Impact of Wind on UAV Collision Avoidance

Sadvik Boddu*, Suraj Suman*, and Swades De^{†‡}

* Department of Electrical Engineering, Indian Institute of Technology Patna, Bihar, 801106 India
[†] Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
[‡] Bharti School of Telecommunication, Indian Institute of Technology Delhi, New Delhi 110016, India

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline of Presentation

- ◊ Introduction
- ◊ Collision Avoidance
- ◊ Proposed Framework
- ◊ Results and Discussions
- ◊ Conclusions

э

• • • • • • • • •

Applications of UAV@ Wireless Connectivity

Figure 1: UAV-aided architecture

Impact of Wind on UAV Collision Avoidance

IEEE ICC'24

イロト イポト イヨト イヨト 二日

Collision-free movement

Challenges towards UAV Operation:

- Endurance
- Payload
- Security
- Malfunctioning
- Safety: Collision-free movement

Importance of collision avoidance:

- Safe Operation of UAV
- Avoid crashes
- Risk for people
- Cost of Infrastructure
- Need for Conflict Management solutions
- Navigation in close proximity to obstacles

ъ

• • • • • • • • •

Collision-Avoidance Mechanism

To avoid collision:

- UAV should make turn from sufficient distance (turning radius)
- UAV should make turn with appropriate angle (semiapex angle)

Figure 2: System model for collision-avoidance mechanism

4 3 5 4 3 5

Collision-Avoidance Mechanism (Contd.)

These parameters depend upon the velocity of UAV and Obstacle

Research Gap @ Literature:

- Existing works do not explicitly consider the effect of wind
- Modelling of wind is complex
 - random nature
 - variation with altitude
 - direction as well as magnitude both are important

Consideration of wind profile is important, why?

化白豆 化硼医化合医医化合医医二乙基

Wind Profile

Variations over year in:

1 Wind Speed

2 Wind Direction

Figure 3: Variation of wind profile in different months for two cities of USA $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Impact of Wind on UAV Collision Avoidance

System Model

where,

 V_e is effective velocity, g is gravitational coefficient, and φ_{max} is maximum roll angle.^a

Figure 5: Obstacle Cone

ヘロト 人間 とくほとくほど

э

^aX. Zhou et al., "UAV collision avoidance based on varying cells strategy", *IEEE* Aerosp. Electron. Syst., vol. 55, no. 4, pp. 1743–1755, Aug., 2019. DOI: 10.1109/TAES.2018.2875556.

Modeling Parameters

To avoid a collision

- Turning Radius, R < d
- Semi-apex angle, $\alpha > \alpha_0$

R and α are random in nature, how to model?

- Wind data of four years (2018-22) have been considered in the analysis Source: NREL¹
- Discrete-time Markov Chain (DTMC) is used to model the parameters R and α

^{1&}quot;Wind resource data, tools, and maps, national renewable energy laboratory (NREL), USA", (), [Online]. Available: https://www.nrejgov/jjs/widj.html 🔊 🔍 🖓

Estimation of Probability of Collision Avoidance

We propose that P_{CA} can be estimated as Eq.(1) if R < d; otherwise $P_{CA} = 0$

$$P_{CA} = \Pr\{R < d\} \cdot \Pr\{\alpha > \alpha_0\} \tag{1}$$

Figure 6: Variation of R with different windy cases

S.Boddu¹, S.Suman¹, S.De² / ¹IITP, ²IITD

Impact of Wind on UAV Collision Avoidance

IEEE ICC'24

10/

Simulation Results

Simulation considers: $g = 9.8 \text{ m/s}^2$, $\varphi_{\text{max}} = 30^\circ$, and step sizes of 1° for the semiapex angle and 0.5 m for the turning radius.

Figure 7: Effect on P_{CA} when there is a change in (a) Spatial distance (b) Obstacle dimension (c) Direction of UAV movement (d) UAV speed

S.Boddu¹, S.Suman¹, S.De² / ¹IITP, ²IITD

Impact of Wind on UAV Collision Avoidance

EEE ICC'24

人口 医脊髓下的 医下颌 医下

э

Concluding Remarks and Future Works

- A framework to incorporate the effect of wind has been proposed
- Statistical modeling of probability of collision avoidance has been presented
- Ignoring the effect of wind will lead to inaccurate system design, which may have severe consequences
- UAV must be aware of its direction and speed of movement as well as wind profile while making the turn to avoid collision
- Optimization of UAV velocity profile according to wind profile to improve collision avoidance probability