step rise in the number of message
exchanges at the start of every block with the step size of
4. However, for the beamforming method proposed in this
paper, it can be inferred that message exchanges are large at
the start of the beamforming process, which becomes constant
once the model is trained. Over long runtime, the proposed
AR based beamforming scheme always outperforms the EB
beamforming method in number of exchanges required.

Remark 3: The proposed beamforming framework assumes
constant channel statistics during phase detection, and is
robust to time-correlated fading. However, synchronization du-
ration being ≈ 10−5 sec, ergodicity is practically achievable
owing to the channel coherence time ≈ 1 msec [16].
The algorithm is implemented on an Intel(R) Core(TM) i9-
10900 CPU @ 2.80 GHz clock frequency for various channel
dynamics and an average training time of 3.25 ms is noted.

V. CONCLUDING REMARKS

In this paper, we proposed an RF power measurement-
based phase detection scheme at the receiver, followed by a
simultaneous AR based phase prediction model for N sources.
The phase detection method initially requires one feedback per
source, which is relaxed once the regression model is trained,
thereby making the bulk of the phase beamforming process
feedback-independent. The proposed phase detection and pre-
diction technique can account for static source offsets as well
as channel fading. The proposed scheme was contrasted with
the most competitive distributed beamforming scheme from
the literature over various coherence block lengths, suggesting
different channel time varying order. Furthermore, RF power
measurement errors in practical systems were accounted in
the proposed phase beamforming setup, and it was shown
to perform reasonably well. This result also corroborates the
benefit of the considered AR based adaptive phase predictions,
thereby making the RF beamforming fairly agnostic to the time
varying channels. In our future studies we intend to introduce
dynamic retraining of the AR model to achieve prolonged RF
beamforming under wireless fading.
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