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Abstract—The accuracy of localization using global positioning
system (GPS) data plays a key role in reliable positioning and
control of unmanned aerial vehicles (UAVs). This paper proposes
a novel statistically-aided earning-based localization approach,
called filtered neural network (FNN) for high-precision localization
of UAVs. The proposed FNN framework utilizes an entropy
adaptive Kalman filter to fine-tune the inputs to a recurrent
neural network, which works in a loop with the filter to generate
subsequent robust position estimates. The proposed framework
outperforms the state-of-the-art techniques with an nRMSE of
≈ 10−6, ≈ 97% reduced estimation delay, ≈ 73% reduced
modeling time, ≤ 100 lag samples for FNN training, and only
4-6 overall model retraining instances per flight trajectory. The
results are verified over a wide range of mean GPS noise power.

Index Terms—Entropy adaptive Kalman filter, filtered neural
network (FNN), long short-term memory, UAV localization

I. INTRODUCTION

Fast growing interest of precise navigation, reliable commu-
nication, and surveillance using aerial methods have increased
the demand for location-intensive services [1], [2]. Global
positioning system (GPS) has gained widespread importance
for localization as it provides absolute positions to the receiving
units unlike the source localization systems. However, the ac-
curacy of GPS is affected by measurement techniques, wireless
channel characteristics, and position estimation approaches.
These factors assume significance when the GPS receiver is
highly mobile, as in unmanned aerial vehicles (UAVs). Fur-
thermore, the received GPS signals can be severely impaired
by the involved plasma channel, affecting three-dimensional
localization. Inaccurate localization affects aerial system per-
formance in many ways, e.g., in object monitoring integrity,
actuation accuracy, multi-UAV coordination, etc. [3]. Therefore,
developing robust navigation filter to fine-tune the UAV location
estimates from the noisy GPS data is of high interest [4].

A. Literature Review and Motivation

The work thus far in literature can be put into three sets. The
first set [5], [6] uses statistical tools, such as adaptive Kalman
filter (AKF), extended Kalman filter, correntropy Kalman fil-
ter (CKF) etc., in achieving UAV localization. Though these
methods provide some order of reliability in generating UAV
localization, none of them provide highly accurate positioning
solutions. Further, the time complexity of these tools is not
suitable in most practical deployment scenarios [7]. The work in
[8] alleviates this issue by utilizing improved Kalman variants,

and tag-based visual localization aids in generating rapid and
robust position estimates. However, the signal from a GPS
transmitter is heavily impaired by the involved plasma channel,
imparting a non-Gaussian noise characteristic to the received
data [9], [10]. Therefore, traditional filtering and regression
approaches fail to operate in a time-constricted framework [11].

The second set [12], [13] uses learning-based approaches in
generating UAV position estimates. The work in [14] utilizes
genetic algorithms for UAV localization and clustering in
a densely deployed scenario. Though these approaches are
relatively faster in generating subsequent position estimates,
they do not consider statistical properties of the noise. This
makes the UAV localization less accurate, which is particularly
detrimental in UAV swarm setup. The work in [15] tried
to overcome such aspects using a prior knowledge of UAV
trajectory. However, such approaches fail when the trajectory
of the UAV is dynamically adaptive. Furthermore, because of no
statistical aid in the learning module, none of these approaches
adapt well with the plasma channel induced aberrations [16].

The final set [17], [18] provide UAV positioning strategies
in GPS-denied environments. The work in [19] utilizes multi-
UAV coordination for precise UAV localization in extreme
conditions, such as under energy constraint. Though these
strategies show acceptable performance in scenarios requiring
less precision, they are not sufficient for UAV-swarm networks.
The research in [20] proposes a maximum likelihood Kalman
filter-aided learning for UAV localization in a multi-UAV
scenario. However, the inability of the maximum likelihood
framework to handle non-Gaussian noise profiles renders this
strategy unsuitable in presence of heavy-tailed noise [21].

As noted above, there is a need for robust, fast, and low-
cost UAV localization framework that is capable of generating
accurate position estimates using the noisy estimates from
the basic receiver module. Such a navigational filter becomes
especially important as the UAV mobility increases, with the
measurements impaired by non-Gaussian noise profiles of the
plasma channel. To this end, this paper proposes a statistically-
aided learning-based framework, called filtered neural network
(FNN), for fast and reliable estimation of UAV position from
the GPS data that is impaired by non-Gaussian channel noise.

B. Contributions and Significance

The major contributions are as follows: 1) An entropy
adaptive Kalman filter (EAKF) is proposed to generate UAV
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Fig. 1: System model for localization of UAV.

position estimates using data transmission through channels
with non-Gaussian noise profiles. 2) A novel FNN algorithm
is introduced that uses EAKF and long short-term memory
(LSTM) network interaction. 3) Computational complexity of
the FNN algorithm is noted to be lesser than that of the state-
of-the art navigational filters. 4) Finally, an energy efficient
retraining strategy is suggested for the FNN algorithm.

Simulation results under noisy GPS measurements demon-
strate a considerably improved localization with the proposed
FNN framework compared to the existing pure statistical and
pure learning-based frameworks, with a normalized root mean
square error (nRMSE) of ≈ 10−6, in 60 training epochs with a
retraining frequency of 4, 97.83% faster estimation, and 72.81%
reduced modeling time. The proposed framework can also be
utilized in positioning and control of unmanned ground vehicles
(UGVs), military surveillance, marine applications, etc.

Section II outlines the system model; Section III presents
the proposed FNN framework; Section IV discusses the perfor-
mance results, followed by the conclusion in Section V.

II. SYSTEM MODEL

Fig. 1 demonstrates the system model envisaged in formu-
lating the proposed FNN-based UAV localization algorithm.
A multi-UAV scenario, pertaining to UAV swarm architecture
is presented. Signal from the i-th satellite to the j-th UAV
is marked as Si,j , while the error signal from the real-time
kinematic (RTK) receiver to the j-th UAV is denoted as
Bj . The RTK generates error signals Bj ∀j by comparing
the real-time estimates of its position using the signals from
multiple satellites and its precise location calculated through
various high-precision measurement techniques. Information of
the error signal Bj provides a knowledge of the process noise.

Since, these satellites are at least at a height hs = 160 km,
these signals traverse through a plasma sheath of thickness
tp ≈ hs − 80 km, contributing to a non-Gaussian noise to
the measurements generated using this RTK-GNSS assembly.
Therefore, to provide reliable real-time localization of the UAV,
a FNN-based UAV localization algorithm is implemented at
the UAV in a data-aided approach. The proposed algorithm is

implemented on a quad-core 64-bit BCM2837 ARM Cortex-
A53 SoC processor running at a clock frequency of 1.2 GHz.

III. FNN-BASED UAV LOCALIZATION

This section explains the FNN algorithm utilized in achieving
high-precision localization. Let the measurement estimated
from the GPS readings at time k be x(k) = x̃(k) + ϵ(k),
where x̃(k) is the true reading and ϵ(k) is the error in the true
measurement with variance σ2

ϵ . On this model, we implement
a novel entropy adaptive Kalman filter followed by LSTM
network in precise localization of UAV, as discussed next.

A. EAKF Formulation

Consider a linear system described by the equations

x(k) =F(k − 1)x(k − 1) + q(k − 1)

y(k) =H(k)x(k) + r(k)
(1)

where x(k) ∈ Rn is the n-dimensional state vector, y(k) ∈ Rm

is the m-dimensional measurement vector at k-th instant. F and
H denote the state transition matrix and observation matrix
at the reference instances. Also, q(k − 1) and r(k) represent
zero-mean and mutually uncorrelated process and measurement
noise statistics, respectively, with the covariance defined as

E[q(k − 1)qT(k − 1)]=Q(k − 1); E[r(k)rT(k)]=R(k). (2)

From (1), the prior estimate x̂(k|k − 1) and prior covariance
P(k|k − 1) are written as

x̂(k|k − 1) = F(k − 1)x̂(k − 1|k − 1)

P(k|k−1)=F(k−1)P(k−1|k−1)FT(k−1)+Q(k−1).
(3)

Consequently, the conventional Kalman gain is written as

K(k) =P(k|k − 1)HT (k)

× [H(k)P(k|k − 1)HT (k) +R(k)]−1
(4)

Based on the Kalman gain, the posterior state estimate x̂(k|k)
and posterior covariance from the prior state estimate and prior
covariance, respectively, is given as

x̂(k|k) =x̂(k|k − 1) +K(k)(y(k)−H(k)x̂(k|k − 1))

P(k|k) =(I−K(k)H(k))P(k|k − 1)(I−K(k)H(k))T

+K(k)R(k)KT (k).

(5)

For the linear model described above, a-priori and measurement
estimates are collectively written as[

x̂(k|k − 1)

y(k)

]
=

[
I

H(k)

]
x(k) + ν(k) (6)

where ν(k) = [−(x(k)−x̂(k|k−1)) r(k)]T . Further, we define

E[ν(k)νT (k)] =

[
Bp(k|k −1)BT

p (k|k −1) 0

0 Br(k)B
T
r (k)

]
=B(k)BT (k)

(7)

where B(k) is obtained by the Cholesky factorization of
E[ν(k)νT (k)]. Multiplying (6) by B−1(k), we get Z(k) =
A(k)x(k) + e(k), where Z(k) = B−1(k)[x̂(k|k − 1) y(k)]T ,



Algorithm 1: EAKF initial estimation algorithm
Result: Coarse location estimate: x̂c → {xc, yc, zc}
1. Initialize EAKF at k = 1, kernel bandwidth σi,
ε → 0, initial estimate x̂(0|0), and initial covariance
matrix P(0|0)
2. Generate x̂(k|k − 1) and P(k|k − 1) using (5) and
Bp(k|k − 1) using (7)
3. Set t = 1 and x̂(k|k)0 = x̂(k|k − 1), where x̂(k|k)t
is the estimated state at fixed-point iteration t
4. Estimate x̂(k|k)t and update K(k) using Lemma 1
5. If ∥x̂(k|k)t−x̂(k|k)t−1∥

∥x̂(k|k)t−1∥ ≤ ε; set x̂(k|k) → x̂(k|k)t and
update P(k|k) with K(k) from step 4 in (5)
6. Else, repeat step 4

A(k) = B−1(k)[I H(k)]T , and e(k) = B−1(k)ν(k). Further,
since E[e(k)eT (k)] = I, e(k) is a white noise process. To
account for the heavy tailed noise profile from the intermediate
plasma channel, we use the adaptive entropy function defined
as L (x(k)) =

∑N,M
i,j=1

ωi

MGσi
(ej(k)), where Gσi

(ej(k)) =

exp
(
−∥ej(k)∥2

2

2σ2
i

)
, with ej(k) = zj(k)−aj(k)x(k), zj(k) being

the j-th element of Z(k), aj(k) the j-th row of A(k), and
ωi denoting the normalized weight, s.t.

∑N,M
i,j=1

ωi

M = 1. Thus,
based on the adaptive entropy function, the optimal estimate of
x(k) can be obtained by maximizing (P1).

(P1) : x̂(k) = argmax
x(k)

L (x(k)) (8)

Lemma 1. The fixed-point iterative solution of (P1) is given
by x̂(k) = x̂(k|k−1)+K(k) (y(k)−H(k)x̂(k|k − 1)) where
K(k) = P(k|k− 1)HT(k)

(
H(k)P(k|k−1)HT(k)+R(k)

)−1
,

P(k|k− 1) = Bp(k|k− 1)G−1
x (k)BT

p (k|k− 1), and R(k|k−
1) = Br(k)G

−1
y (k)BT

r (k).

Proof. See Appendix A.

B. EAKF-LSTM Position Estimation Framework

Let the previous position estimates for j time horizons, j ∈
{1, · · · , k − 1}, be stored in hk−1 = [hT

k−2, x̂
T (k − 1)]T ∈

R(k−1)×n, where x̂(k − 1) is generated at time step k − 1
using Lemma 1. hk−1 is pre-processed to generate a vector of
dimension R(k−1)n×1. The LSTM network takes the flattened
hk−1 along with the current measurement y(k) generated using
(1), to attain an input vector of dimension Rkn×1. Thus, the
hidden state is updated based on the previous state hk−1 and
the input y(k), using the forget gate fk, the input gate ik, the
cell state ck, and the output gate ok. Mathematically, we have

fk =δ (Wf [hk−1,y(k)]+ bf ) ; ik=δ (Wi[hk−1,y(k)]+bi)

c
′
k =tanh (Wc[hk−1,y(k)] + bc) ; ck = fkck−1 + ikc

′
k

ok =δ (Wo[hk−1,y(k)] + bo) ; hk = ok tanh(ck)

(9)

where hk ∈ Rd×1 is the hidden state vector, W are the weight
matrices of order R(kn+d)×d, and b ∈ Rd×1 are the bias
vectors. δ(x) = 1

1+e−x is the sigmoid function, and tanh(·)
is the hyperbolic tangent function. Finally, the L-step ahead

Algorithm 2: FNN-based UAV localization algorithm
Result: True location: x → {xT , yT , zT }
1. Initialize EAKF using Algorithm 1
2. Train LSTM network using the coarse estimates x̂c

3. For each new input, invoke Algorithm 1 to obtain the
state estimates
4. Use the LSTM network to make predictions based on
the state estimates produced Algorithm 1
5. Repeat steps 3 and 4 to update predictions over time

updated state estimate is given by x̂k = Wxhk + bx, where
Wx is the transformation matrix and bx is the corresponding
offset. The network parameters are optimized based on the
mean squared error (MSE) loss function, evaluated over M
training instances, given by: LLSTM = 1

R

∑R
i=1 ∥x̃k+i−x̂k+i∥22.

The detailed localization procedure using the FNN, i.e., EAKF-
LSTM network, is outlined in Algorithms 1 and 2. Computa-
tional complexity of the proposed framework is presented next.

C. Analysis of Computational Complexity

In this subsection, we analyze the computational complexity
of the proposed FNN algorithm in terms of floating point
operations (FLOPS). The aggregate number of FLOPS involved
in the FNN algorithm include the ones in (3), Lemma 1 and
the LSTM framework. The total number of FLOPS in (3) and
Lemma 1 are: 4n3 +n2 −n+O(m3) and (2κ+8)n3 +(4κ+
6)n2m+(2κ−1)n2+(4κ+2)nm2+(3κ−1)nm+(4κ−1)n+
2κm3+2κm+κO(n3)+2κO(m3) respectively, where κ is the
average number of iterations required for convergence. Next, for
a training length of lt, and establishing lt ≪ D2, the number
of FLOPs in the RNN part of the framework is O(ltD

2). Thus,
the total involved FLOPs in the FNN framework is

CFNN=4n3+(2κ+8)n3+(4κ+6)n2m+2κn2+O(ltD
2)

+ (4κ+ 2)nm2 + (3κ− 1)nm+ 2(2κ− 1)n

+ 2κm3 + 2κm+ κO(n3) + (2κ+ 1)O(m3).

(10)

It is notable that, because of multi-threading property in most
moderately powered processors, the dimensions of the input and
output vectors to and from the Kalman filter reduces to unity.
Thus, the complexity in (10) reduces to CFNN = 25κ+ 18 +
O(ltD

2) ≈ O(ltD
2). This is mostly governed by the optimal

training length requirement by RNN. In the proposed FNN,
the training length lt reduces because of multiple recycling
of the EAKF-LSTM network. This significantly reduces the
computational complexity compared to the orthodox learning
algorithms. Performance results are presented next.

IV. RESULTS AND DISCUSSIONS

This section presents the relative performance of the pro-
posed FNN framework and the state-of-the-art statistical (CKF)
[4] and learning-based (LB) [13] frameworks. The data of a
dual frequency GPS receiver located at IISc Bangalore is taken
from the Scripps orbit and permanent array center to validate



TABLE I: FNN parameters

Activation
function

Hidden
layers

Learning
rate

Batch
size

Training
length

Training
epochs

Optimum lag
samples, k

ReLU 32 10−3 500 15000 65 100

(a) (b)
Fig. 2: Comparison of estimation error with (a) training epochs, σ2

ϵ =
0.01 and (b) average GPS noise power, 185-th training epochs.

the proposed algorithm. Table I lists the used parameter values.

A. Localization Error Performance

Fig. 2(a) presents the error performance of the proposed FNN
algorithm and compares it with the CKF and LB algorithms. It
can be noted that the proposed algorithm achieves an nRMSE
of the order 10−6 in about 60 training epochs. From the square
and diamond-marked curves in Fig. 2(a), we conclude that none
of the navigation filters in literature can achieve a precision
of similar order. Moreover, the LB filter performs better as
it has a statistical aid from the involved AKF. However, the
non-Gaussian noise impairments in the data makes this filter
inefficient in handling localization in such setups.

Denoting i-th training epoch as tei with corresponding error
ei, the average estimation error is ⟨e⟩ =

∑
i teiei∑
i tei

. Numerically,
the average errors in CKF, LB, and FNN frameworks are
respectively 1.12× 10−2, 2.05× 10−4, and 5.05× 10−7. Thus,
the proposed framework achieves 99.75% more accuracy than
the state-of-the-art. From Fig. 2(b), we note that the proposed
framework is fairly robust, with an nRMSE of ≈ 10−6 at
all noisy GPS measurements, while the performance of the
competitive frameworks massively deteriorate.

B. Complexity Analysis

Fig. 3(a) depicts the modeling time of the competitive
localization algorithms. We observe that there exists an optimal

(a) (b)
Fig. 3: Comparison of (a) modeling time versus error bound at σ2

ϵ =
0.1 and (b) estimation delay versus error variance σ2

ϵ at ε = 10−4.

error bound ε for all the learning-based algorithms. For a
stricter error-bound, the learning module over-trains, leading to
over-fitting, while a more relaxed error-bound leads to under-
training, implying under-fitting. Such a phenomenon is not
observed in the CKF statistical filter. As a consequence, we note
that the LB localization framework achieves optimal modeling
time of 320 s for ε = 10−4. The proposed FNN framework
outperforms LB with a modeling time of 87 s, which is 72.81%
less than LB, while achieving an error bound of 10−6.

From Fig. 3(b), we note that the delay in extracting sub-
sequent position estimates is least in the proposed FNN al-
gorithm. Notably, the estimation delay increases with the GPS
measurement noise power. Similar to the estimation delay in the
previous subsection, the average estimation delay with CKF,
LB, and FNN algorithms are respectively 46.3 s, 45.94 s,
and 0.995 s. Thus, a 97.83% reduction in delay is achieved.
We implemented the proposed algorithm in an E3-1285 CPU
@4.10 GHz, which showd a modeling time of 40 ms. Further,
an estimation delay of ≈ 0.3 ms was noted on this processor.

Remark 1. Learning-based navigation filters outperform the
statistical filters by providing ahead-of-time prediction of sub-
sequent UAV position coordinates.

C. Retraining Strategy for the FNN Model

Fig. 4 analyses different retraining strategies for the proposed
algorithm for practical deployment in energy-constrained se-
tups. From Fig. 4(a) we observe that under ‘Regular’ retraining,
which allows retraining of the proposed model only when the ε
bound is not met, the normalized number of FLOPs (cf. Section
III-C) involved in the retraining process are fairly high. This is
because of the requirement to repeat the whole EAKF-LSTM
network in this FNN algorithm. However, when a pre-emptive
retraining policy is utilized, the number of FLOPs involved
in the process is reduced by a factor of ≈ 3.12, as mostly
only the neural network retraining is required. Further, under
these strategies, fewer retraining data points are required as the
estimates generated by the FNN algorithm are already with the
ε bound, as defined in Algorithm 1. Further, from the simulation
results in Fig. 4(b) we concluded that retraining the FNN every
3.5 hours gives the best result in terms of energy saving, which
is an important factor in most practical UAVs. This majorly
stems from exhausting more energy in retraining more often
against waiting till the estimates cross the ε bound.

(a) (b)
Fig. 4: (a) Normalized FLOPs vs. retraining instances; (b) energy
overhead vs. average retraining interval at σ2

ϵ = 0.1, and ε = 10−4.



V. CONCLUSIONS

The proposed statistically-aided learning-based FNN frame-
work aimed at estimating precise position of UAVs from the
noisy GPS measurements in real-time. From the localization es-
timation studies under varying GPS noise power and precision
requirement, it was concluded that the EAKF-LSTM network
(FNN) offers a faster, more robust, and more precise localiza-
tion compared to the most competitive techniques in literature.
The statistical filtering of non-Gaussian noise led to a decreased
modeling and estimation delay with a lesser estimation error
resulting from multiple recycling of this network. Furthermore,
it was demonstrated that, pre-emptive retraining proves fruitful
in energy constrained scenarios with reduced FLOPs and energy
overhead. As an immediate extension, we plan to utilize the
findings for UAV swarm mobility optimization.

APPENDIX

A. Proof of Lemma 1

Differentiating (8) with respect to x(k) we get

∂L (x(k))

∂x(k)
=

N∑
i=1

M∑
j=1

ωi

M
Gσi

(ej(k))a
T
j (k) (zj(k)

−aj(k)x(k)) = 0

(A1)

On solving (A1), we get x(k) =
[∑N

i=1

∑M
j=1 ωiGσi(ej(k))

aTj (k)aj(k)
]−1

[∑N
i=1

∑M
j=1 ωiGσi(ej(k))a

T
j (k)zj(k)

]
. On

manipulation, we get

x(k) =
(
AT (k)G(k)AT (k)

)−1 (
AT (k)G(k)Z(k)

)
(A2)

where G(k) = diag (Gx(k),Gy(k)), Gx(k) = diag
(∑N

i=1 ωi

Gσi
(e1(k)), · · · ,

∑N
i=1 ωiGσi

(en(k))
)

, and Gy(k) = diag (∑N
i=1 ωiGσi

(en+1(k)), · · · ,
∑N

i=1 ωiGσi
(en+m(k))

)
. The in-

verse term in (A2) can be simplified as(
AT (k)G(k)AT (k)

)−1

= [(B−1
p (k|k − 1))TGx(k)B

−1
p (k|k − 1)

+HT (k)(B−1
r (k))TGy(k)B

−1
r (k)H(k)]−1.

(A3)

Using matrix inversion lemma in (A3), we get(
AT (k)G(k)AT (k)

)−1
= S−1(k)− S−1(k)HT (k)

×
(
U−1(k) +H(k)S−1(k)HT (k)

)−1
H(k)S−1(k)

(A4)

where S(k) = (B−1
p (k|k − 1))TGx(k)B

−1
p (k|k − 1), and

U(k) = (B−1
r (k))TGy(k)B

−1
r (k). Further, the next product

term of (A2) is simplified as

AT (k)G(k)Z(k)= S(k)x̂(k|k−1)+HT (k)U(k)y(k). (A5)

Therefore, using (A4) and (A5) in (A2) we get
x̂(k) = x̂(k|k − 1) + KG(k) (y(k)−H(k)x̂(k|k − 1)),
where KG(k) = P(k|k − 1)HT (k)

(
H(k)P(k|k − 1)HT (k)

+R(k))
−1, P(k|k − 1) = Bp(k|k − 1)G−1

x (k)BT
p (k|k − 1),

and R(k|k − 1) = Br(k)G
−1
y (k)BT

r (k).
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