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Abstract—Rapid incorporation of renewable energy sources
and power electronic components in the conventional power
network has resulted in increased sub-synchronous oscillations
(SSOs) in the power network. As a consequence, accurate and
exhaustive monitoring of SSOs is pertinent for reliable system
operation. This has necessitated the requirement of a revised
notion of power system stability and control. In this regard, this
paper presents a benchmark analysis in disturbance study by
appropriately identifying the most qualified buses that should be
co-analyzed to capture the disturbances present in the power
network. Our analysis shows that the proposed approach is
computationally much faster and offers a significantly reduced
number of buses required for disturbance identification over the
state-of-the-art, without compromising on the system disturbance
identification ability. The theoretical results are validated using
the PMU data generated through RSCAD simulation, with 100%
identification of critical oscillation frequencies.

Index Terms—Integer optimization, phasor measurement unit,
real-time structured computer-aided design, sub-synchronous
oscillation.

I. INTRODUCTION

With increasing renewable integration in the conventional
power network and high voltage direct current transmission
technology, the utilization of power electronics-interfaced
components has increased manifolds [1]. This has resulted
in an increased sub-synchronous and super-synchronous inter-
harmonics injected into the power signals, causing sub-
synchronous oscillations (SSOs). This can be attributed to
the interaction between the inter-harmonics and torsional vi-
bration frequencies of the generator shaft system [2]. These
disturbance frequencies propagate to various parts of the
system, causing system destabilization and degradation in
power quality [3]. Therefore, real-time identification of such
system oscillations is pertinent to the stability and control of
modern power networks. Phasor measurement units (PMUs)
serve this purpose with highly sampled and time-stamped
values of important power system attributes.

A. Literature Review and Motivation

The research to date in the identification of SSOs can
be broadly divided into two sets. The first set [4], [5] uses
modal transformation techniques for the detection of SSO in
the modern power networks. The work in [6] employed fast
Fourier transform, [7] utilized wavelet theory, and [8] used
Prony algorithm for generating detailed information about the
oscillation modes. However, the accuracy of these methods

depend on the data size and its spatial variability. It has been
established in literature that, the signature from one PMU is
not enough to capture the oscillation dynamics of the com-
plete power network [9]. Alternatively, using multiple PMU
data could be burdensome from data analysis and execution
time standpoint. Therefore, the identification of the optimum
number of PMUs, i.e., the PMUs monitoring the most qualified
nodes is important for fast, accurate, and exhaustive detection
of power system oscillations.

The second type of analysis [10], [11] involves the use of
learning-based approaches in the identification of the power
system oscillations. The study in [12] used wavelet-based
feature extraction from the recorded real-time dataset followed
by identification of the class of the disturbance using machine
learning. An S-transform-based feature extraction strategy was
proposed in [13], followed by an analysis using a combination
of extracted features in [14]. The work in [15] used deep
learning techniques to perform disturbance classification using
an image converted form of the PMU dataset. In context
to the SSO identification, the common learning strategies
that have been utilized involve deep neural network, support
vector machine, random forest, decision tree, artificial neural
network, K-nearest neighbour, and naive Bayes [16].

Although machine learning has evolved as an effective tool
in identification of such real-time events, these strategies often
suffer from high computational complexity [17], over-fitting
and local convergence issues [18], and the requirement of an
prior data model [19]. Much of these issues arise with the
requirement of a huge dataset in any learning-based methodol-
ogy. Though this helps to reduce modeling error which results
in an improved accuracy of classification/identification and
faster convergence, it simultaneously leads to the aforemen-
tioned trade-offs. Therefore, identification of the most qualified
nodes which can help in capturing the significant frequency
components of the oscillations in the power network is crucial
to an accurate and exhaustive detection of SSO events.

To this end, this paper proposes a novel optimization frame-
work for the identification of most qualified buses that can help
in capturing the critical SSO frequency components and their
mode shapes, i.e., the spatial distribution of the oscillation
across different components (e.g., buses, generators) of the
power network. A PMU data-based optimization is utilized for
the experimental validation of the obtained theoretical results.
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Fig. 1: System model for collaborative oscillation monitoring.

B. Contributions and Significance

The key contributions of this research are: 1) A theoretical
system-based optimization problem is formulated for the iden-
tification of the important power system buses, that can help
in capturing the critical frequency components of the SSO. 2)
The solution to the optimization framework is explained for a
standard IEEE 5-bus system. 3) A data-based characterization
of most critical system parameter in the identification of
SSO is done. 4) Finally, these parameters are utilized in
the theoretical optimization, which is solved for IEEE 6, 9,
14, 30, and 57-bus networks, and the results are validated
with the PMU data-based optimization problem to capture the
disturbance signature for the complete power network.

Theoretical results corroborated by the results generated
using real-time structured computer-aided deisgn (RSCAD)
verify the appropriateness of the proposed optimization for-
mulation and the results that are generated as a byproduct.
This study helps in establishing a benchmark in defining
the most qualified (important) buses, i.e., characterizing the
minimum number of system nodes that must be co-analyzed to
extract an accurate and exhaustive information about the SSOs.
For example, in a 57-bus system, the number of disturbance
identification location in the proposed approach reduces from
18 to 8, with a ≈ 95% reduction in the execution time.

II. SYSTEM MODEL

Let the power network as depicted in Fig. 1 has N nodes
which are collected in the set N , such that ∥N ∥c = N ,
where ∥ · ∥c denotes the cardinality operation. High renewable
penetration and increased incorporation of power electronic
components in the conventional power network injects oscil-
lations of the form u(t) = a0+

∑N
n=1 ane

−σnt sin(ωnt+ δn),
where an, σ, ωn ≥ 0, and δn denote the amplitude, damping
coefficient, frequency, and initial phase offset of the nth
oscillatory component, respectively. The network is envisioned
to supply power to various load types, requiring a quality
power factor. For the sake of grid health monitoring, the PMUs
are placed at strategic positions in the grid, that record data for
various important power system features. This data is utilized
for the identification of SSOs in the power network.

III. THEORETICAL OPTIMIZATION FOR DETECTION OF
POWER SYSTEM OSCILLATION

Let the selection of ith bus be represented using a binary
decision variable xi ∈ {0, 1}, i ∈ N , such that xi = 1 if

the ith bus is chosen and 0 otherwise. Then, the selection of
significant power system nodes/buses can be achieved through
the following optimization problem:

P1 : max
xi

∑
i

xiri

s.t. C11 :
∑
i

xiϕ
(m)
i ≥ 1, ∀m

C12 :
∑
i

xiθ
(f)
i ≥ 1, ∀f

C13 : ϕ
(m)
i , θ

(f)
i , xi ∈ {0, 1}, ∀i,m, f

(1)

where ri =
∑Mi

j=1 wijλij , Mi represents the total number of
eigenvalues associated with bus i, and λij denotes the jth
eigenvalue associated with bus i. The weight wij represents
the importance assigned to the jth eigenvalue of bus i.
Furthermore, ϕ(m)

i and θ(f)i ∈ {0, 1} are binary indicators rep-
resenting the presence of mth Eigen mode and f th frequency
component in the state matrix of bus i.

Constraint C11 ensures that every important mode of os-
cillation in the power network is associated to at least one
of the chosen buses. Constraint C12 ensures that the f th
frequency band of oscillation is an Eigen frequency of at least
one selected bus. Finally, constraint C13 imposes a binary
limit on all the relevant variables.

A. Definition of ϕ(m)
i and θ(f)i

The mathematical description of every dynamic system can
be achieved using a state vector x ∈ RV×1, input vector u ∈
RV×1, and an output vector y ∈ RW×1. In the case when the
time derivatives of state variable ẋ ∈ RV×1 and the output
are not explicit functions of time t, the dynamic system is
represented as ẋ = f(x,u) and y = g(x,u), where f(·) ∈
RV×V and g(·) ∈ RW×V are functionals relating the system
state and input, to the change in state and output, respectively.

Introducing small perturbations in state vector and input
vector and linearizing, we get

∆ẋ =FS∆x+ FI∆u

∆y =GS∆x+GI∆u
(2)

where FS ∈ RV×V , FI ∈ RV×V , GS ∈ RW×V , and GI ∈
RW×V are the system matrix, input matrix, output matrix, and
feed-forward matrices, respectively. In order to determine the
Eigen frequencies, we solve the characteristic equation:

∥FS − λI∥ = 0 (3)

where I ∈ RV×V is an identity matrix. Let the Eigen values
of the system be denoted by λ1, · · · , λV . Please note, if (3) is
solved for the ith bus, the jth obtained Eigen value follows the
nomenclature λij . Next, we define an indicator function I(Z)
such that the indicator evaluates to unity when the hypothesis
Z is true. Hereafter, we define two hypotheses for the modeling
of ϕ(m)

i and θ(f)i , namely Hypotheses 1 and 2, respectively.

Hypothesis 1 : Z
(m)
ij

(def)
=⇒ λm ∈ (λij −∆λ, λij +∆λ)

Hypothesis 2 : Z
(f)
ij

(def)
=⇒ f ∈ (fij −∆f, fij +∆f)

(4)
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where fij =
ℑ(λij)

2π , ∆λ represents the mode variation, i.e., the
proximity to a given mode shape as experienced by a given
power system node, and 2(∆f) is the frequency bandwidth
of oscillation observed as a virtue of the ijth Eigen mode.
Therefore, based on the above-defined hypotheses, we have

ϕ
(m)
i =I

(
Z
(m)
i1 ∨ Z

(m)
i2 ∨ · · · ∨ Z

(m)
iq

)
θ
(f)
i =I

(
Z
(f)
i1 ∨ Z

(f)
i2 ∨ · · · ∨ Z

(f)
iq

) (5)

where ∨ represents the logical OR operation. Thus, ϕ(m)
i and

θ
(f)
i evaluate to unity if at least one of the involved hypotheses,

i.e., Z(m)
ij and Z

(f)
ij , ∀j = 1, · · · , q, respectively, holds true.

The modeling of wij is done next.

B. Modeling of Weights wij

As per definition wij represents the importance assigned to
the jth Eigen value of the ith bus. We bifurcate this weight into
two disjoint product terms αi and βij , such that wij = αiβij .
In this notation, αi models the ability of a node to contribute
to the aggregate small-signal oscillations in the grid and βij
captures the contribution of the jth Eigen mode of ith node
in that aggregate oscillation. Therefore, βij can be written as

βij =
∥λij∥∑Mi

j=1 ∥λij∥
(6)

where ∥ · ∥ represents the norm operation. Let the ith
node be associated with q features, such that φi,∆t =

{φ(1)
i,∆t, φ

(2)
i,∆t, · · · , φ

(q)
i,∆t}, where φi,∆t is the feature set ob-

served in the duration ∆t. These features are related using the
network equations as follows:

φ
(1)
1,∆t =ψ

(1)
i

(
φ

(1)
i,∆t, φ

(2)
i,∆t, · · · , φ

(q)
i,∆t

)
φ

(2)
i,∆t =ψ

(2)
i

(
φ

(1)
i,∆t, φ

(2)
i,∆t, · · · , φ

(q)
i,∆t

)
...

φ
(q)
i,∆t =ψ

(q)
i

(
φ

(1)
i,∆t, φ

(2)
i,∆t, · · · , φ

(q)
i,∆t

)
(7)

where the ψ(·) functions could be modeled through Kirch-
hoff’s voltage/current laws, swing equations, power flow equa-
tions, etc. Applying Taylor’s expansion in (7) for the modeling
of small signal oscillations in the features of φi,∆t denoted as
∆φi,∆t, we have

∆φ
(1)
i,∆t =

[
∆ψ

(1)
i

(
φi,ss

)]T
∆φi,∆t

∆φ
(2)
i,∆t =

[
∆ψ

(2)
i

(
φi,ss

)]T
∆φi,∆t

...

∆φ
(q)
i,∆t =

[
∆ψ

(q)
i

(
φi,ss

)]T
∆φi,∆t

(8)

where the subscript ss denotes the set of steady state values,
∆(·) represents the change in the parameter, and T represents
the transpose operation. For dimensional compatibility, we
must note that ∆φj,∆t, ∆ψ

(j)
i

(
φi,ss

)
∈ Rq×1, and their

product results in a scalar ∆φ
(j)
i,∆t, ∀j = 1, 2, · · · , q. (8) can

be concisely represented as

∆ψi (φi,ss)∆φi,∆t = ∆φi,∆t (9)

where

∆ψi (φi,ss) =

[[
∆ψ

(1)
i

(
φi,ss

)]T
, · · · ,

[
∆ψ

(q)
i

(
φi,ss

)]T ]T

∈ Rq×q

It is notable that (9) represents an Eigen relation, with an
unit magnitude of the corresponding Eigen vector. Therefore,
to define αi, we find the contribution of the Eigen vector
corresponding to magnitude 1 in the total q Eigen values
obtained for the ith node, that is

αi =
1∑q

j=1 ∥λ
′
ij∥

(10)

where λ
′

ij , ∀j = 1, 2, · · · , q are the Eigen values of
∆ψi

(
φi,ss

)
. The data-based optimization for selection of

most qualified nodes is done next.

IV. DATA-BASED OPTIMIZATION FOR DETECTION OF
POWER SYSTEM OSCILLATION

This section proposes a PMU data-dependent optimization
for an overall oscillation monitoring in an N -node power
network. This serves as a validation for the solution obtained
for (P1). Let µi ∈ {0, 1} and πi ∈ {0, 1}, such that i ∈ N ,
be binary decision variables indicating whether a PMU is
installed at the ith grid node and whether or not its chosen
for collaboration. If a PMU is installed at node i, µi = 1 and
0 otherwise. Similarly, the PMU at node i is selected (πi = 1)
or not selected (πi = 0) to be a part of the collaboration for
oscillation detection. Since optimal placement of PMUs is not
in the scope of this research, we assume that there are K
optimally placed PMUs, with their locations stored in L, such
that ∥L∥c = K. Then, we want to be able to detect the power
system oscillations with least number of PMU involvement.
Therefore, the optimal PMU selection problem to capture the
oscillations in the power network is formulated as follows:

P21 : min
πi

∑
i

µiπi

s.t. C21 : χt ≥ χ0

C22 :
∑
i

µiπia
(m)
i ≥ 1, ∀m

C23 :
∑
i

µiπib
(f)
i > 1, ∀f

C24 :
∑
i

µiπi ≤ K

C25 : a
(m)
i , b

(f)
i , πi ∈ {0, 1}, ∀i,m, f

(11)

where a(m)
i is a binary variable that indicates whether the PMU

at node i captures measurements from oscillatory mode m.
a
(m)
i = 1 iff PMU i captures measurements from oscillatory

mode m, and 0 otherwise. b(f)i is a binary variable that indi-
cates whether PMU i captures measurements within frequency
range f . b(f)i = 1 if the PMU installed at node i captures
measurements within frequency range f , and 0 otherwise.
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The χt-squared test criterion is defined as χt =√∑q
j=1

(
δφ

(j)
∆t · σ

−1

φ
(j)
∆t

)2

, where δφ
(j)
∆t =

∑
i µiπiδφ

(j)
i,∆t∑

i µiπi
,

δφ
(j)
i,∆t = φ

(j)
i,∆t−φ

(j)
i,ss, with φ(j)

i,∆t representing the amplitude
of the jth feature measured by the ith PMU in the time window
∆t, subscript ss denotes the steady-state values of the respec-
tive parameters, and q denotes the total features monitored
by the PMUs, viz., voltage magnitude, voltage phase, current
magnitude, current phase, etc. Let these features for the ith
node are stored in the feature set φi,∆t and σ

φ
(j)
∆t

represents
the standard deviation in the aggregated measurement of the
jth feature.

Constraint C21 ensures that the total represented deviation
by the chosen PMUs captures a significant proportion of the
potential oscillations in the power system. Constraint C22
ensures that the selected PMUs collectively capture mea-
surements from each oscillatory mode in the power system.
Constraint C23 focuses on capturing measurements from
specific frequency ranges to enable accurate spectral analysis
of oscillations. Constraint C24 ensures that the total number of
PMUs in collaboration are less than or equal to the maximum
PMUs installed in the grid. Finally, the constraint C25 limits
a
(m)
i , b(f)i , and πi to be a binary constants.

A. Mathematical Modeling of a(m)
i

Let the ith PMU dataset be denoted as Ri ∈ Rp×q ,
where p are the number of time instances over which the
data is recorded. Next, we normalize each column of this
dataset by subtracting the respective mean and dividing by
the standard deviation of that particular data feature. Let R̃i

be the normalized dataset obtained from Ri. We construct a
collective data matrix D of all PMU datasets of size Rp×(q×K),
such that D = [R̃1, · · · , R̃K ]. We apply the singular value
decomposition to obtain

D = UΣVT (12)

where U ∈ Rp×p is a upper triangular matrix, Σ ∈ Rp×(q×K),
and V ∈ R(q×K)×(q×K) is a lower triangular matrix, and
T represents the transpose operation. Next we define a
correlation threshold value τ , such that 0 ≤ τ ≤ 1, to
identify significant correlations between mode shapes and
PMU datasets. For the mth oscillatory mode shape defined
by the mth column vector um ∈ C (U) of the matrix U, we
calculate the correlation coefficient ρ (um, Rij) between uk

and each column of the normalized PMU dataset Ri, where
i ∈ 1, · · · ,K, j ∈ 1, · · · , ∥C (Ri) ∥c is the column space of
matrix Ri, and C(U) represents the column space of matrix
U. Mathematically

ρ
(m)
ij = ρ (um, Rij) =

ũT
mR̃ij

σum
σR̃ij

(13)

where ũm = um − µumfp×1, with fp×1 being a vector
of ones of size p × 1. Therefore, for the indicator function
I(·) defined before, we define the hypothesis, Hypothesis 3:

Z
(def)
=⇒ ρ

(m)
ij ≥ τ . Therefore, a(m)

i is defined as

a
(m)
i = I

({
ρ
(m)
i1 ≥ τ

}
∨
{
ρ
(m)
i2 ≥ τ

}
∨ · · · ∨

{
ρ
(m)
iq ≥ τ

})
Thus a(m)

i evaluates to 1 if the mth oscillatory mode posses
high correlation with at least one feature of the measurements
by the ith PMU, i.e., with one column of the data matrix Ri.

B. Mathematical Modeling of b(f)i

From the system deduced in (2) and the corresponding
Eigen values achieved using (3), the frequency components
of significance are given by the imaginary part of the Eigen
values, i.e., the rth Eigen frequency component is written as
fr = ℑ(λr)

2π , such that f = [f1, · · · , fV ]T ∈ RV×1 is a vector
of Eigen frequencies, where ℑ(·) denotes the imaginary part
operation. Next, we take the row-wise Fourier transform of
the ith PMU dataset. Mathematically

Rij = F
(
R̃ij

)
, where R̃ij ∈ C

(
R̃ij

)
(14)

where F (·) represents the Fourier transform operation. The
power spectral density (PSD) Pij can be represented as

Pij = K (Rij) (∥K (Rij) ∥c)−1 (15)

where K(·) represents an element-wise norm-squared opera-
tion on the vector Rij . We define the frequency component f
from the Pij as P

(f)
ij and a new hypothesis as, Hypothesis 4:

Z
(def)
=⇒ P

(f)
ij ≥ Pth. Therefore, b(f)i is defined as

b
(f)
i = I

({
P

(f)
i1 ≥ Pth

}
∨
{
P

(f)
i2 ≥ Pth

}
∨ · · · ∨

{
P

(f)
iq ≥ Pth

})
.

Therefore, b(f)i evaluates to 1 if the frequency component f
is dominant in the PSD of at least one data feature monitored
by the ith PMU. The optimization problems (P1) and (P2)
are solved using the intlinprog function of MATLAB.

V. RESULTS AND DISCUSSIONS

This section presents the results for the optimization prob-
lems (P1) and (P2) using the simulated PMU data from
RSCAD. The results are validated for IEEE 5, 6, 9, 14, 30,
and 57-bus systems.

A. Example: IEEE 5 Bus (3-Machine) Test System

Fig. 2 depicts the structure and operating conditions of IEEE
5-bus (3-machine) system. Buses 1, 2, and 3 consists of fossil
fuel-based, nuclear power-based, and smaller hydro power-
based generating units. Machines 1 and 2 have static exciters
and stabilizing signals fed-back depending on the rotor speed
of the respective machines. Machine 3 has a type 1 exciter,
with governor effects included in the simulation of all the
three machines. System loads are represented as linear static
elements located at buses 2, 3, and 4. Further, two dynamic
equivalent models for induction motor loads are envisaged
at buses 1 and 4. All per unit values mentioned in Fig. 2
are calculated as per the base values of 600 MVA and 24
kV. Based on the above system description, the detailed state
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TABLE I: IEEE 5-bus (3-machine) test system’s Eigen values at base condition.

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5
1 − .542± j1.854 8 − 2.823 15 − 10.42 22 − 19.96± j376.2 29 − 49.95
2 − .628± j5.943 9 − 2.975± j9.947 16 − 10.46 23 − 20.58 30 − 52.21
3 − .691± j.121 10 − 3.195 17 − 13.21 24 − 30.54 31 − 152.6
4 − .750 11 − 3.218± j2.004 18 − 13.06± j18.13 25 − 30.92 32 − 167.8
5 − 1 12 − 7.576± j20.96 19 − 13.58 26 − 33.02 33 − 239.5± j1365
6 − 1.334 13 − 8.312± j21.23 20 − 14.41± j376.5 27 − 34.01 34 − 500.6
7 − 1.436± j6.242 14 − 8.555± j27.10 21 − 15.17± j430.3 28 − 34.39± j560.9 35 − 502.1

IM1

IM2
Infinite bus

.05 + j.5

j.2 j.2

.3 + j.02

SG2 = .80 + j.35SG1 = .85 + j.2

SM1 = .25 + j.1

j.2

.03 + j.3 .03 + j.3
.02 + j.2

0 + j.1

SG3 = .08 + j.01

0.6 + j.05

SM2 = .28 + j.08

.02 + j.2

.06 + j.2

0.47 + j.02

GNDGND

GND

Bus 1
Bus 2

Bus 3Bus 4

Bus 5

Fig. 2: Network diagram of IEEE 5-bus (3 machine) test system.

update equations for each bus is derived as detailed in [20]
and the corresponding Eigen values are mentioned in Table I.

For the sake of covering all important Eigen frequency
ranges, we choose the frequency ranges of importance as
0-1 Hz, 1-5 Hz, 50-80 Hz, and 190-220 Hz, with ∆f for
these ranges defined as half of the frequency range. For
example, for the range 0-1 Hz, the central frequency is 0.5 Hz,
with ∆f = 0.5, i.e., the frequency bandwidth of oscillation.
Therefore, using Table I, we get θ(f)1 = 1 for f = 0.5 Hz,
while θ(f)i = 0, ∀i = 2, · · · , 5. Next, we define the mode range
of importance starting from 0-5 in steps of 5 and ∆λ = 2.5,
i.e., 0-10, 10-20, and so on. The central mode value is naturally
the mid-point of the mode range. Thus, ϕ(m)

1 = ϕ
(m)
2 = 1 for

m = 5, while ϕ(m)
1 = 0, ∀i = 3, 4, 5. Similarly, all other ϕs

and θs can be computed for the optimization problem (P1).
On solving (P1), we obtain the optimal solution as 2, 5.

Further, on solving (P2) using the PMU data generated using
RSCAD, we obtain the same solution vector, i.e., 2, 5. This
verifies the theoretical results obtained for (P1) through the
solution obtained for (P2) using the simulated PMU dataset.

Remark 1. It is notable that, since the optimization problem in
(P1) and (P2) already obtains the most qualified nodes as per
the frequency and mode ranges, the obtained solution helps in
capturing the information about the disturbances/oscillations
in the entire network in a least-time and tap manner, i.e., by
tapping/analyzing least nodes/buses of the network.

B. Characterization of Critical Grid Feature

From the joint analysis of the PMU dataset obtained through
the RSCAD simulation, we plot the variation of κj(∆t) =

(a) (b)

Fig. 3: (a) Time variation of the jth grid feature and (b) variation of
chi-squared metric with the change in the value of jth grid feature.

δφ
(j)
∆t

σ
φ
(j)
∆t

and ξj(∆t) = lim
∆t→0

dχt

dαj(∆t) with the number of samples,

denoting the time variation of the jth grid feature from the grid
feature set and the variation of the chi-squared disturbance
metric with the change in the value of jth grid feature.
The α and β metrics define the time sensitivity of the jth
parameter and the sensitivity of chi-squared metric with the
jth parameter value. From Fig. 3(a), we note that frequency
and ROCOF features demonstrate highest variability with time.
Therefore, these features are most important in realizing the
presence of disturbance in the power grid network. From Fig.
3(b), we observe that change in frequency and voltage-phase
cause maximum impact to the chi-squared disturbance metric.
Therefore, we conclude that frequency and voltage-phase are
most critical features for the identification of the disturbance
in the grid. It is notable that, this inference is consistent with
the realization obtained from the swing equation.

C. Optimal Solution to Qualified Node Selection

Table II presents the solution to the ‘qualified node selec-
tion’ optimization problem. The results from the theoretical
optimization in (P1) are mentioned in the second column,
which are verified by solving (P2) using the simulated PMU
data gathered from RSCAD. The solution to (P2) is tabulated
in the third column. First, we note that the results obtained
from the theoretical optimization, i.e., (P1), match the results
obtained from the data-based optimization, i.e., (P2). Next,
it can be observed that, by the virtue of selecting the most
qualified nodes, the time required in identifying the distur-
bances/oscillations in the power network reduces significantly.

The final column captures the amount of energy from the
power network disturbances that is captured using the data
from the selected qualified nodes. This is computed as the
ratio of the total energy captured by joint analysis of the
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TABLE II: Optimal Solution of the most qualified bus selection for standard IEEE test systems for capturing all Eigen frequencies

IEEE test
system Theoretical optimization PMU data-based optimization Strategic PMU placement [21]

Execution time (seconds) % Reduction in
required nodesProposed Conventional

6-bus 4, 5 4, 5 4, 5 1.023 1.023 0
9-bus 4, 6 4, 6 4, 6, 8 1.009 7.11 33.33
14-bus 2, 7 2, 7 2, 6, 7, 9 1.013 8.74 50
30-bus 7, 11, 18, 26 7, 11, 18, 26 1, 7, 8, 10, 11, 12, 18, 23, 26, 30 1.793 23.44 60

57-bus 2, 6, 10, 22, 27, 32, 38, 57 2, 6, 10, 22, 27, 32, 38, 57
2, 6, 10, 12, 19, 22, 25, 27, 32
36, 38, 41, 45, 46, 49, 52, 55, 57 2.017 40.03 55.56

most qualified nodes obtained through optimizing (P1) and
(P2) to the total energy of the disturbances present in the
network. It was noted that the captured disturbance energy
is close to 100%. Therefore, we conclude that, by choosing
the most qualified nodes for identifying the disturbances in
the power network, it is ensured that the disturbances at the
critical frequencies, i.e., the Eigen frequencies are noted with
certainty, resulting in a robust network protection and control.
We further draw attention towards the reduction in the number
of nodes required to be co-analyzed for the identification of
disturbances. For example, for the IEEE 57-bus system, the
number of required nodes is reduced by ≈ 55%, leading to a
≈ 95% faster analysis time.

VI. CONCLUDING REMARKS

Identification of the oscillations/disturbances in the modern
power networks is a crucial task for their reliable operation.
This paper conducted a benchmark analysis in distinguishing
the most qualified buses that can help in characterizing the
disturbance profile of the entire power network. This study
is important for reducing the time complexity in classical
approaches and reducing model complexity in learning-based
approaches. For this purpose, an optimization problem was
formulated for the theoretical characterization of such nodes,
with sole reliance on the small signal modeling of the power
networks. A second optimization was executed to validate the
results obtained from the first optimization using the PMU
data obtained from the RSCAD. An intermediate result for
the most critical feature of the grid was noted, signifying the
grid feature with the most information about the disturbances
in the network. The solution to the optimization problems
demonstrated that by selecting the best qualified buses/nodes,
the disturbance profile for the entire power network can be
gathered in a reduced time frame while capturing a consider-
able fraction of the total energy in the disturbance wave. The
results were validated for various standard IEEE test systems.
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