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Introduction
• Terrestrial Base Stations (GBS) design to serve fixed number of 

users, ensuring Quality of Service (QoS)

o QoS declines when user demand exceeds capacity.

• By 2023, mobile devices expected to reach 13.1 billion and IoT 
devices 29.3 billion (Cisco), driving the demand1

o User mobility creates temporary hotspots, causing service 
disruptions more frequently

2
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[1] Y. Liu et al., “Evolution of NOMA toward next-generation multiple access (ngma) for 6G,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1037– 1071, 2022. 
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Current Solutions:

• Deploy Ground Relays: Expands coverage but can be costly.

• Temporary UAV Base Stations (UAV-BS): Offers flexible support for varying demands.

• LEO Satellite-Assisted Communication: Enhances connectivity and reduces disruptions.



Motivation and Objective
Current Limitations

• Fixed User Association: GBS struggle to adapt to dynamic user densities and mobility.

• High Costs: Additional GBS relays for temporary use are expensive and inefficient.

Research Gaps

• Lack of Studies: Limited exploration of adaptive UAV relays with GBS and LEO satellite backhaul.

Improvement Strategies (Objective)

• UAV-Relay (UAVr): Enhances energy efficiency compared to UAV-BS.

• Dynamic Deployment: Positioning UAVr based on temporary hotspots for optimized service.

• Cooperative Communication: Collaboration with LEO satellites improves signal-to-noise ratio (SNR).

• Quality Assurance: Focus on maintaining high communication quality while maximizing capacity.
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System Model and Key Contribution
System Model:

• User Distribution: Poisson point process (PPP) 

• Central Control Station (CCS): manages UAVr and user associations

• Hybrid Communication: Users can connect to LEO, UAVr, and GBS1

Key Contributions:

• CUD* Framework: First to integrate UAVr and LEO for cooperative 
diversity 

• Signal Quality: Improved SNR by combining UAVr and LEO signals

• Capacity Improvement: Optimizes user association and power for 
higher total capacity

4

System Model Overview.
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[1] X. Fang et al., “5G embraces satellites for 6G ubiquitous iot: Basic models for integrated satellite terrestrial networks,” IEEE IoT J., vol. 8, no. 18, pp. 14 
399–14 417, 2021. 

*CUD: cooperative UAV-relay deployment 



Signal Model: dual-hop cooperative system
• LEO satellite-UAVr signal: 

• LEO satellite-user signal, 

• UAVr-user signal,  

• During the two hops, overall signals at user: 
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𝑟𝑠
Tot=  ℍ𝑥sym + ℕ

𝒓𝒔
𝒋,𝒔

= 𝒉𝟏𝒙𝒔𝒚𝒎 + 𝒏𝟏
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𝒊,𝒋
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𝒋,𝒔

+ 𝒏𝟐 =  𝒉𝟐𝓰𝒉𝟏𝒙𝒔𝒚𝒎 + 𝒉𝟐𝓰𝒏𝟏 +

𝒏𝟐

where, 𝑟𝑠
Tot=

𝑟𝑠
𝑖,𝑠

𝑟𝑠
𝑖,𝑗  , ℍ =

ℎ0

ℎ2ℊℎ1
, ℕ=

𝑛0

ℎ2ℊ𝑛1 + 𝑛2
, 𝑥sym= satellite transmits power, 

ℊ=fixed gain factor,   𝑛0, 𝑛1, 𝑛2 is Noise, h0 = (ℏ𝑖,𝑠)T , h1 = (ℏ𝑗,𝑠)T, and h2 = (ℏ𝑖,𝑗)T channel 

coefficients LEO-User, LEO-UAVr, and UAVr-User. 

UAVr (AF)

Leo-Satellite

ℎ1

ℎ0

ℎ2

User

• No. of Antenna use:

• LEO Satellite and  UAVr used single antenna

• At user: two (direct+ Cooperative)



Channel Model:  LEO Satellite to UAVr and User

• SNR for UAVr associated with LEO satellite

• SNR for User associated with LEO Satellite

• The link visibility parameter1
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[1] W. Abderrahim, O. Amin, M.-S. Alouini, and B. Shihada, “Proactive traffic offloading in dynamic integrated multi-satellite terrestrial networks,” IEEE 
Trans. Commun., vol. 70, no. 7, pp. 4671–4686, 2022. 

𝛾𝑗,𝑠 (𝑡) =
𝑉𝑗,𝑠 (𝑡)𝑝𝑠

tx ℏ𝑗,𝑠(𝑡)
2

𝐵𝑗,𝑠𝜎2

𝛾𝑖,𝑠 (𝑡) =
𝑉𝑖,𝑠 (𝑡)𝑝𝑠

tx ℏ𝑖,𝑠(𝑡)
2

𝐵𝑖,𝑠𝜎2

𝑉𝑗,𝑠 𝑡 = ቐ
1,  𝑖𝑓 cos 2𝜋𝑡

𝑇𝑠
− 𝜃𝑝 ≥ 𝑅𝐸

2+𝑟2−𝑑𝑆𝑅
2

2𝑅𝐸𝑟

0,  otherwise 

(a)

(b)
𝑅𝐸= Earths radius, 𝜃𝑝=polar angle, 𝑟EC= satellite and earth distance, 𝑑𝑆𝑅=slant range,

 𝑇𝑠=Orbital period to complete a full orbit around earth 
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Channel Model:  GBS to User
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𝛾𝑖,𝐺 (𝑡) =
𝑝𝐺

t𝑟 ℏ𝑖,𝐺(𝑡)
2

𝐵𝑖,𝐺𝜎2

• where User association indicator 𝛿𝑖,𝐺  for GBS

➢ 𝛾𝑖,𝐺 = SNR from GBS

➢ 𝛾th = threshold SNR 

➢ Ω𝐺= set of user associated with GBS

➢ 𝜔𝐺
max= user association capacity of GBS

➢ i = 1,…, 𝑁𝐺  = user associated with GBS

➢ 𝑐𝑖,𝐺 = Allocated data rate 

𝑐𝑖,𝐺 𝑡 = 𝐵𝑖,𝐺 log2 1 + 𝛾𝑖,𝐺(𝑡) . 𝛿𝑖,𝐺(𝑡)

𝛿𝑖,𝐺(𝑡) = ൝
1,  if, 𝛾𝑖,𝐺 ≥ 𝛾th ⋀ Ω𝐺 ≤ 𝜔𝐺

max

0,  otherwise 

Signal 
constraints

Load 
constraints

• SNR for user associated with GBS

• The allocated data rate associated with GBS 

• User data rate associated with GBS:

𝐶𝐺(𝑡) = ෍

𝑖 𝜖 Ω𝐺,∀𝑖∈ 1,2,…,𝑁𝐺

𝑐𝑖,𝐺 𝑡
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Channel Model:  Cooperative Communication

• SNR for User associated with UAVr

• The instantaneous signal after amplify and forward 
(AF) defined

𝛾AF,max
WCD =  𝛾𝑖,𝑠 + 

𝛾𝑗,𝑠𝛾𝑖,𝑗

𝛾𝑖,𝑗 + 𝜍

• User allocated data rate associated with UAVr:

𝐶AF,max
WCD 𝑡 = 𝐵𝑖,𝑗 log2 1 + 𝛾AF,max

WCD (𝑡)  𝛿𝑖,𝑗 (𝑡)

• User data rate associated with UAVr/Satellite:

𝐶𝑗(𝑡) = σ𝑖 𝜖 Ω𝑗,∀𝑖 ∈ 1,2,…,𝑁𝑈
𝐶AF,max

WCD 𝑡     

where user association indicator 𝛿𝑖,𝑗  for UAVr
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𝛾𝑖,𝑗 =
𝑝𝑖,𝑗 ℏ𝑖,𝑗(𝑡)

2

𝐵𝑖,𝑗𝜎2
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𝛿𝑖,𝑗(𝑡) = ቐ
1,  if, 𝛾AF,max

WCD 𝑡 ≥ 𝛾th ⋀ 𝑟𝑖,𝑗
2 ≤ 𝑅𝑗

2(𝑡)

0,  otherwise 

➢ 𝛾AF,max
WCD  = max SNR at user

➢ 𝑟𝑖,𝑗= horizontal distance between UAVr and user

➢ 𝑅𝑗= max UAVr radius, and 𝐶𝑗(𝑡) =User data rate 

associated to UAVr

➢ 𝑗= number of UAVr,  and 𝑖= 1,…, 𝑁𝑈  = user associated 
with UAVr

➢ Ω𝑗= max 0, ΩTot − 𝜔𝐺
max  =user set associated to 

UAVr/Satellite

➢ ΩTot=total set of users



Energy Efficiency and Power 
• Total power: Communication (𝑝𝑖,𝑗 ) and UAVr 

Hover (𝑝𝑗
Hov)1

               𝑝𝑗
Tot 𝑡 = 𝑝𝑖,𝑗 (t) + 𝑝𝑗

Hov 𝑡

• Total Capacity, 𝐶Tot

𝐶Tot(𝑡) = 𝐶𝑗 (𝑡) + 𝐶𝐺 (𝑡)

• Total Energy Efficiency, 𝐸Tot
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UAVr Coverage 

• A user falls within the UAVr coverage if its 
distance from the center of the UAVr coverage 
region,𝑟𝑖,𝑗 , satisfies the condition2

𝑟𝑖,𝑗
2 ≤ 𝑅𝑗

2 𝑡 + 𝑀(1 − 𝛿𝑖,𝑗)
       
       where 𝑅𝑗 denotes the UAVr coverage radius, M denote large 

constant and 𝛿𝑖,𝑗 is

➢ 𝑅𝑗= max UAVr radius, and 

➢ 𝐶𝑗(𝑡) =User data rate associated to UAVr

➢ 𝑗= number of UAVr 

➢  𝑖= 1,…, 𝑁𝑈 = user associated with UAVr
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𝐸Tot 𝑡 = 𝐶Tot(𝑡)

𝑃𝑗
Tot+𝑃𝐺

tr

𝛿𝑖,𝑗(𝑡) = ൝
1, if, 𝑟𝑖,𝑗

2 ≤ 𝑅𝑗
2  

0,  otherwise 

[1] C.-C. Lai et al., “Adaptive and fair deployment approach to balance offload traffic in multi-UAV cellular networks,” IEEE Trans. Veh. Technol., vol. 72, no. 3, pp. 3724–3738, 2023. 
[2] M. Alzenad et al., “3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage,” IEEE Wireless Commun. Lett., vol. 6, no. 4, pp. 
434–437, 2017. 



Problem Formulation

max
𝛿𝑖,𝑗 ,𝑝𝑖,𝑗

𝐶Tot = max
𝛿𝑖,𝑗 ,𝑝𝑖,𝑗

𝐶𝑗 (𝑡) + 𝐶𝐺 (𝑡)

  s.t.
Constraints

0 ≤ 𝑝𝑖,𝑗 ≤ 𝑝max

0 ≤ Ω𝑗 ≤ 𝜔𝑗
max

0 ≤ Ω𝐺 ≤ 𝜔𝐺
max

𝑟𝑖,𝑗
2 ≤ 𝑅𝑗

2(𝑡)

  𝛿𝑖,𝐺 =1−𝛿𝑖,𝑗
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𝛿𝑖,𝐺(𝑡) = ൝
1,  if, 𝛾𝑖,𝐺 ≥ 𝛾th ⋀ Ω𝐺 ≤ 𝜔𝐺

max

0,  otherwise 

𝛿𝑖,𝑗(𝑡) = ቐ
1,  if, 𝛾AF,max

WCD 𝑡 ≥ 𝛾th ⋀ 𝑟𝑖,𝑗
2 ≤ 𝑅𝑗

2(𝑡)

0,  otherwise 

1 2

1. Maximize the capacity UAVr associated users 𝐶𝑗 

2. Maximize the capacity of GBS associated users 𝐶𝐺 
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Proposed CUD Approach Flowchart 

• Initial Phase (a):
o CCS assesses GBS load and surplus users 

o All user associated with GBS coverage

• Re-association Phase (b):
o Re-association of excess users to UAVr

• User Association and Power Optimization (c):
o Repeat phases for each excess user

o Update final parameters for UAVr to adjust
associations and power

11
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(a)

(c)

(b)

GBS UAVr User User Association Direction



Performance Schemes 

1. Cooperative UAVr Deployment (CUD) 
Framework:                            
• Combines received signals with maximum weights.

2. Equal Gain Combining-SAGIN (EGC-SAGIN):
• Combines multiple received signals with equal 

weights.

3. LEO Satellite-GBS (LEO-GBS):
• No relay present, Only LEO satellite and GBS are in 

service.

4. Ground Base Station (GBS-only):
• No additional support present

12
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𝛾MRC =  𝛾𝑖,𝑠 + 
𝛾𝑗,𝑠. 𝛾𝑖,𝑗

𝛾𝑖,𝑗 + 𝜍

𝛾EGC =
 𝛾𝑖,𝑠 + 

𝛾𝑗,𝑠.𝛾𝑖,𝑗

𝛾𝑖,𝑗+𝜍

2

𝛾LEO = 𝛾𝑖,𝑠

𝛾GBS = 𝛾𝑖,𝐺

Direct signal Cooperative 
signal
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Result Analysis 

CUD   = Cooperative UAVr Deployment,   EGC-SAGIN=Equal Gain Combining-SAGIN,   LEO-GBS=LEO Satellite- Ground Base Station

Superior Network Capacity and Energy Efficiency
Performance Overview:

• The CUD framework outperforms GBS-only, EGC-SAGIN, and LEO-GBS in 
both network capacity and energy efficiency.

Key Advantages:

• Enhanced Capacity: Strategic UAVr deployment effectively manages 
excess user traffic, optimizing overall network capacity.

• Energy Efficiency: CUD provides significant energy savings compared to 
GBS-only and EGC-SAGIN, making it a greener alternative.

• Traffic Management: Proximity of UAVr to users improves traffic 
handling, preventing congestion and maximizing capacity.

Proposed Work SummaryIntroduction Exp. Results 2/2 

(a) Total Capacity vs Number of Excess Users

(b) Total Energy Efficiency vs Number 
of Excess Users
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• Proposed an cooperative UAVr Deployment (CUD) strategy for SAGINs.

• Utilizes UAVs as relays in an Amplify-and-Forward system to maximize SNR at the 

user.

• Adapts to fluctuating user traffic by: Deploying UAVr adaptively.

• Maximizing user SNR through intelligent, cooperative communication.

• Demonstrates significant improvements in:

o Network capacity, Energy efficiency.

• Highlights the potential of integrating UAVs and LEO satellite-based technologies 

in future urban communication networks.

Exp. Results Proposed WorkIntroduction Summary

CUD   = Cooperative UAVr Deployment,   EGC-SAGIN=Equal Gain Combining-SAGIN,   LEO-GBS=LEO Satellite- Ground Base Station
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Instantaneous SNR at the user 
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Dual hop Cooperative Communication

• Receive beamformer 𝒘† at user is:

w†(𝑟𝑠
Tot) = w†(ℍ𝑥sym + ℕ) = w†ℍ𝑥sym

Signal

+ ถw†ℕ
Noise

• The instantaneous weighted SNR at the user is: 

 𝛾AF(w) =
Signal

Noise
= 𝑃𝑠

tx.
w†ℍℍ†w

w†𝑅𝑛w
. . ……………(1)

• After differentiating ( 𝛾AF) (1) with respect to ‘w’ and set 

(
𝜕

𝜕w
 𝛾AF=0)[1]: 

              wopt = 𝑐𝑟 
. 𝑅𝑛

−1 ℍ 

• Now the maximum SNR after amplify and forward (AF) defined as:

𝛾AF,𝑚𝑎𝑥
WCD = 𝑃𝑠

txℍ†𝑅𝑛
−1ℍ =  𝛾𝑖,𝑠 + 

𝛾𝑗,𝑠𝛾𝑖,𝑗

𝛾𝑖,𝑗 + 𝜍

(.)† =conjugate transpose, WCD = weighted cooperative diversity  
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[1] B. Holter and G. E. Oien, “The optimal weights of a maximum ratio combiner using an Eigen filter approach,” in 5th Nordic Signal 
Processing Symposium. Citeseer, 2002. 

➢ 𝑟𝑠
Tot=  ℍ𝑥sym + ℕ

where 𝑟𝑠
Tot=

𝑟𝑠
𝑖,𝑠

𝑟𝑠
𝑖,𝑗  , ℍ =

ℎ0

ℎ2ℊℎ1
, 

ℕ=
𝑛0

ℎ2ℊ𝑛1 + 𝑛2
, 𝑥sym= satellite Transmit Power, 

➢ 𝑃𝑠
tx=𝔼 𝑥sym𝑥sym

†

➢ 𝑅𝑛=𝔼 ℕℕ†

➢ 𝑐𝑟= Arbitrary Constant

➢ 𝛾𝑖,𝑗=UAVr to user SNR

➢ 𝛾𝑗,𝑠=Satellite to UAVr SNR

➢ 𝛾𝑖,𝑠=Satellite to user SNR

➢ 𝜍 =
1

𝜎2ℊ2

➢ ℊ- Fixed Gain

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡
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Channel Model:  UAVr to User

• Considering LOS and NLOS path loss [1]:

• Probability of LOS and NLOS signal: 

• The average  path loss: 

 

where

• SNR for User associated with UAVr

where 𝑝𝑖,𝑗 minimum transmission power of UAVr

• Total power: Communication and UAVr Hover
                  

  𝑝𝑗
Tot 𝑡 = 𝑝𝑖,𝑗 (t) + 𝑝𝑗

Hov 𝑡
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20log cf
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[1] A. Al-Hourani et al., “Optimal LAP altitude for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 569–572, 2014. 
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180
1 exp
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

= = −
  

+ − −  
  

𝛾𝑖,𝑗 =
𝑝𝑖,𝑗 ℏ𝑖,𝑗(𝑡)

2

𝐵𝑖,𝑗𝜎2
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Constraints
1. UAVr power limitation

           𝑝𝑖,𝑗: UAVr transmission power, 𝑝max: max UAVr transmission power

Remark: UAVr transmission power must satisfy the condition

2.     UAVr user association limitation

         Ω𝑗: user set associated with UAVr, 𝜔𝑗
max:max users association capacity of 

UAVr

Remark: UAVr user association must satisfy the condition

3. GBS user association limitation

 Ω𝐺: user set associated with GBS, 𝜔𝐺
max: max user association capacity  of GBS

Remark: GBS user association must satisfy the condition

4. User coverage limitations

         𝑟𝑖,𝑗:user distance from the center of the UAVr coverage,  𝑅𝑗: denoted the 
UAVr coverage radius 

Remark: user under UAVr coverage must satisfy condition

5. User association limitations

Remark: user, 𝛿𝑖,𝐺= 1 indicates GBS association, while 𝛿𝑖,𝑗= 1 
indicates UAVr association. 

20

Exp. Results SummaryIntroduction 

0 ≤ 𝑝𝑖,𝑗 ≤ 𝑝max

0 ≤ Ω𝑗 ≤ 𝜔𝑗
max

0 ≤ Ω𝐺 ≤ 𝜔𝐺
max

𝑟𝑖,𝑗
2 ≤ 𝑅𝑗

2(𝑡)

𝛿𝑖,𝐺 =1−𝛿𝑖,𝑗
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Simulation Parameters 



Phase Synchronization 

22

• The satellite simultaneously transmits a signal to the UAV-R and the UE in Phase I. 
• The UAV-R node then re-transmits the satellite signal to the UE in Phase II while 

satellite 𝑠 remains silent. 
• When node UE receives various copies of the same signal in two phases, it combines 

them using the CUD approach. 
• Since UAV-R time division multiple access (TDMA), the phase I to phase II. Thus, to 

complete the transmission of a frame from satellite s to UE, t+1 time slots are 
required. 

• In addition, assuming no information exchange occurs between UAV-R nodes 
operating in a time division duplex mode, the signals transmitted by satellite nodes 
and UAV-R are perfectly synchronized at node UE [1]. 

[1] Y. Zhao, H. Chen, L. Xie, and K. Wang, “Exact and asymptotic ergodic capacity analysis of the hybrid satellite-terrestrial cooperative system over 
generalized fading channels,” IET Communications, vol. 12, no. 11, pp. 1342–1350, 2018. 
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