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Abstract—This paper proposes a novel design for identification
of input power sources in an electronic system fed through a
direct current (DC)-bus powered by multiple input sources. A
high-sampling power source identification module is designed to
record highly precise DC voltage and current measurements.
These measurements are passed through a moving average filter
to remove high frequency outliers. A filtered support vector
machines approach is proposed for classification of the input
source, based on load-end rectified DC signatures. Using a vari-
able sampling rate of up to 1000 samples per second, preliminary
laboratory tests demonstrate that the proposed design works with
> 76% gain in accuracy and > 66% gain in sensitivity over the
state-of-the-art support vector machine classifier in 0.5 second
of training time and is highly robust to measurement noise.

Index Terms—Harmonic source identification, linear discrim-
inant analysis, moving average filter, support vector machine

I. INTRODUCTION

Most of the power plants generate alternating current (AC)
power, while a few generate direct current (DC) power. The
DC power is converted into AC and stepped-up for lossless
transmission through the power lines. However, the disruption-
prone supply of AC power makes it less desirable in providing
reliable supply to high-value services and utilities. The unidi-
rectional flow of DC power provides a more reliable alternative
for powering electronics and storing power in batteries [1].
Therefore, most electronics utilities, such as enhanced motion
vehicles’ charging stations, cellular base-stations, and other
automated applications, use DC power [2].

In such arrangements, the rectifier is powered by multiple
sources to generate reliable DC power for the utility. Power
quality from various sources injects different harmonics in the
output power, which degrade the performance and lifetime of
the load [3]. Furthermore, these harmonics might propagate
through various parts of the system, thereby causing damage
[4]. Source identification at the DC distribution points is of
great interest because of its generalized capability of dealing
with any number of sources and the non-intrusive nature of
the signal analysis module [5]. Furthermore, such information
could help utilities in understanding their billing. However,
input source identification from the DC output points is
a challenging problem due to ‘source masking’, where the
intermediate rectifier module makes it difficult to identify the
input source at the DC (load) end [6]. As the source signatures
are flattened and influenced by the rectifier-specific signature,
the complexity of input source identification increases further.

A. Literature Review and Motivation

Input power characterization in literature can be broadly
put in two sets. The first set [7], [8], [9] undertakes the
identification of harmonic source distortion for AC devices
using learning-based approaches. The work in [10] proposed
islanding detection in power networks using support vector
machines (SVMs). A non-intrusive graph signal processing
was employed in [11] for load energy disaggregation. How-
ever, the non-discrete changes in load power were still difficult
to identify. The authors in [12] addressed this issue by real-
izing the whole classification process with a power spectrum-
based wavelet processing. Though these methods provide
desirable results in classifying AC signatures, none of these
work with DC load signatures, which have become prevalent
with rising electronic integration with electrical networks [13].
Furthermore, capturing extreme frequency components of the
DC wave requires high sampling devices, which have not been
reported with such classification capabilities in literature.

The second set [14], [15] uses signal processing and cluster-
ing approaches for identifying harmonic sources in DC pulsed
load systems. A short time Fourier transform has been used in
[16] for fault identification in DC microgrids, while [17] used
long-short term memory networks for fault detection in solar
arrays. Though these methods show appreciable performance
in harmonic recognition and fault identification in DC systems,
they do not consider the problem of input source identification
from the DC bus. Such considerations become prevalent
when the node is equipped with higher input redundancy to
ensure energy sustainability. To deal with such situations, the
work in [18] proposed several conditions for harmonic source
identification in power networks. However, these conditions
are hard to meet for a DC bus system. Thus, none of the
existing methods in literature can be used for the classification
of input power sources based on the DC load signature.

To summarize, none of the approaches in the literature
considered input source identification and the instants of
switchover, from the load-end DC measurements. With the
rise in the number of electronic loads requiring reliable DC
supply, and the use of green energy resources, as in cellular
base stations, such scenarios have assumed importance. To this
end, this paper proposes a filtered SVM (FSVM) approach for
identifying the input power sources based on their remnant
signatures after processing by the DC power module. Such
processing flattens input source signatures and adds recti-
fier specific nonlinear harmonics, making the identification
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Fig. 1: Powering and monitoring of high-value DC utility.

of sources increasingly difficult. A high-sampling hardware
module is designed that records timestamped voltage and
current values, and employs FSVM processing to achieve
source identification along with the instances of switchovers.

B. Contributions

The key contributions of this work are as follows: 1) A
non-invasive high-sampling input source identification device
(ISID) is designed. 2) An optimum moving average (MA) filter
is employed to filter out high frequency outliers. 3) An FSVM
classifier realized by the association of MA-based linear dis-
criminant analysis (LDA)-aided SVM is trained on the labeled
data and various source signatures are identified. 4) Optimum
hyper-parameters are used for training the FSVM classifier
followed by the real-time detection of source switchovers.

Preliminary lab tests demonstrate a sufficiently accurate
signature recording and switchover detection using the ISID.
The data recording module provides sampling rate of up
to 1000 samples per second (sps). The processing module
operates with an adaptable training length and filter-lag. In our
implementation, 2 lag samples, an optimum training length
of 500 samples, and a training time of 0.5 second resulted
in 76.47% enhanced accuracy of classification and 66.67%
gain in sensitivity. This device can also be used to identify
load switchover in AC and DC grids, fault and islanding
detection, harmonic identification in pulsed load systems, and
classification of disturbance source in smart grid networks.

In the following, Section II gives the system model, Section
IIT discusses the design of the ISID, followed by results and
conclusion in Sections IV and V, respectively.

II. SYSTEM MODEL FOR ISID DESIGN

A power-up infrastructure for a high-value utility, such as
a cellular base station, is described in Fig. 1. Multiple input
sources represented as ‘Source ¢’, ¢ = 1,2, 3 (Fig. 1, red box)
are fed to the DC power management module, which manages
the source switchover and conversion to DC power. The output
of the DC power management block is fed to the high value
utility through the DC load bus. The DC power management
block is tasked with uninterruptible supply to the base station,
ensuring reliable network services [19].

The default supply to the DC load bus is maintained through
‘Source 1°, which in turn also charges an energy storage
module (Source 2) to a pre-defined voltage Vj. In the event of
failure, the input is immediately switched to a battery source
through the power management block. The battery source
remains functional until a fraction 7 discharge is attained,

resulting in a cutoff voltage V. = nV{. Once this happens,
the source is switched to ‘Source 3’, which powers the base
station and the battery, through the power management block.
The proposed design, shown in the green box of Fig. 1, is
used at the DC load bus for high-frequency sampling of DC
source signatures, real-time source labeling, and switchover
identification. The design of the ISID is described next.

III. DESIGN OF ISID

This section explains the construction and working of the
ISID including design of the sensing module, the optimal MA
filter, and the data analysis module.

A. Design of Sensing Module

The DC input to the cellular base station is monitored
using ISID. The sensing module in Fig. 1 consists of voltage
and current sensors, threaded parallely to an analog-to-digital
converter (ADC). The voltage values are stepped down using
a power metal resistive potential divider, and the current is
captured using a high-accuracy programmable current sensor.
These readings are quantized by the ADC, which provisions
programming at a variable sampling rate, based on the source
characteristics under observation. These timestamped values
are passed to the filtering module. The data analysis module
does subsequent processing, and undertakes source classifica-
tion and switchover identification in real-time.

B. Optimum Filter Design

The timestamped values from the sensing module are passed
through the MA filter, which is used to smoothen out noise
or remove unwanted fluctuations from the signal. The filter
operates by averaging the values of the signal over a sliding
window of a fixed length, which moves over the data stream
in a time division multiplexed manner. Let the current and
voltage values be stored in vectors x and y, respectively, where
2, y; (components of x and y, respectively), zas 4 ; represent
the input signal values and the desired output of the moving
average filter at the i-th instant and N is the length of the
moving average window. Further, let us define the transient
impedance as z; = Z—L The moving average filter works by
taking the weighted average of the current and previous N —1
input values at each time step, given by
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where ¢ > N — 1 is the filter order and a; are the filter
coefficients. Let x; denote the spike impedance given by

ki = lims_,e Z—*=°, where ¢ is the sampling rate, and e
is a small number. The optimization problem is given as
D
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where the optimization in (2) is solved for D consecutive
instants starting from the current ¢-th instant, N and R represent
the set of natural and set of real numbers, respectively. The
objective function represents the sum of squared differences
between the energy of the output of the moving average
filter and the recorded signal. The goal is to minimize this
difference, which is a measure of the quality of the filter.
Constraint C; ensures that the filter order is a positive integer,
C,, justifies that the filter coefficients are real numbers, and
Cj3 ensures that the filter coefficients sum to 1. This is because
the moving average filter is a linear filter, and the sum of the
coefficients determines the gain of the filter. By constraining
the sum of the coefficients to 1, we ensure that the filter does
not cause amplification or attenuation effects.

Lemma 1. The optimal filter of order N and coefficients a;,
and ay, =

s.t.i€1,2,---, N, are given by N = [JiDz
. Zi:l(’ii’)
Zi:l(zii?[’?:_’)é)m”““, respectively, where [-] is the ceiling
i=1 K
function, z; is the transient impedance and k; is the spike

impedance at the i-th instant.

Proof. See Appendix A. O

From Lemma 1, the optimal filter order N is noted to
depend on the signal length, the variance of the input signal,
and the sampling frequency through z;. The filter coefficients
ay, are computed using a sliding window of length N over the
input and desired output signals, and are normalized by the
sum of squares of the input signal.

C. Design of Data Analysis Module

The output of the MA filter is passed to the data analysis
module. An LDA-aided SVM is used in real-time processing
of this data. This method involves using LDA to transform the
original feature space into a lower-dimensional space, followed
by SVM to classify the transformed data. Let us assume
that we have a dataset containing n samples, where each
sample is represented by a vector of p features, denoted by
ZS\:[) W= [2r1, 202, - - - zrp]T, where T represents the transpose
operation, and its corresponding class label L,, such that
r€1,---, M. The goal is to learn a function that maps the
feature space to the class labels. LDA involves transforming
the original feature space into a lower-dimensional space that
maximizes the separation between the classes. Specifically,
LDA seeks to find a linear combination of the features that best
separates the classes. Let p,. and ¥, be the mean vector and
covariance matrix for class r, respectively. The LDA projection
vector w,. is given by

Wr = z (/"’ref - IJ’T) ) €)

where . is the mean of the reference class which can be
chosen randomly from the existing M classes, 3 is the pooled
in-class covariance matrix given by

Ziwzl(nr -1,

E:
Zi\/[ﬂnr_M

) “4)

Algorithm 1 FSVM Algorithm

Read signal data from source

Apply optimum MA filter to remove noise

Normalize the data to ensure consistency

Split the processed data into training and test set

Scale the features to achieve zero mean and unit variance
Train the model using LDA+SVM on the training set

Use the trained model to predict outcomes on the test set
Construct the confusion matrix to evaluate performance
Compute accuracy, precision, and Recall for each category
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where n,. is the number of observations in the r-th class. Thus,
the transformed feature space is given by

2y =wlz(),, (5)

where zp, is the r-th transformed feature and w, isa p x 1
vector, where p is the number of features in the original feature
space. Given the transformed data zr , and their corresponding
class labels L,, SVM seeks to find the hyperplane, which is
a 1-dimensional line in this case, is expressed as

wzpy +b=0, (6)

where w is the weight and b is the bias term. The weight w
in (6) operates on the transformed feature zp,. The optimal
hyperplane is determined as [20]

M
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)

where v is a regularization parameter that balances the trade-
off between maximizing the margin and minimizing the clas-
sification error, and &, are slack variables that allow for
some mis-classification. The SVM solution involves finding
the weight w and bias term b that minimize the above objective
function subject to the constraints. Once the SVM has been
trained on the transformed data, it is used to classify new
samples by transforming them using the same projection w
and evaluating the SVM decision function [21]

gr = sgn(wzp, +b), ®)

where sgn is the signum function and L, is the predicted class
label for the r-th class. The SVM solution involves finding the
weight w and bias term b that maximize the margin between
the classes, subject to the constraints. To solve the SVM
optimization problem, we use the Lagrange dual formulation,
which involves finding the Lagrange multipliers a,. that satisfy
the Karush-Kuhn-Tucker conditions. The optimal weight and
bias term are given by [22]

M 1 M M

w:Z a'rerF,r; b :M Z <L'r1 - Z Oy LTQ ZF,rg zF,r1> 5 (9)
r=1 ry=1 ro=1

where N is the number of support vectors. The detailed proce-

dure for source classification and identification of switchover

is outlined in Algorithm 1. The proof of convergence for the

FSVM algorithm is done in the following paragraph.
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Fig. 2: Laboratory test setup for ISID based source identification.

Lemma 2. The FSVM algorithm converges in finite time.
Proof. See Appendix B. O

IV. RESULTS AND DISCUSSION

This section presents performance results on the proposed
ISID design. The proposed hardware is specified in terms
of high-sampling DC signature recording, while the analysis
module is contrasted with the state-of-the-art classification
frameworks, such as, decision tree and SVM, in terms of the
key performance indices (KPIs).

Construction of dataset: The data is captured using the
ISID hardware on a 54 V, 1 A DC load fed by the grid,
a 2000 VA/1200 W battery, and a generator. The ISID is
operated for 30 minutes, during which natural switchovers
are recorded and identified. Performance comparison and
preliminary test results on the setup in Fig. 2 are presented
in subsequent subsections. The dataset and code are uploaded
at https://github.com/AakashKumarMandal/ISID.

A. Key Performance Indices

The following are the KPIs used in establishing the perfor-
mance of the proposed data analysis algorithm.

1) Accuracy: The accuracy ( is defined as the fraction of
correct predictions ({¢) out of the total number of predictions
({r). Mathematically, we have ( = C—i

2) Precision: The precision ¢ is defined as the ability of the
classification model in identifying the observations correctly
within the class. Let there be 77 and 7' true positives and
false positives, respectively. The precision ¢ = #

3) Sensitivity: The sensitivity is defined as the ability of
the model to repeatedly predict a particular class correctly.
Let 77 and 7~ represent the number of true positive and
false negative classifications made by the classification model.
Then, mathematically we have 0 = r

T4
Performance analysis using these KPIs is presented next.

B. Optimal Hyper-Parameter Selection

Fig. 3 describes the optimal choice of hyper-parameters for
the FSVM algorithm (c.f. Algorithm 1). From Fig. 3(a) we
observe that with the increase in training length, the precision
attained by the FSVM algorithm increases to a maximum, then
either saturates or decreases, based on the sampling frequency.
This is a result of over-training of the FSVM algorithm at
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Fig. 3: (a) Precision versus training length at v =
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Fig. 4: (a) Accuracy versus training length at sampling frequency of
1000 sps; (b) sensitivity versus sampling frequency at training length
of 500 samples; (c) accuracy versus measurement noise at training
length of 500 samples, and v = 1.5.

higher training lengths. Also, from Fig. 3(a), we note that an
optimum training length of 500 samples at a sampling rate of
700 sps leads to > 0.99 precision.

In Fig. 3(b), we note that the classification accuracy in-
creases with the increase in kernel bandwidth of the radial
basis function corresponding to all training lengths. As ex-
pected, it is notable that at the optimal training length of 500
samples, 100% accuracy is attained at y ~ 1.5. A slight drop
in classification accuracy is notable around this kernel band-
width. Therefore, from Fig. 3(b) we observe that the proposed
classification algorithm performs best at a kernel bandwidth
~ =~ 1.5, resulting in a classification accuracy of =~ 99.2%.
During our simulation, we found the best performance for the
FSVM algorithm at an optimum lag length of 2 samples with
the filter coefficients given by [0.7, 0.3].

C. Performance Comparison of ISID

Fig. 4 demonstrates the performance of the proposed algo-
rithm with the state-of-the-art classification algorithms with
the KPIs listed in subsection IV-A. From Fig. 4(a), we
note that for all the classification approaches, the accuracy
increases with the increase in training length. However, as a
consequence of optimal data filtering, the proposed algorithm
reaches =~ 100% accuracy in 500 training samples, which
correspond to /= 0.5 second of recorded data at 1000 sps. Thus,
we conclude that the proposed module achieves optimum
performance in a low fraction of time. From Fig. 4(a), we find
a 76.47% gain in the accuracy of classification. As a result,
the points of switchovers were identified with a high degree
of accuracy, as described in the next subsection.

From Fig. 4(b), we note that the proposed algorithm works
with close to unit sensitivity, which implies that the proposed
design is able to repeatedly classify the points in the correct
classes with high accuracy. This accuracy increases with the
sampling frequency, resulting from the model training being
done on more data points. Further, it is notable that all the
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other state-of-the-art algorithms operate below 0.6 sensitivity.
This is mainly a consequence of the flattened DC signatures at
the output end of the DC power management module. Since,
the proposed algorithm uses MA filtering, the relevant features
are appropriately identified, leading to an improved perfor-
mance in source classification. On a comparative analysis, we
find 66.67% gain in sensitivity over the state-of-the-art.

Fig. 4 demonstrates a comparative study on the robustness
of the proposed design in source classification with the state-
of-the-art classification approaches. As can be expected, the
performance of decision tree and SVM classifiers degrades
massively, as the noise in the measurement data increases. It is
noteworthy that this degradation is by the virtue of absence of
any finite impulse response filter. Since, the proposed FSVM
approach employs an MA filter, we note that the proposed
classifier is fairly robust to the increase in noise power, and
operates with accuracy close to 100%. Therefore, from Fig. 4,
we conclude that the proposed ISID gives a very accurate and
robust handle at classifying the input sources of power based
on the load-end DC signature.

Remark 1. It is noteworthy that, the proposed FSVM classifier
benefits from the use of MA filter, which processes the DC data
to gather relevant source-specific signatures. This is a major
contributor in the high achieved source switchover accuracy
and precision by the proposed ISID design.

D. Construction and Lab Testing of ISID

Fig. 5 depicts the design of the ISID used in input source
identification using the load-end DC signature. The proposed
design consists of the DC power-up module (EC-6635),
voltage processing and interfacing module, current sensor
module (WCS6800), and data processing module. The DC

power-up module taps the input voltage level to power the
current sensing and data processing modules. The non-invasive
current sensor and voltage processing module are interfaced
through the high-sampling ADC (MCP3208) with the data
processing module. The data processing module is tasked with
the implementation of an MA filter, and the FSVM approach
is used for accurate detection of the sources in run-time and
for identification of source switch-overs.

Fig. 6 demonstrates the results depicting the performance of
the proposed design under field test. Real switching scenarios
between grid, battery, and generator are created and the pro-
posed design is deployed to detect the input power sources and
identify the switchovers. It is observed from the voltage and
current signatures depicted in Figs. 6(a) and (b), respectively,
that the source switchovers are accurately identified (depicted
by the red arrow at the junction of consecutive double-headed
arrows) in both the voltage and current measurements, as
outlined by the accuracy results in Fig. 4(a), in real-time.
Therefore, we conclude that the proposed ISID demonstrates
promising performance results in our preliminary lab tests with
a high classification accuracy.

Remark 2. The input source parameters, such as voltage,
frequency, or duration of operation do not impact the accu-
racy of the algorithm. This is a consequence of the FSVM
algorithm being agnostic to the voltage level and the wide
operation frequency range of the sensors. Furthermore, the
algorithm was tested with various source operation duration
and switchover instants. Since the framework does not need
any prior information of the source signatures, the timing of
the input sources was noted to play no role in the process.

V. CONCLUDING REMARKS

This paper proposed a novel design of an ISID for high
accuracy detection of input power sources based on the
load-end DC signature. An FSVM classification methodol-
ogy was proposed for highly precise identification of source
switchovers. Optimal hyper-parameters were chosen based
on the signature profile of the DC load voltage and current
measurements. The proposed ISID design was noted to achieve
a significantly improved accuracy, sensitivity, and precision
in input power source classification over the state-of-the art
harmonic source identifiers. Moreover, the classification was
achieved in fairly less time compared to the existing state-
of-the-art classification approaches. Further, it was noted that
the proposed module renders robust performance under vary-
ing order of measurement noise power, which is especially
relevant considering the noisy industrial data measurement
environment. Preliminary lab tests corroborated the accuracy
and robustness of the proposed ISID. In future, we plan to
make this a part of industrial Internet-of-Things network by
adding a smart communication module in the proposed design.
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APPENDIX
A. Proof of Lemma 1

The optimization problem (P;) is solved by the method of
Lagrange multipliers. The Lagrangian .£(-) is given as
D
Z (N,ak, A1, A\2) :Z |zarairj—1 — Zz‘+j71|2

Jj=1

N
FAMN=-1)+ X (Zak—1>7
k=1

where Ay and )\, are Lagrange multipliers that enforce the
constraints on the filter order and coefficients. We take the
partial derivatives of the Lagrangian with respect to the filter
coefficients and Lagrange multipliers, and set them to zero.
This results in (%C =0, gTLl =0, and 83—)@ = 0. Solving the
first two equalities, we obtain

(AD)

D
A= ZZ(ZMA,i+j—1 — Zi4j—1)Kitj—N,
i=1
N (A2)
and /\2 = QZak — 2.
k=1

Substituting these expressions in the last equality we get

N N
N—-1-Y axr=0:Y» a—1=0. (A3)
k=1 k=1
Solving (A3), we get N = [21327%{)2—‘ and aj, = Zle(zi —
i=1, ("

ZMA,i—1)Ri—k+1 (Zil(’ii)2)

B. Proof of Lemma 2

We divide the convergence analysis for the FSVM algorithm
into proving three consecutive convergences, for the MA filter,
LDA, and SVM. From the filter structure in (1), we note that
the filter is bounded-input-bounded-output stable. Therefore,
since the energy of the input signal is bounded, the filter
output converges with uniqueness. Next, the convergence of
LDA depends upon the structure of the optimization problems
in (2). Let us denote the function inside the summation as
P(zmaiyzi) = lzmaq — il Since, Z(-) is a combina-
tion of two smooth functions, namely the Euclidean norm
and the square function, we conclude that it is smooth.
Further, using the reverse triangle inequality, we establish
0 < P(2mai,zi) < |zmail® + |2i]%. As the optimization
function is both smooth, bounded, and convex, we establish the
convergence of LDA [23]. Similarly, based on (7), we conclude
that the SVM algorithm converges to a unique optimum.
Therefore, we conclude that the FSVM is convergent.
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