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Abstract—The field-deployed Internet-of-Things (IoT) sensor
nodes are powered by rechargeable batteries. The nodes are
equipped with energy harvesters to harvest energy from the
environment to replenish the batteries and continue the sensing
operations. However, due to the high energy consumption of
the power-hungry sensors, the nodes still suffer from energy
depletion issues. Towards a green IoT system, an energy aware
adaptive sensing algorithm is proposed in this paper. For a multi-
sensing node, a learning-aided smart sensing strategy is developed
to find a set of optimal sensors to be activated in the next
measurement cycle depending on the cross-correlation factors
and the sensing energy consumption. The parameters of inactive
sensors are predicted from cross-correlated parameters of active
sensors using Gaussian process regressor model. Further, the
algorithm is implemented in a solar powered air pollution
monitoring system to analyze the performance of this method.
The proposed method saves 68% energy of the node compared to
the nearest competitive method, while the sensing error is within
the limit.

Index Terms—Energy awareness, energy harvesting, energy
sustainability, green IoT, smart sensing, temporal and cross-
correlation.

I. INTRODUCTION

Internet-of-Things (IoT) is gathering a huge momentum in
every sector like industries, health-care, agriculture, border
surveillance, education, transport, etc. The IoT networks are
consisting of many sensor nodes, edge nodes, and base stations
that are wirelessly connected to each other. The sensor nodes
are deployed in the field to sense the environmental parameters
and transmit the sensed data at the edge node for further
processing. Limited battery capacity of the wireless sensor
nodes limits their continuous sensing operations. Therefore,
the nodes are equipped with energy harvesters such as solar,
Rf, wind, piezoelectric, etc. to harvest energy from ambient.
In the context of massive IoT deployment scenario, the fifth-
generation technology has become a very challenging in
wireless research. Due to its huge applications, the demand
for green IoT communication systems are growing day by
day. It has been observed that the number of IoT products
has surpassed the number of humans. Here many aspects
comes into picture in terms of energy consumption, recharging,
security etc. which are gaining significant interest in research.
Massive IoT devices will consume massive energy in both
sensing and data transmission which has to accommodate with
efficient energy replenishment policy [1].

A. Related Works

The environmental parameters being monitored by a sensor
node possess temporal and cross-correlation, which makes the
system predictive. Significant studies have been observed in
the literature on node-level and network-level adaptive sensing.
In the context of node-level adaptive sensing, the work in
[2] developed an Adaptive sampling algorithm to estimate
the optimal sampling frequencies online using the Nyquist
criteria, where the sampling rate is calculated from maximum
frequency of the sensing signal. Similarly, three data collection
algorithms were proposed in [3] to adapt the sampling interval
with the variation of the environment using the one-way Anova
model, Euclidean Distance Function, and Jaccard Similarity
Function. An age of sample based data collection framework
was proposed in [4], which exploits the similarity between two
temporal samples and the energy efficiency of the node to es-
timate optimum sensing instances for a time window. Another
node-level adaptive sensing algorithm was proposed in [1],
which selects a set of sensors to collect samples in the next
measurement cycle by exploiting the cross-correlation among
the different sensing parameters and the energy consumptions
of the sensors of a multi-sensing node (a node having multiple
sensors to monitor multiple parameters in the environment).
The parameters belong to the inactive sensors are predicted
from the parameters of the active sensor set using Gaussian
Process Regressor (GPR) model. The sampling interval of the
active sensors in [1] was decided based on the Nyquist criteria,
whereas, the work in [5] exploits the temporal correlation of
each sensing parameter to find its sampling interval.

In case of a densely deployed Wireless Sensor Networks,
both the spatial and temporal correlations of the sensing
signals can be used to select a subset of sensor nodes for
collecting samples of a specific sensing parameter. The frame-
work proposed in [6] outlined an optimization function for
selecting an optimal set of sensing nodes to collect samples for
the subsequent measurement cycle, taking into account sensing
quality, dynamic energy resources available at the node, and
process dynamics.

B. Literature Gap and Motivation

The algorithm proposed in [2] and [3] were implemented
in a snow monitoring application and a humidity sensing
node, respectively, where the node consists of a single sensor.



Moreover, the sampling interval of the sensor is not adaptive
to the energy availability of the node. However, the learning-
based adaptive sensing algorithms studied in [1] and [5]
considered multi-sensing nodes and exploit the correlation
among the data to further optimize the energy consumption.
Although the learning-based methods studied in [4], [1], [5],
and [6] are more efficient in the context of sensing energy
consumption, the nodes are considered as battery operated.
Since the energy available in the battery reduces with time,
the optimization function reduces the sensing accuracy by
turning off the power-hungry sensors to increase the battery’s
lifetime. However, the sensor selection scenario is different in
the case of energy harvesting nodes. Moreover, the learning-
based algorithms are not implemented in any real-life system
to evaluate the efficiency of these methods. To this end, an
energy aware smart sensing framework is developed for an
energy harvesting multi-sensing node. The measured parame-
ter values at the multi-sensing node are sent to the edge node
to exploit the cross-correlation and temporal correlation of the
sensing parameters to find the optimal active set of sensors
and the sampling interval of the active sensors, respectively.
The missing time series samples of the parameters belong to
the active set are predicted from the collected samples using
GPR model. The parameters of the sleep set are also predicted
from the parameters of the active set using the GPR model.
The performance of the algorithm is implemented in green air
pollution monitoring multi-sensing node, where the node is
powered by a solar energy harvester.

C. Contributions

The main features and contributions of this work are:
1) An energy aware, learning-aided adaptive sensing strat-

egy to optimize the energy sustainability for energy har-
vesting wireless sensor nodes is presented in this work.
The cross-correlation and temporal correlation among
the parameters monitored in the same environment are
exploited to remove the sparsity in the data.

2) The proposed framework presents an UCB-based opti-
mization function to find the optimal sampling interval
of the sensors and an optimal set of sensors in a
multi-sensing node to activate in the next measurement
period by exploiting the cross-correlation factor, energy
consumed by the active sensors, and energy availability
at the node. The parameters belong to the inactive sensor
set are predicted from the cross-correlated parameters of
the active sensors using GPR models.

3) The proposed sensor selection framework is adaptive to
the energy harvested at the sensor node.

4) The proposed algorithm is implemented in an air pol-
lution monitoring system powered by a solar energy
harvester, where the sensor node consists of six sen-
sors monitoring eight parameters (temperature, humidity,
NO2, Ozone, CO, SO2, PM2.5, and PM10). At the
end of each measurement period, the field deployed
sensor node transmits the collected data in a batch to
the edge node using WiFi. The edge node apply the

Fig. 1: Data acquisition model.

adaptive sensing algorithm to find the optimal system
parameters and transmits the information to the sensor
node. The experimental results validate the efficiency of
the algorithm.

Organization: The energy aware adaptive sensing frame-
work and its implementation are discussed in Section II and
Section III, respectively. Section IV presents the experimental
results and Section V concludes the work.

II. PROPOSED SYSTEM MODEL AND SMART SENSING
FRAMEWORK

The proposed system model and the energy adaptive and
learning-aided sensing framework are discussed in this section.
Section II-A describes the system model. Section II-B and
Section II-C describe the GPR-based signal prediction model
and the UCB-based optimization function, respectively. Sec-
tion II-D presents the proposed energy aware adaptive sensing
framework.

A. System Model

The proposed data acquisition model, shown in Fig. 1,
consists of a green multi-sensing node powered by energy
harvester and an edge node to collect data from the sensor
node wirelessly. The sensor node consists of P sensors to
measure the variation of P different parameters in the system.
The adaptive sensing algorithm is implemented at the edge
node to optimize the processing complexity of the sensor node.
The algorithm is implemented over a batch of data collected
at a measurement cycle to find the optimal sensor set to be
activated at the next measurement cycle.

Let, the sensing parameter set be represented as P =
{Pp; 1 ≤ p ≤ P} and zxp (i) is the ith sample measured
by the pth sensor in the xth measurement cycle. The sam-
pling interval of each sensor can be decided from their
Nyquist sampling rate [3], which can be denoted as tnp.
Let, Nx = {Nx

p ; 1 ≤ p ≤ P} be the vector contains the
total number of samples measured in the xth cycle τx at
the Nyquist sampling rate of the respective parameters. Thus,
Zx
p ∈ RNx

p ×1 comprises the time series samples of the pth

parameter in the xth measurement cycle. However, a strong
temporal correlation is observed when the data are collected
at the Nyquist sampling rate, such that the signals can be
reconstructed with Mx

p ≪ Nx
p samples. Since the multiple

sensors in the node are monitoring the same process dynamics,



a strong cross-correlation is also observed among the different
sensing signals. Therefore, by activating a fewer sensors, the
other sensing parameters can be predicted.

The total number of sensor sets created using P sensors is
N ′ = (2P−2), except the set containing all the parameters and
the null set. Let, the ith active set in the xth measurement cycle
be represented as Ax

i . Thus, Bx
i = P −Ax

i is the ith sleep set
in the xth measurement cycle. Qx = {(Ax

i ,Bx
i ); 1 ≤ i ≤ N ′}

contains the active-sleep pair of sets.
Let, c(a, b) be the cross-correlation coefficient between

parameter a and parameter b and cth be the cross-correlation
threshold. If |c(a, b)| ≥ cth, the parameters a and b are
considered to have a good correlation. The ith sensor set is
correlated if each parameter of Bx

i is correlated with at least
one parameter of Ax

i . The average cross-correlation of Ax
i and

Bx
i , denoted as cross-correlation factor Cx

i is:

Cx
i =

1

Ax
i B

x
i

Bx
i∑

k=1

(

Ax
i∑

m=1

|cx(m, k)|);∀k ∈ Bx
i and m ∈ Ax

i .

(1)
Cx

i = 0 for Cx
i < cth.

If ctxp(s) is the temporal correlation between Zx
p (i) and

Zx
p (i − s), where the temporal samples are collected at the

Nyquist sampling rate tnp. If ctxp(s) ≥ ctp,th, s consecutive
samples can be predicted from the previously collected sample
with prediction error below etth. If ζx = s is the lag value in
the xth cycle, the optimum sampling interval in the proposed
framework is set as txp = ζxtn. Thus, Mx

p = T x

txp
is the

optimum number of samples required to collect for the pth

parameter in the xth cycle.

B. GPR-based Sensing Signal Recovery

As discussed in Section II-A, the temporal signal of each
parameter can be reconstructed using Mx

p ≪ Nx
p samples. The

intermediate samples need to be predicted from the immediate
past samples collected by the sensor to maintain the accuracy
of the signal. Therefore, GPR is used to predict the temporal
samples, as it is more efficient to predict non-stationary noisy
signals compared to the other regressors available in literature.
P GPR models are used to predict the temporal samples of
P parameters, which are named as GPR1 models. The time
series samples of the inactive sensors ∈ Bx

i are also predicted
using GPR from the cross-correlated time series samples of
the active sensors ∈ Ax

i , which are named as GPR2 models.
Let, the GPR1 model consists of P submodels for P

different parameters. If Zx
p (j) is the jth temporal sample, the

(j + 1)th sample is Zx
p (j + 1) = fp(Z

x
p (j)). GPR estimates

the underlying function fp that fits best with the data.
Similarly GPR2 model is consisting of N ′ submodels for

N ′ active sets. Let, the optimal active set selected in the xth

cycle is Ax
i and the ith submodel consists of Bx

i number of
regressors for predicting the cross-correlated parameters of
the sleep set Bx

i . Let, the measurement vectors of Ax
i and

Bx
i in the xth cycle for jth sampling instant are respectively

Zx
Ai

(j) = {Zx
Ai

(j, 1), Zx
Ai

(j, 2), · · · , Zx
Ai

(j, Ax
i )} ∈ R1×Ax

i

and Zx
Bi
(j) = {Zx

Bi
(j, 1), Zx

Bi
(j, 2), · · · , Zx

Bi
(j, Bx

i )} ∈

R1×Bx
i . If Zx

Ai
(∗) is the test vector, the underlying function

fx,k
i,∗ to estimate the kth parameter of Bx

i is:

Zx
Bi
(∗, k) = fk(Zx

Ai
(∗)) = fx,k

i,∗ ∀k ∈ Bi
x(∗), (2)

where fk
i ∼ N(0,Kn×n). Kn×n is the covariance matrix. The

elements of this matrix in this framework are derived from a
squared exponential covariance function [7], [1].

C. UCB-based Active Sensor Set Selection

The Upper Confidence Bound (UCB) algorithm is used to
solve the multi-arm bandit problems to find the optimal arm.
This algorithm is modified in the proposed work to develop
an optimization function to find the optimal active sensor set
by exploiting the cross-correlation factor, energy consumed by
the active sensors, and energy availability at the node.

As discussed in Section II-A, Cx
i defines the cross-

correlation strength between Ax
i and Bx

i . Let, Es ∈ RP×P

be a diagonal matrix, with diagonal elements containing the
sensing energy consumption to collect one sample. Thus,
Esxi = Ax

i EsMx is the total energy consumption of the
sensors ∈ ith active set. where Ax

i is the binary sensing vector
such that Ax

i (k) = 1∀k ∈ Ax
i , otherwise, Ax

i (k) = 0. To
incorporate energy consciousness, the harvested energy avail-
able in the battery is considered as an additional performance
criterion when determining the optimal sensor set. If Ebatt is
the capacity of the battery and Ex

0 is the available energy in
xth measurement cycle. λx ∆

=
Ex

0

Ebatt
is the normalized energy

of node. Therefore, the objective is to minimize Esxi and
maximize Cx

i and λx.
Therefore, the reward obtained for selecting the ith active

set is defined as Rx
i =

λxCx
i

νxEsxi
, where νx = max

i∈Qx

Cx
i τ

x
Ai

Esxi
. Thus,

the reward is bounded to [0, 1]. Rx
i is computed ∀i ∈ Qx for

every measurement cycle to choose an optimal set [5].
According to [8], the rewards for ith sensor set up to

xth cycle R1
i , R

2
i , · · · , Rx

i is a sequence of independent and
identically distributed Gaussian random variables with true
mean µ and variance 1. Hence, the empirical mean µ̂x

i of the
distribution P x

Ri
is estimated as:

µ̂x
i =

1

x

x∑
t=1

Rt
i =

1

x

x∑
t=1

λxCx
i

νxEsxi
. (3)

The UCB-based optimization function to select an optimal
sensor set for the (x+ 1)th measurement cycle is:

Ax+1
i =maximize

i∈Qx

1

x

x∑
t=1

λxCx
i

νxEsxi
+

√
2 ln 1

δ

T x
i

s. t. Cx
i > cth and Esxi < Ex

0 .

(4)

In (4), δ is defined as a confidence bound. T x
i denotes

the number of times ith sensor set is selected to collect
data. The optimization function is adaptive to the harvested
energy availability using the parameter λ. When the battery
is charged by the energy harvester, E0 increases and Cx

i gets
relatively more weight, whereas, the Esxi gets more weight
for decreasing E0.
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Fig. 2: Flow chart of the smart sensing algorithm programmed in the edge node.

D. Proposed Learning-Aided Adaptive Sensing Framework

The system model, depicted in Fig. 1, consists of two main
modules. The first module is the sensor node powered by an
energy harvester to harvest energy from the environment to
replenish the battery. The node collects data from the sensors
over a batch and transmits them to the data collector node/edge
node, which is the second module in the system. To reduce
the processing complexity of the end node, the smart sensing
algorithm is programmed in the edge node; the flow diagram
of the smart sensing framework is presented in Fig. 2.

At the beginning, the sensor node collects n samples for
each parameter and transmits them to the edge node to train
the GPR models, as discussed in Section II-B. The node also
transmits the energy available in the battery which is recharged
by the energy harvester. The edge node finds the Nyquist
sampling interval tn for each parameter which provides a
faithful reconstruction of the signal [3]. Then it finds the
optimum sampling interval of each parameter by exploiting
the temporal correlation and the temporal prediction error; as
discussed in Section II-A. Then the UCB-based optimization
function, developed in Section II-C, solves the trade-off among
the cross-correlation factor, energy consumed by the active
sensors, and energy availability at the node, and selects an
optimal active sensor set using (4). To reduce the complexity
of the algorithm, the length of measurement τ is considered
as fixed. The information contains the active set Ax

i , sampling
interval vector tx, and the length of the xth measurement
cycle τx are transmitted to the sensor node. After receiving
the information, the field deployed sensor node activates the
sensors belong to the active set, while the other sensors remain
off. At the end of the cycle, the node again transmits the
collected samples and the value of Ex

0 to the edge node. The
edge node first predicts the missing temporal samples of Ax

i

using GPR1 model and then, it predicts the time series samples
of Bx

i from the cross-correlated parameters of Ax
i using GPR2

model. After reconstructing the sensing signals, the algorithm
draws the samples from reconstructed signals for all the
parameters using Nyquist sampling rate. Then it estimates the
optimal sampling interval and the optimal active set for the
next cycle, which again transmitted back to the sensor node.

The algorithm retrains the prediction models using original
data if the temporal correlation of the reconstructed signals
for each parameter falls below a threshold for any parameter.

III. IMPLEMENTATION OF THE PROPOSED ALGORITHM

This section describes the experimental setup developed for
implementation of the algorithm, discussed in Section II.

A. Experimental Setup

The developed air pollution monitoring sensor node is
shown in Fig. 3(a) and (b). The designed system is capable
of measuring PM2.5, PM10, CO, NO2, SO2, and Ozone,
along with temperature and humidity. The on-board low power
PM sensor is a LED light scattering-based optical sensor
which consumes 64 mJ energy to collect one sample [9].
Alphasense electrochemical gas sensors are used to monitor
gas pollutants based on the significant results reported in [10].
The energy consumption of the sensor set {DHT11, NO2,
Ozone, CO, SO2, PM} to collect one sample are respectively
{0.012, 0.1, 0.02, 0.05, 0.18, 0.646} J, where DHT11 measure
the temperature and humidity, and PM sensor measure the
PM2.5 and PM10.

The system is green and self sustainable using a 2W solar
panel. A Li-ion battery of 3.7 V, 10000 mAh is used for night
hours, rainy, and foggy days. The on-board solar energy har-
vester is used for recharging the battery. The node uses a very
low power ARM cortex STM32L476 microcontroller which
wakes up periodically only at the time of sampling and data
transmission and remains in deep sleep mode otherwise. The
module hosts SIMCOM 7020C narrow band-IoT (NB-IoT)
module and ESP8266 WiFi module to add communication
complaisance and utilizes the local high computing system
of IIT Delhi called ‘Baadal’ to accumulate all the sensed
parameters and run the algorithm.

Fig. 3(c) shows the prototype sensor module deployed at
IIT Delhi campus. The water resistant IP67 rated system
is designed to be mounted easily to poles or lamp posts.
The fan must draw outside air to take a new air pollutant
measurement. As shown in the figure, there are two vents
installed in the prototype case for drawing fresh air for every
new measurement and clearing the inside air after each cycle.



(a) (b) (c)
Fig. 3: The designed air pollution monitoring board, (a) the front side of the board with off-the-shelf gas sensors and DHT sensor, (b) the
back side of the board with on-board PM sensor circuitry, and (c) Deployed IP67 rated prototype with solar panel in IIT Delhi campus.

B. Energy Harvesting Strategy of the System

To enable the solar energy harvesting capability in the
system, a 9 cm×12 cm solar panel is connected to the node,
mounted on the top of the pole as shown in Fig. 3(c). The
power harvested from the solar panel has been measured
hourly. During the day, the solar cell provides the required
energy and the battery stores access energy. The hourly solar
energy has been evaluated from the voltage-current profile of
the panel to determine the captured energy from the solar cell.
The harvested energy from the solar energy harvester has been
computed using a 10% efficiency factor.

IV. RESULTS AND DISCUSSIONS

The energy aware and learning-aided adaptive sensing
framework, discussed in Section II-D, has been implemented
in an air pollution monitoring system, as presented in Section
III. The solar energy harvesting profile is shown in Fig. 5. The
amount of harvested power increases gradually from morning
7AM, peaks at 12 noon, and then decreases.

With six sensors in the node, the parameter set is P =
{temperature, humidity, PM10, PM2.5, NO2, Ozone, CO,
SO2}. Applying Nyquist adaptive sampling algorithm in the
initially collected data, the Nyquist sampling interval vector is
tn = {35, 9, 15, 15, 15, 16, 14, 15} Sec. The prediction error
is computed in terms of normalized Mean Squared Error
(nMSE). If Zp and Ẑp contains the actual and reconstructed
temporal samples of the pth parameter, respectively, the nMSE
is expressed as, nMSEp =

||Zp−Ẑp||
||Zp|| . Fig. 4 shows the

variation of the temporal correlation and the temporal pre-
diction error of PM2.5 (using GPR2 model) with ζ. It can be
observed that the prediction error increases and the temporal
correlation decrease with the increasing ζ, which provides
a correlation threshold ctth for the corresponding temporal
prediction error threshold etth. Considering etth = 0.00001,
the temporal correlation threshold for all the parameters are
ctth = {0.98, 0.98, 0.97, 0.97, 0.96, 0.98, 0.96, 0.97} to find
the optimum values of ζ at every measurement cycle [5]. Thus,
the optimum interval vector for the xth cycle is tx = ζxtn.
According to [9], the measurement cycle is set as τ = 1800
Sec. The cross-correlation threshold in (4) is set as cth = 0.7
to get the overall reconstruction error eth below 10−3.

0 5 10 15 20 25 30

PM
2.5

0.96

0.97

0.98

0.99

1

1.01

T
em

p
o
ra

l 
co

rr
el

a
ti

o
n

0

1

2

3

4

5

6

P
re

d
ic

ti
o
n

 e
rr

o
r

10
-5

Temporal correlation of PM
2.5

Prediction error of PM
2.5

Fig. 4: Prediction error and temporal correlation versus ζ.
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Fig. 5: Solar power harvested in a day.

The algorithm has been implemented for three cases: (1)
only temporal correlation is exploited for each parameter to
find the optimum sampling interval and the node activates all
the sensors to collect data, (2) only cross-correlation among
the parameters is exploited to find the active sensor set and the
sensors collect data at Nyquist sampling interval [1], and (3)
both cross-correlation and temporal correlation are exploited
to find the optimum system parameters. The node is deployed
with a fully charged battery of 3.7 V and 10000 mAh, which
stores 130000 J energy. The APMD is designed such that it can
measure the voltage and the current drawn from the battery. At
the end of every cycle, the node transmits the voltage-current
profile of the battery to the edge node, which is a local system
to compute the remaining energy of the battery.

Fig. 6 shows the performance of the algorithm for three
cases. A performance comparison is listed in Table I. Unlike
the simulation studies presented in [5], the implementation of
these methods incorporates all the vulnerabilities of the system
and the real-time delays, such as processing time, transmission
time, etc. Fig. 6 and Fig. 7 validate the efficiency of the
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Fig. 6: Performance comparison of the algorithm implemented in the air pollution monitoring system.
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TABLE I: Performance comparison among different cases

Energy consumption of node Sensing error
case 1 271 J 5.5× 10−6

case 2 [1] 295 J 1.4× 10−4

case 3 95 J 2.4× 10−4

algorithm in real systems. From Fig. 6(a), case 1 performs
better than case 2, whereas, case 3 outperforms the other
methods. The node is fully sustainable for case 3, as the
energy utilized by the node is replenished by the solar in
the daytime. Whereas, the energy available in the battery is
decreasing for case 1 and case 2. Since the Nyquist sampling
interval is very low, the sensors need to collect many samples
in case 2. Therefore, the sensing energy consumption is very
high, which can be observed in Fig. 6(c). Fig. 6(b) shows
that the average sensing errors or reconstruction errors of all
the parameters for three cases are below the threshold. The
prediction error in case 1 is below etth, which was set to find
the optimum values of ζ. The actual and reconstructed signals
of temperature, Ozone, and PM2.5 are shown in Fig. 7. The
proposed method saves 68% energy of the battery compared
to the nearest competitive method case 2, which was proposed
in [1], while the sensing error is within the limit.

V. CONCLUDING REMARKS

An energy aware and learning-aided smart sensing algo-
rithm has been presented in this article. The cross and temporal
correlation among the parameters have been exploited to
remove the redundancy in the data and optimize the energy
sustainability of the node. A green air pollution monitor-
ing system has been developed to implement the proposed
learning-based algorithm, where the sensor node is powered
by solar energy harvester. The algorithm has been programmed
in a local system that considered as the edge node in this ex-
periment. The experimental results validate that the proposed

temporal and cross-correlation based algorithm can make the
system fully sustainable, whereas, the other cases cannot.
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