





#### IEEE VTC Fall - 2024

# Cooperative UAV-Relay based Satellite Aerial Ground Integrated Networks

Bhola\*, Yu-Jia Chen†, Ashutosh Balakrishnan‡, Swades De‡, and Li-Chun Wang\*

\*Department of Electrical Engineering and Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

<sup>†</sup>Department of Communication Engineering, National Central University, Taoyuan, Taiwan

<sup>‡</sup>Department of Electrical Engineering and Bharti School of Telecommunications, Indian Institute of Technology Delhi, India

## Introduction

- Terrestrial Base Stations (GBS) design to serve fixed number of users, ensuring Quality of Service (QoS)
  - QoS declines when user demand exceeds capacity.
- By 2023, mobile devices expected to reach 13.1 billion and IoT devices 29.3 billion (Cisco), driving the demand<sup>1</sup>
  - User mobility creates temporary hotspots, causing service disruptions more frequently



#### **Current Solutions:**

- Deploy Ground Relays: Expands coverage but can be costly.
- Temporary UAV Base Stations (UAV-BS): Offers flexible support for varying demands.
- LEO Satellite-Assisted Communication: Enhances connectivity and reduces disruptions.

# **Motivation and Objective**

#### **Current Limitations**

- Fixed User Association: GBS struggle to adapt to dynamic user densities and mobility.
- High Costs: Additional GBS relays for temporary use are expensive and inefficient.

#### **Research Gaps**

• Lack of Studies: Limited exploration of adaptive UAV relays with GBS and LEO satellite backhaul.

#### **Improvement Strategies (Objective)**

- UAV-Relay (UAVr): Enhances energy efficiency compared to UAV-BS.
- *Dynamic Deployment*: Positioning UAVr based on temporary hotspots for optimized service.
- Cooperative Communication: Collaboration with LEO satellites improves signal-to-noise ratio (SNR).
- Quality Assurance: Focus on maintaining high communication quality while maximizing capacity.

# **System Model and Key Contribution**

#### **System Model:**

- *User Distribution*: Poisson point process (PPP)
- Central Control Station (CCS): manages UAVr and user associations
- Hybrid Communication: Users can connect to LEO, UAVr, and GBS<sup>1</sup>

#### **Key Contributions:**

- *CUD\* Framework*: First to integrate UAVr and LEO for cooperative diversity
- Signal Quality: Improved SNR by combining UAVr and LEO signals
- Capacity Improvement: Optimizes user association and power for higher total capacity



System Model Overview.

\*CUD: cooperative UAV-relay deployment

# Signal Model: dual-hop cooperative system

• LEO satellite-UAVr signal:

$$r_s^{i,s} = h_0 x_{sym} + n_0$$

• LEO satellite-user signal,

$$r_s^{j,s} = h_1 x_{sym} + n_1$$

UAVr-user signal,

$$r_s^{i,j} = h_2 g_i(r_s^{j,s}) + n_2 = h_2 g_i h_1 x_{sym} + h_2 g_i n_1 +$$

• During the two hops, overall signals at user:

$$r_s^{\text{Tot}} = \mathbb{H} x_{\text{sym}} + \mathbb{N}$$

where,  $r_s^{\text{Tot}} = \begin{bmatrix} r_s^{l,S} \\ r_s^{l,j} \end{bmatrix}$ ,  $\mathbb{H} = \begin{bmatrix} h_0 \\ h_2 g h_1 \end{bmatrix}$ ,  $\mathbb{N} = \begin{bmatrix} n_0 \\ h_2 g n_1 + n_2 \end{bmatrix}$ ,  $x_{\text{sym}} = \text{satellite transmits power}$ ,

g=fixed gain factor,  $n_0$ ,  $n_1$ ,  $n_2$  is Noise,  $\mathbf{h_0} = (\hbar_{i,s})^T$ ,  $\mathbf{h_1} = (\hbar_{i,s})^T$ , and  $\mathbf{h_2} = (\hbar_{i,j})^T$  channel coefficients LEO-User, LEO-UAVr, and UAVr-User.



- No. of Antenna use:
- LEO Satellite and UAVr used single antenna
- At user: two (direct+ Cooperative)

# Channel Model: LEO Satellite to UAVr and User

SNR for UAVr associated with LEO satellite

$$\gamma_{j,s}(t) = \frac{V_{j,s}(t)p_s^{\mathsf{tx}} \|\hbar_{j,s}(t)\|^2}{B_{j,s}\sigma^2}$$

SNR for User associated with LEO Satellite

$$\gamma_{i,s}\left(t\right) = \frac{V_{i,s}\left(t\right)p_s^{\mathsf{tx}} \left\| h_{i,s}(t) \right\|^2}{B_{i,s}\sigma^2}$$

• The link visibility parameter<sup>1</sup>

$$V_{j,S}(t) = \begin{cases} 1, & if \cos\left(\frac{2\pi t}{T_S} - \theta_p\right) \ge \frac{R_E^2 + r^2 - d_{SR}^2}{2R_E r} \\ 0, & \text{otherwise} \end{cases}$$

 $R_E$ = Earths radius,  $\theta_p$ =polar angle,  $r_{EC}$ = satellite and earth distance,  $d_{SR}$ =slant range,  $T_S$ =Orbital period to complete a full orbit around earth



Load

## **Channel Model:** GBS to User

SNR for user associated with GBS

$$\gamma_{i,G}(t) = \frac{p_G^{tr} \| \hbar_{i,G}(t) \|^2}{B_{i,G}\sigma^2}$$

• The allocated data rate associated with GBS

$$c_{i,G}(t) = B_{i,G} \log_2(1 + \gamma_{i,G}(t)) \cdot \delta_{i,G}(t)$$

User data rate associated with GBS:

$$C_G(t) = \sum_{i \in \Omega_G, \forall i \in \{1, 2, \dots, N_G\}} c_{i,G}(t)$$

where User association indicator  $\delta_{i,G}$  for GBS



Signal

- $\triangleright \gamma_{i,G} = SNR \text{ from GBS}$
- $\triangleright \gamma_{th}$  = threshold SNR
- $\triangleright \Omega_G$  = set of user associated with GBS
- $\triangleright \omega_c^{\text{max}}$  = user association capacity of GBS
- $\triangleright$  *i* = 1,...,  $N_G$  = user associated with GBS
- $\succ c_{i,G} = \text{Allocated data rate}$

# Channel Model: Cooperative Communication

SNR for User associated with UAVr

$$\gamma_{i,j} = \frac{p_{i,j} \left\| h_{i,j}(t) \right\|^2}{B_{i,j} \sigma^2}$$

 The instantaneous signal after amplify and forward (AF) defined

$$\gamma_{\text{AF,max}}^{\text{WCD}} = \gamma_{i,s} + \frac{\gamma_{j,s}\gamma_{i,j}}{\gamma_{i,j} + \varsigma}$$

User allocated data rate associated with UAVr:

$$C_{\text{AF,max}}^{\text{WCD}}(t) = B_{i,j} \log_2 \left(1 + \gamma_{\text{AF,max}}^{\text{WCD}}(t)\right) \delta_{i,j}(t)$$

User data rate associated with UAVr/Satellite:

$$C_j(t) = \sum_{i \in \Omega_j, \forall i \in \{1, 2, \dots, N_U\}} C_{AF, \max}^{WCD}(t)$$

where user association indicator  $\delta_{i,j}$  for UAVr

$$\delta_{i,j}(t) = \begin{cases} 1, & \text{if, } \left( \gamma_{\text{AF,max}}^{\text{WCD}}(t) \ge \gamma_{\text{th}} \right) \land \left( r_{i,j}^2 \le R_j^2(t) \right) \\ 0, & \text{otherwise} \end{cases}$$

- $> \gamma_{AF.max}^{WCD} = max SNR at user$
- $ightharpoonup r_{i,j}$  = horizontal distance between UAVr and user
- $ightharpoonup R_j$  = max UAVr radius, and  $C_j(t)$  =User data rate associated to UAVr
- ightharpoonup j= number of UAVr, and i= 1,...,  $N_U$  = user associated with UAVr
- ho  $\Omega_j$  = max(0,  $|\Omega_{\rm Tot}| \omega_G^{\rm max}$ ) =user set associated to UAVr/Satellite
- $\triangleright \Omega_{Tot}$ =total set of users

# **Energy Efficiency and Power**

**Total power**: Communication ( $p_{i,j}$ ) and UAVr Hover  $(p_i^{\text{Hov}})^1$ 

$$p_j^{\text{Tot}}(t) = p_{i,j}(t) + p_j^{\text{Hov}}(t)$$

Total Capacity, C<sup>Tot</sup>

$$C^{\text{Tot}}(t) = \left(C_{j}(t) + C_{G}(t)\right)$$

Total Energy Efficiency,  $E^{\mathrm{Tot}}$ 

$$E^{\text{Tot}}(t) = \frac{C^{\text{Tot}}(t)}{\left(P_j^{\text{Tot}} + P_G^{\text{tr}}\right)}$$

#### **UAVr Coverage**

 A user falls within the UAVr coverage if its distance from the center of the UAVr coverage region, $r_{i,i}$ , satisfies the condition<sup>2</sup>

$$r_{i,j}^2 \le R_j^2(t) + M(1 - \delta_{i,j})$$

where  $R_i$  denotes the UAVr coverage radius, M denote large constant and  $\delta_{i.i}$  is

 $\delta_{i,j}(t) = \begin{cases} 1, & \text{if, } (r_{i,j}^2 \le R_j^2) \\ 0, & \text{otherwise} \end{cases}$ 

- $ightharpoonup R_i$ = max UAVr radius, and
- $ightharpoonup C_j(t)$  =User data rate associated to UAVr
- $\rightarrow$  j= number of UAVr
- $\succ i=1,...,N_{II}$  = user associated with UAVr

[1] C.-C. Lai et al., "Adaptive and fair deployment approach to balance offload traffic in multi-UAV cellular networks," IEEE Trans. Veh. Technol., vol. 72, no. 3, pp. 3724–3738, 2023. [2] M. Alzenad et al., "3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage," IEEE Wireless Commun. Lett., vol. 6, no. 4, pp. 434-437, 2017.

- 1. Maximize the capacity UAVr associated users  $C_i$
- 2. Maximize the capacity of GBS associated users  $C_G$

#### **Problem Formulation**

$$\max_{\delta_{i,j},p_{i,j}} C^{\text{Tot}} = \max_{\delta_{i,j},p_{i,j}} \left( C_j(t) + C_G(t) \right)$$

s.t.

$$\delta_{i,G}(t) = \begin{cases} 1, & \text{if, } (\gamma_{i,G} \ge \gamma_{\text{th}}) \wedge (|\Omega_G| \le \omega_G^{\text{max}}) \\ 0, & \text{otherwise} \end{cases}$$

$$\delta_{i,j}(t) = \begin{cases} 1, & \text{if, } \left( \gamma_{\text{AF,max}}^{\text{WCD}}(t) \ge \gamma_{\text{th}} \right) \land \left( r_{i,j}^2 \le R_j^2(t) \right) \\ 0, & \text{otherwise} \end{cases}$$



#### **Constraints**

$$0 \le p_{i,j} \le p_{\max}$$

$$0 \le |\Omega_j| \le \omega_j^{\max}$$

$$0 \le |\Omega_G| \le \omega_G^{\max}$$

$$r_{i,j}^2 \le R_j^2(t)$$

$$\delta_{i,G} = 1 - \delta_{i,j}$$

# **Proposed CUD Approach Flowchart**

#### Initial Phase (a):

- CCS assesses GBS load and surplus users
- All user associated with GBS coverage
- Re-association Phase (b):
  - Re-association of excess users to UAVr
- User Association and Power Optimization (c):
  - Repeat phases for each excess user
  - Update final parameters for UAVr to adjust associations and power





## **Performance Schemes**

#### Cooperative UAVr Deployment (CUD) Framework:

Combines received signals with maximum weights.

#### 2. Equal Gain Combining-SAGIN (EGC-SAGIN):

Combines multiple received signals with equal weights.

#### 3. LEO Satellite-GBS (LEO-GBS):

 No relay present, Only LEO satellite and GBS are in service.

#### 4. Ground Base Station (GBS-only):

No additional support present





$$\gamma^{\text{LEO}} = \gamma_{i,s}$$

$$\gamma^{\text{GBS}} = \gamma_{i,G}$$

# **Result Analysis**

#### **Superior Network Capacity and Energy Efficiency**

#### **Performance Overview:**

 The CUD framework outperforms GBS-only, EGC-SAGIN, and LEO-GBS in both network capacity and energy efficiency.

#### **Key Advantages:**

- <u>Enhanced Capacity</u>: Strategic UAVr deployment effectively manages excess user traffic, optimizing overall network capacity.
- <u>Energy Efficiency</u>: CUD provides significant energy savings compared to GBS-only and EGC-SAGIN, making it a greener alternative.
- <u>Traffic Management</u>: Proximity of UAVr to users improves traffic handling, preventing congestion and maximizing capacity.







(b) Total Energy Efficiency vs Number of Excess Users

- Proposed an cooperative UAVr Deployment (CUD) strategy for SAGINs.
- Utilizes UAVs as relays in an Amplify-and-Forward system to maximize SNR at the user.
- Adapts to fluctuating user traffic by: Deploying UAVr adaptively.
- Maximizing user SNR through intelligent, cooperative communication.
- Demonstrates significant improvements in:
  - Network capacity, Energy efficiency.
- Highlights the potential of integrating UAVs and LEO satellite-based technologies in future urban communication networks.



# Thanks for Listening!

**Acknowledgment**: This work has been partially funded by the National Science and Technology Council under the Grants NSTC 111-2221- E-A49-071-MY3, and NSTC 113-2221-E-A49 -110 - MY3, and NSTC 112-2634-F-A49-007, and NSTC 113-2218-EA49-027, Taiwan. This work was supported by the Higher Education Sprout Project of the National Yang Ming Chiao Tung University and Ministry of Education (MOE), Taiwan.



# Appendix

### Instantaneous SNR at the user

$$\begin{split} \gamma_{\mathrm{AF}}(\mathbf{w}) &= \frac{\mathbf{E}\left\{\left(\mathbf{w}^{\dagger}\mathbf{H}x_{\mathrm{sym}}\right)\left(\mathbf{w}^{\dagger}\mathbf{H}x_{\mathrm{sym}}\right)^{\dagger}\right\}}{\mathbf{E}\left\{\left(\mathbf{w}^{\dagger}\Box\right)\left(\mathbf{w}^{\dagger}\Box\right)^{\dagger}\right\}}, \\ \mathbf{Signal\ power} &= \mathbf{E}\left\{\left(\mathbf{w}^{\dagger}\mathbf{H}x_{\mathrm{sym}}x_{\mathrm{sym}}^{\dagger}\mathbf{w}\mathbf{H}\right)\right\} = \left(\mathbf{w}^{\dagger}\mathbf{H}\right)\mathbf{E}\left\{\left(x_{\mathrm{sym}}x_{\mathrm{sym}}^{\dagger}\right)\right\}\left(\mathbf{w}\mathbf{H}^{\dagger}\right), \\ &= P_{s}^{\mathrm{tx}}\left(\mathbf{w}^{\dagger}\mathbf{H}\mathbf{H}^{\dagger}\mathbf{w}\right) = P_{s}^{\mathrm{tx}}\left(\mathbf{w}^{\dagger}R_{s}\mathbf{w}\right) \\ \mathbf{Similarly\ we\ can\ write}, \\ \mathbf{Noise\ power} &= \mathbf{E}\left\{\left(\mathbf{w}^{\dagger}\Box\right)\left(\mathbf{w}^{\dagger}\Box\right)^{\dagger}\right\}, \\ &= \mathbf{E}\left\{\left(\mathbf{w}^{\dagger}\Box\right)^{\dagger}\mathbf{w}\right\} = \mathbf{w}^{\dagger}\mathbf{E}\left\{\left(\Box\Box^{\dagger}\right)\right\}\mathbf{w}, \\ &= \mathbf{w}^{\dagger}R_{n}\mathbf{W} \\ \gamma_{\mathrm{AF}}(\mathbf{w}) = P_{s}^{\mathrm{tx}}\left(\frac{\mathbf{w}^{\dagger}R_{s}\mathbf{w}}{\mathbf{w}^{\dagger}R_{n}\mathbf{w}}\right), \end{split}$$

# **Dual hop Cooperative Communication**

• Receive beamformer  $w^{\dagger}$  at user is:

$$\mathbf{w}^{\dagger}(r_s^{\mathrm{Tot}}) = \mathbf{w}^{\dagger}(\mathbb{H}x_{\mathrm{sym}} + \mathbb{N}) = \underbrace{\mathbf{w}^{\dagger}\mathbb{H}x_{\mathrm{sym}}}_{\mathrm{Signal}} + \underbrace{\mathbf{w}^{\dagger}\mathbb{N}}_{\mathrm{Noise}}$$

• The instantaneous weighted SNR at the user is:

$$\gamma_{AF}(w) = \frac{\text{Signal}}{\text{Noise}} = P_s^{\text{tx}} \cdot \frac{w^{\dagger} \mathbb{H} \mathbb{H}^{\dagger} w}{w^{\dagger} R_n w} \cdot \dots (1)$$

• After differentiating (  $\gamma_{AF}$ ) (1) with respect to 'w' and set  $(\frac{\partial}{\partial w}\gamma_{AF}=0)^{[1]}$ :

$$W_{opt} = c_r R_n^{-1} \mathbb{H}$$
 Optimal weight

Now the maximum SNR after amplify and forward (AF) defined as:

$$\gamma_{\text{AF},max}^{\text{WCD}} = P_s^{\text{tx}} \mathbb{H}^{\dagger} R_n^{-1} \mathbb{H} = \gamma_{i,s} + \frac{\gamma_{j,s} \gamma_{i,j}}{\gamma_{i,j} + \varsigma}$$

 $(.)^{\dagger}$  =conjugate transpose, WCD = weighted cooperative diversity

$$r_s^{\text{Tot}} = \mathbb{H}x_{\text{sym}} + \mathbb{N}$$

where 
$$r_s^{\mathrm{Tot}} = \begin{bmatrix} r_s^{i,s} \\ r_s^{i,j} \end{bmatrix}$$
,  $\mathbb{H} = \begin{bmatrix} h_0 \\ h_2 \mathcal{G} h_1 \end{bmatrix}$ ,  $\mathbb{N} = \begin{bmatrix} n_0 \\ h_2 \mathcal{G} n_1 + n_2 \end{bmatrix}$ ,  $x_{\mathrm{sym}} = \mathrm{satellite}$  Transmit Power,

- $> P_s^{\text{tx}} = \mathbb{E}\{x_{\text{sym}}x_{\text{sym}}^{\dagger}\}$
- $\succ R_n = \mathbb{E}\{\mathbb{N}\mathbb{N}^{\dagger}\}$
- $\succ c_r$ = Arbitrary Constant
- $\triangleright \gamma_{i,j}$ =UAVr to user SNR
- $\succ \gamma_{j,s}$ =Satellite to UAVr SNR
- $\triangleright \gamma_{i,s}$ =Satellite to user SNR
- ➢ g- Fixed Gain

[1] B. Holter and G. E. Oien, "The optimal weights of a maximum ratio combiner using an Eigen filter approach," in 5th Nordic Signal Processing Symposium. Citeseer, 2002.

## Channel Model: UAVr to User

Considering LOS and NLOS path loss [1]:

$$PL_{d_{i,j}}^{\text{LoS}}(t) = 20 \log_{10} \left( \frac{4\pi f_c d_{i,j}(t)}{c} \right) + \eta_{\text{LoS}}$$

$$PL_{d_{i,j}}^{\text{NLoS}}(t) = 20 \log_{10} \left( \frac{4\pi f_c d_{i,j}(t)}{c} \right) + \eta_{\text{NLoS}}$$

• Probability of LOS and NLOS signal:

$$P_{d_{i,j}}^{\text{LoS}}(t) = \frac{1}{1 + a \exp\left(-b\left[\frac{180}{\pi}\theta_{i,j} - a\right]\right)}, & & P_{d_{i,j}}^{\text{NLoS}}(t) = 1 - P_{d_{i,j}}^{\text{LoS}}(t).$$

The average path loss:

$$PL_{d_{i,j}}^{\text{Avg}}(t) = P_{d_{i,j}}^{\text{LoS}}(t) \times PL_{d_{i,j}}^{\text{LoS}}(t) + P_{d_{i,j}}^{\text{NLoS}}(t) \times PL_{d_{i,j}}^{\text{NLoS}}(t)$$

$$= \frac{\eta_{\text{LoS}} - \eta_{\text{NLoS}}}{1 + a \exp\left(-b\left[\frac{180}{\pi}\theta_{\text{i,j}} - a\right]\right)} + 20\log_{10}\left(d_{i,j}(t)\right) + \beta$$

where 
$$\beta = 20 \log_{10} \left( \frac{4\pi f_c}{c} \right) + \eta_{\text{NLoS}}$$

SNR for User associated with UAVr

$$\gamma_{i,j} = \frac{p_{i,j} \left\| h_{i,j}(t) \right\|^2}{B_{i,j} \sigma^2}$$

where  $p_{i,j}$  minimum transmission power of UAVr

Total power: Communication and UAVr Hover

$$p_j^{\text{Tot}}(t) = p_{i,j}(t) + p_j^{\text{Hov}}(t)$$

# **Constraints**

#### 1. UAVr power limitation

$$0 \le p_{i,j} \le p_{\max}$$

 $p_{i,j}$ : UAVr transmission power,  $p_{\max}$ : max UAVr transmission power

**Remark:** UAVr transmission power must satisfy the condition

#### 2. UAVr user association limitation

$$0 \le |\Omega_j| \le \omega_j^{\max}$$

 $\Omega_j$ : user set associated with UAVr,  $\omega_j^{ ext{max}}$ :max users association capacity of UAVr

Remark: UAVr user association must satisfy the condition

#### 3. GBS user association limitation

$$0 \le |\Omega_G| \le \omega_G^{\max}$$

 $\Omega_G$ : user set associated with GBS,  $\omega_G^{
m max}$ : max user association capacity of GBS

Remark: GBS user association must satisfy the condition

#### 4. User coverage limitations

$$r_{i,j}^2 \le R_j^2(t)$$

 $r_{i,j}$ :user distance from the center of the UAVr coverage,  $R_j$ : denoted the UAVr coverage radius

Remark: user under UAVr coverage must satisfy condition

#### 5. User association limitations

$$\delta_{i,G} = 1 - \delta_{i,j}$$

**Remark**: user,  $\delta_{i,G}$  = 1 indicates GBS association, while  $\delta_{i,j}$  = 1 indicates UAVr association.

## **Simulation Parameters**

TABLE I SIMULATION PARAMETERS

| Parameter                | Symbol                          | Value             |
|--------------------------|---------------------------------|-------------------|
| Environmental parameters | $a, b, \eta_{LoS}, \eta_{NLoS}$ | 9.61, 0.16, 1, 20 |
| Maximum path loss        | $PL_{d_{i,j}}^{\max}$           | 119 dB            |
| LEO Satellite Altitude   | $h_s$                           | 500 km            |
| UAVr Altitude and Radius | $h_j^{\mathrm{Ur}},R_j$         | 30m, 100m         |
| UAVr and GBS Number      | $U_j,G$                         | 1,1               |
| Allocated Bandwidth      | $B_{i,j}$                       | 20 MHz            |
| Noise Power              | $\sigma^2$                      | -174 dBm/Hz       |
| Total Number of Users    | i                               | 200               |
| Max Associations at UAVr | $\omega_j^{\max}$               | 100               |
| Max Associations at GBS  | $\omega_G^{\max}$               | 100               |
| SNR Threshold            | $\gamma_{	ext{th}}$             | 3 dB              |
| Max Transmission Power   | $p_{\text{max}}$                | 20 dBm            |

# Phase Synchronization

- The satellite simultaneously transmits a signal to the UAV-R and the UE in Phase I.
- The UAV-R node then re-transmits the satellite signal to the UE in Phase II while satellite s remains silent.
- When node UE receives various copies of the same signal in two phases, it combines them using the CUD approach.
- Since UAV-R time division multiple access (TDMA), the phase I to phase II. Thus, to complete the transmission of a frame from satellite s to UE, t+1 time slots are required.
- In addition, assuming no information exchange occurs between UAV-R nodes operating in a time division duplex mode, the signals transmitted by satellite nodes and UAV-R are perfectly synchronized at node UE [1].