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Learning-based Adaptive Sensor Selection
Framework for Multi-sensing WSN

Sushmita Ghosh, Swades De, Shouri Chatterjee, and Marius Portmann

Abstract— Wireless sensor nodes equipped with multiple sensors often have limited energy availability. To optimize the
energy sustainability of such sensor hubs, in this paper a novel adaptive sensor selection framework is proposed. Multiple
sensors monitoring different parameters in the same environment often possess cross-correlation, which makes the
system predictive. To this end, a learning-based optimization strategy is developed using Upper Confidence Bound
algorithm to select an optimum active sensor set in a measurement cycle based on the cross-correlations among
the parameters, energy consumed by the sensors, and the energy available at the node. Further, a Gaussian process
regressor-based prediction model is used to predict the parameter values of inactive sensors from the cross-correlated
parameters of active sensors. To evaluate the performance of the proposed framework in real-life applications, an air
pollution monitoring sensor node consisting of seven sensors is deployed in the campus that collects data at a default
high sampling rate. Simulation results validate the efficiency and efficacy of the proposed framework. Compared to the
current state-of-the-art the proposed algorithm is 54% more energy efficient, with complexity O(2P) for P sensors in the
node, while maintaining an acceptable range of sensing error.

Index Terms— adaptive sensor selection framework, energy saving, Gaussian process regression model, Multi-parameter
sensor hub, parameter cross-correlation, reinforcement learning, upper confidence bound algorithm.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of a large num-
ber of sensor nodes. Most of them are powered by batteries
which limit the lifetime of such networks. Two main energy
consuming parts of WSNs are sensing and transmission. A
sensor node consists of a set of sensors to monitor various
parameters of the particular environment. As an example, an
air pollution monitoring sensor node consists of sensors for
monitoring several parameters, namely, temperature, humidity,
particulate matter (PM), and various hazardous gases. The
energy consumption of many good quality sensors is more
than that of the transmission module. To solve the problem
of limited battery capacity, sensor nodes are equipped with
an energy harvesting mechanism for replenishing the batter-
ies. For reduced energy consumption in sensing, an optimal
sampling interval can be decided for each parameter without
compromising on the quality of sensing [1]. Though such
mechanisms increase the lifetime of WSNs, designing a sus-
tainable wireless sensor node monitoring multiple parameters
with less energy consumption and good sensing quality is still
an open challenge.

In many WSNs field data is sent to the local collection
point routinely, which can be analyzed to create a feedback
mechanism to adapt the system parameters [2]. In an environ-
ment with multiple parameters of sensing interest, although
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the sensing elements may be very different based on their
composition, these parameters often manifest cross-correlation
among them, which can be exploited to estimate one parameter
value from the other one or more parameters. Thus, by
choosing an optimal number of active sensors an energy-
efficient sensing process at a field node can be designed.

A. Related Work

Numerous works have been presented in the literature
on energy-efficient sensing. These can be divided into two
categories: a) adaptive sampling algorithm applied on each
parameter at a sensor node independently [1], [3], [4], b)
selecting an active set of sensors based on the spatio-temporal
correlation of data among multiple sensor nodes, monitoring
one parameter in a densely-deployed WSN [5]–[7]. Compared
to traditional fixed-rate sampling, both the processes can
reduce data volume and energy consumption in sensing and
transmission.

An adaptive sampling algorithm was proposed for snow
monitoring application in [4] that estimates the optimal sam-
pling frequencies online for sensors by applying fast Fourier
transform (FFT) on a sufficiently large sample set. As per
Nyquist criteria, the minimum sampling rate can be calculated
from the maximum detectable frequency of the sensed signal.
When the frequency changes, a new sampling rate is calculated
after detecting a user-defined W number of samples. Three
different data collection mechanisms were proposed for tem-
perature and humidity sensing independently in [1] to adapt
the sampling rate with the variation of environment. In the first
approach, the T -statistic value (ratio of the variance calculated
based on the collected measurements) was computed using
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one-way Anova model and Bartlett test, which is used in
behavior function to find a new sampling rate. The second
and third models used the Jaccard similarity function and
Euclidean distance function respectively to find dissimilarity
between two consecutive data-sets. Imposing new parameter
values (obtained from these methods) on behavior function,
new sampling rates were calculated for the two individual
models. A decentralized approach of adaptive sampling was
proposed in [3], that employs Kalman Filtering (KF) based
estimation technique to autonomously adjust the sampling
interval within a given range based on KF estimation error.

In a densely-deployed WSN, spatio-temporal correlations
among the sensing signals are used to select a fraction of
sensors to collect samples of a particular sensing parameter
[6]. Compressive sensing was applied in [5], [8] for select-
ing fewer sensors from a large set of sensor nodes in a
heterogeneous sensing environment. An optimization function
was defined to select a particular set of sensors for the
next measurement cycle considering sensing quality, process
dynamics, and energy availability at the nodes.

In [9], a sequential Bayesian approach for spatio-temporal
Gaussian process regression was formulated to develop an
adaptive sampling algorithm for mobile sensor network. In
[10], Gaussian process regression (GPR) was used to pre-
dict the mean and covariance functions of spatio-temporally
varying signals, as in predicting environmental monitoring
parameters with localization uncertainty in mobile wireless
sensor networks. GPR has been widely used to draw statistical
inference from environmental data [11]. GPR is used in [12],
[13] to predict Particulate Matter (PM) from its historical
values for low-cost PM monitoring.

Various regression and neural network-based techniques
were proposed in [14]–[17] to predict the values of air
pollution parameters, PM2.5, PM10, from their spatio-temporal
correlations with the meteorological parameters: wind speed,
temperature, and humidity.

An adaptive sensing framework, proposed in [18], applied
reinforcement learning in mobile sensing environment to im-
prove the energy efficiency. However, the work does not deal
with multi-parameter sensor hubs.

B. Research Gap
Although the aforementioned approaches substantially re-

duce energy consumption in the WSNs, the limited battery
capacity of the miniature sensor hub in a large-scale de-
ployment restricts the lifetime of such networks. Moreover,
with the development of good quality sensors, their cost and
energy consumption are increasing, and the number of sensing
elements attached to a single node is increasing as well. This
in turn increases data volume and energy consumption of the
sensor nodes.

The node-level adaptations in [1], [3], [4] are on individual
sensing parameters; they do not exploit multi-parameter cross-
correlation. The studies in [2], [5], [6], [9] consider densely-
deployed WSNs for monitoring the same parameter. Because
of spatio-temporal correlations, the data is sparse in nature. In
contrast, the process dynamics in multi-parameter sensing on
a sensor hub is expected to be different.

The studies in [14]–[17] target weather forecasting, rather
than energy efficiency.

The use of GPR models on spatio-temporally varying sig-
nals in mobile sensing networks [10]–[13] with high accuracy
prediction performance motivates its use in predicting multiple
parameter values in a sensor node.

As noted above, energy-efficient sensor data collection by
exploiting the process dynamics of a multi-parameter sensor
hub is yet to be studied in the literature. Motivated by good
prediction performance of GPR in [10]–[13], an energy-aware
sensing mechanism is proposed in this work that activates
online a set of sensors that minimizes prediction error while
ensuring an upper bound on energy consumption. The upper
bound is decided by the energy available at the node.

C. Motivation
The need for machine learning-based prediction models to

optimize the energy efficiency in WSNs has been discussed
in Section I-A. In recent studies, sensor nodes in a network
are proposed to be selected by solving the trade-off between
sensing/estimation error and energy consumption [5], [19].
However, these methods were developed for network-level
adaptation, where the data collected at the present cycle is
exploited to decide the optimal set of nodes to be activated
in the next cycle based on the energy available at the nodes.
In these formulations it is assumed that the signal is slowly
varying, therefore, the next state can be predicted from the
present state.

Apart from the network-level sensing, if a single node
consists of multiple sensors to capture the randomly varying
parameter values in the environment, the above formulation
may not be accurate in choosing optimal set of sensors at
a node. Therefore, in deciding the optimal sensor set in
a measurement cycle, besides the data from the immediate
past measurement cycle, history of the past cycles would be
useful. To this end, a reinforcement learning model can be
created where the system learns with experience. Based on the
dynamics of the system, the sensor selection algorithm can be
modeled as a multi-armed bandit (MAB) problem. Finding an
optimal sensor set for the next cycle is analogous to finding
an optimal arm for the next time slot. MAB is a reinforcement
learning problem, used widely in many real-time systems for
online decision making purpose. Various algorithms, such as
Upper Confidence Bound (UCB) algorithm, Thompson sam-
pling, epsilon-greedy algorithm, etc. are used to solve MAB
problems. Among them, UCB or UCB1 algorithm is adapted
in the proposed framework, as the regret or the loss suffered
by the system for not choosing an optimal set is minimum
in UCB. It is a deterministic algorithm that works based on
the principle of optimism in the place of uncertainty. It is
computationally less expensive and hence easy to implement.

D. Contributions
In this work, a new method of sensor data collection

mechanism is proposed for a miniature sensor hub consisting
of multiple sensors monitoring various parameters in the
environment. The proposed approach is broadly studied for
node-level analysis that can be used in a distributed network.
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The key features and contributions of this work are as
follows:

1) The proposed multi-sensing framework is modelled as
a MAB problem that exploits cross-correlation among
the various sensing parameters at a node to activate an
optimal set of sensors while accounting for the non-
stationarity of the environment.

2) A modified upper confidence bound (UCB) algorithm is
developed for activation of an optimal set of sensors;
its reward is calculated in every measurement cycle
based on the cross-correlation among the parameters,
sensing energy requirement, and the node-level energy
availability.

3) The length of measurement cycle is adaptive to the pro-
cess dynamics, which inherently exploits the variation
of cross-correlation of the sensed processes.

4) A new method is proposed to adapt the length of
measurement cycle based on a suitably developed para-
metric mapping function that maps the change in cross-
correlation among the parameters to the length of next
measurement cycle.

5) A GPR model is introduced to predict the missing
parameters at the central entity (CE) from the sampled
parameters based on cross-correlation among them.

6) The proposed algorithm is tested on real data-set from
a pollution monitoring node deployed on the campus.
Compared to the adaptive sampling algorithm proposed
in [1], up to 54% energy saving can be achieved using
the proposed data collection method while maintaining
an acceptable range of sensing error.

Organization: The system model is presented in Section II,
followed by a brief description on the GPR based prediction
model in sensor data prediction in Section III. Section IV
contains the proposed adaptive sensor selection algorithm. The
experimental setup is explained Section V, followed by results
and conclusion in Sections VI and VII, respectively.

Notations: A and A respectively denote a set and a matrix.
Z ∈ R

P×I represents a real valued matrix of size P × I ,
z ∈ R

P×1 denotes a vector having P elements and |A| = A
denotes the cardinality of set A.

II. SYSTEM MODEL

Consider a sensor node having P sensors, each monitoring
a parameter in the environment. Let P = {Pp; 1 ≤ p ≤ P} be
the set containing all the parameters. In the xth measurement
cycle the sensed data at a sampling instant is denoted as [20]:

zx = yx + ηx (1)

where zx ∈ RP×1 is the measurements vector containing the
observations of all the parameters. yx ∈ R

P×1 is the true
signal vector and ηx ∈ RP×1 is the measurement noise vector
associated with the P sensors. η for all the parameters are
considered additive Gaussian, identically and independently
distributed with zero mean and σ2 variance. If Ix is the
number of instances/samples collected for each parameter in
xth measurement cycle, then Zx ∈ R

P×Ix is the matrix
containing the temporal measurements of all the parameters.

Since the sensors in a node monitor different spatio-
temporally varying signals in the same environment, they often
exhibit cross-correlation, which makes the system feasible to
predict one parameter from its cross-correlated parameters.

The total number of possible sensor sets that can be con-
structed from P sensors, excluding the null set and the set
containing all parameters, is N = (2P −2). In a measurement
cycle x if Axi denotes the active sensor set, the corresponding
inactive/sleeping sensor set is Bxi = P − Axi ; 1 ≤ i ≤ N .
Therefore, Axi = {PAxi ,m; 1 ≤ m ≤ Axi } and Bxi =
{PBxi ,k; 1 ≤ k ≤ Bxi }. Let S be the set containing all active
and sleeping subset of nodes, i.e., Sx = {(Axi ,Bxi ); 1 ≤ i ≤
N}. |Axi | = Axi , |Bxi | = Bxi , |Sx| = N , and Axi +Bxi = P .

This sensing model is used in the proposed framework in
Section IV. The sensors belonging to the active set collect
samples for a duration, called measurement cycle, and store
them in the memory. At the end of the measurement cycle,
the node transmits the gathered data to a central controller
or local data collection center which does the computations
based on the algorithm proposed in Section IV-C and sends
some feedback to the node for subsequent adaptation on
sensing quality and energy efficiency. In a given environmental
setting, the average number of communication exchanges and
the corresponding energy requirement is reasonably fixed.
Moreover, sensing energy of a wireless node in environmental
monitoring is significantly high, which can dominate over
communication energy cost [4]. Since the sensing energy
and quality optimization by exploiting cross-correlation of
parameter values is the main focus, the communication cost
is not accounted in this study.

III. GPR BASED PREDICTION MODEL

As stated in Section I-A, inspired by its good signal recovery
scheme, GPR is used in this work to predict the parameter
values for the inactive set in a multi-parameter sensor hub.
The literature survey reveals that, so far GPR has not been
used for signal recovery in a multi-sensing node.

A modified UCB algorithm, discussed in Section IV, returns
an optimal sensor set. According to the selected set some
sensors are to be activated and rest of the parameter values
are predicted using the GPR model, described in this section.

A Gaussian process can be defined as a distribution over
functions, where the inference takes place directly at the
function space view [11]; in contrast, in Bayesian Linear
Regression the inference takes place in the white space view.
GPR exploits all possible functions drawn from a Gaussian
distribution passing through the points with a standard devi-
ation that would correspond to some uncertainty about the
function.

Let Z be the design matrix consisting of n feature vectors,
y be the target vector having n target values from the training
set, and w be the weight vector. For a test input z∗:

Prior: Pr(f(z∗)) =

∫
w
Pr(f |w, z∗)Pr(w)dw. (2)

Pr(w) is assumed Gaussian and Pr(f |w, z∗) is deterministic,
hence Pr(f(z∗)) is Gaussian.

Posterior: Pr(f(z∗)|Z, y)=

∫
w
Pr(f |w, z∗)Pr(w|Z, y)dw. (3)
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Pr(f(z∗)|Z, y) is also Gaussian in nature [21, Ch. 2].
According to the function view, there is a Gaussian at f(z∗)

for every z∗, and those Gaussians are correlated through some
hyper-parameters, called weights. The correlation among the
Gaussians is drawn from a user-defined covariance function,
such as exponential, linear, etc. Such a large number of
functions with univariate or multivariate Gaussian distributions
constitute a Gaussian process [21, Ch. 2]. A Gaussian process
f(z) is expressed as: f(z) ∼ GP (m(z), k(z, z′)) ∀ z, z′,
where m(z) = E[f(z)] is the mean function and k(z, z′) =
E[(f(z)−m(z))(f(z′)−m(z′))] is the covariance function.

In the proposed approach, the prediction model consists of
N sub-models for N number of sensor sets created from P
parameters. Based on the selected active sensor set Axi ⊂ P
in the xth measurement cycle, its corresponding sub-model is
selected to predict the parameter values of Bxi . Intuitively, the
correlated parameters have more significance in prediction.

During training the model, the active (sleep) set is denoted
as Ai (Bi) and the corresponding measurement vector is
zAi (zBi ). During prediction in xth cycle, the measurement
vectors of the active set Axi and the inactive set Bxi are
respectively zxAi = {zxAi(1), zxAi(2), · · · , zxAi(A

x
i )} and zxBi =

{zxBi(1), zxBi(2), · · · , zxBi(B
x
i )}. Thus, ∀i ∈ Sx, (1) is rewrit-

ten as: zxAi = yxAi + η for Axi , and zxBi = yxBi + η for Bxi .
The sub-models are initially trained using n training sam-

ples. The ith sub-model having Bxi number of regressors to
predict each parameters of Bxi . kth regressor of the ith sub-
model is trained using n input/feature vectors belonging to
the design/training matrix ZAi ∈ R

Ai×n and n target values
belonging to the target vector zBi(k) ∈ R

n×1. If Axi is the
optimal sensor set selected to activate in the xth measurement
cycle, for a point observation zxAi,∗ ∈ R

Axi×1, GPR predicts
yxBi,∗(k) ∈ R,∀k ∈ yxBi . Measurement noise η is assumed to
have zero mean and variance σ2 for all the parameters.
zxBi,∗(k) = yxBi,∗(k) + η = fk(zxAi,∗) + η = fxi,∗(k) + η (4)

where f ∼ N(0,Kn×n). Kn×n = [k(zAi,r, zAi,s)]n×n, where
k(zAi,r, zAi,s) is the covariance function between the rth and
sth instant of design/training matrix ZAi ∈ R

Ai×n.
In a WSN, measurement of sensing parameters generates

time-series data, which implies that they can be temporally
correlated. However, in many cases, such as in air pollution
monitoring, data has low temporal correlation because of
large sampling intervals. In such cases squared exponential
covariance function fits better than the other functions [21,
Ch. 2]. In a noisy environment, the covariance function is:

k(zAi,r, zAi,s) = e
− 1

2l2

Ai∑
m=1
|zAi,r(m)−zAi,s(m)|2

+ σ2δrs. (5)

Prediction model for GPR in a noisy environment is:
fxi,∗(k)|ZAi , zBi(k), zxAi,∗ ∼ N(fxi,∗(k),Cov(fxi,∗(k))), where
fxi,∗(k) is the mean function and Cov(fxi,∗(k)) is the covariance
function that can be derived from (2) and (3) [21, Ch. 2]:
fxi,∗(k) = K(ZAi , z

x
Ai,∗)[K(ZAi ,ZAi) + σ2I]−1zBi(k) (6)

Cov(fxi,∗(k))) = k(zxAi,∗, z
x
Ai,∗) +K(zxAi,∗,ZAi)[K(ZAi ,ZAi)

+σ2I]−1K(ZAi , z
x
Ai,∗). (7)

The complexity of the GPR depends on (K+σ2I)−1 which
is cubic in the number of training points.

Although there are a few signal recovery schemes available
in the literature, these are suitable to estimate a sparse signal.
As presented in [19], Sparse Bayesian Learning (SBL) method
is used to estimate a spatially varying sparse signal in a
densely deployed sensor network. In contrast, the proposed
work considers a single sensor hub fixed at a point in space
which is unaware of the spatial variations of the parameters.
At a multi-parameter sensing hub, multiple cross-correlated
parameter values do not exhibit strong sparsity, which makes
the sparse signal recovery schemes such as SBL [19], Orthog-
onal Matching Pursuit (OMP) [22], inefficient in estimating
the signals. To this end, GPR based prediction model is used
in this work, as it assumes Gaussian prior on the data which
fits well with the sensing signals at the node.

IV. PROPOSED SENSOR SELECTION FRAMEWORK

In contrast to the existing sensor selection frameworks,
which deal with the network-level sensor node adaptation, the
proposed framework deals with the node-level sensor selection
analysis of a multi-parameter sensor hub.

This section describes the proposed optimal sensor set se-
lection framework using a modified UCB algorithm. With the
sample values from the selected set, using the corresponding
GPR sub-model, parameter values of the inactive set are
predicted following the procedure in Section III.

Let cth be the correlation threshold. If a and b have
correlation greater than cth, they are declared as correlated,
else they are uncorrelated. For each subset Axi in xth cycle,

cxi,k =

Axi∑
m=1

1[|cx(m,k)|≥cth];∀k ∈ Bxi and m ∈ Axi . (8)

If cxi,k ≥ 1;∀k ∈ Bxi , then Axi is correlated with Bxi .
Therefore, all the parameters of Bxi can be predicted from the
parameters of Axi . Let C̃xi,k be the set containing the parameters
of Axi correlated with kth parameter of Bxi . For each correlated
pair of subset (Axi ,Bxi ) ∈ Sx , the average cross-correlation
between the parameters of Axi and Bxi is:

Cxi =
1

Bxi

Bxi∑
k=1

1

cxi,k

cxi,k∑
q=1

|cx(q, k)|;∀k ∈ Bxi and q ∈ C̃xi,k. (9)

Cxi = 0 for each uncorrelated pair of subset (Axi ,Bxi ) ∈ Sx.
Cxi can be defined as cross-correlation factor indicating the
correlation between the parameters of Axi and Bxi .

Energy consumption for the subset Axi is:

Exi =

Axi∑
m=1

Enxm;∀m ∈ Axi . (10)

Enxm is the sensing energy consumed by the mth sensor.
Prediction error for the subset Bxi is:

PExi =
1

Bxi

Bxi∑
k=1

Pexk;∀k ∈ Bxi . (11)

Pexk is the prediction error for kth parameter of Bxi .
Cxi and PExi are dynamic, but Exi does not change as the

sensors are assumed to consume fixed energy in sensing.
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A. Modified UCB Algorithm for Sensor Selection
As discussed in motivation, UCB is a popular value-based

method used to solve MAB problems, where the decision of
choosing an optimal arm is taken online based on previous
experiences. The goal is to minimize the regret by maximizing
the reward achieved based on the action [23].

In this work, the UCB algorithm is modified in order to use
in the proposed sensor selection framework. As mentioned
in Section III, N is the total possible number of sensor sets
created from P sensors. The UCB algorithm is used to find
an optimal set in every measurement cycle. Considering the
sensing environment with a sensor hub collecting samples
from the environment as a random process, a reinforcement
learning model is created where the learner can learn the
system with time, based on the previous experience. Since
the samples were drawn from some non-stationary distribution
exhibiting correlations, the learner chooses an optimal sensor
set having M < P sensors, which gives the knowledge of
all the P parameters in the environment that is sufficient to
reconstruct all the time-varying signals.

Choosing an optimal sensor set at some measurement
cycle depends on the strength of cross-correlations among
the parameters of the active set and the inactive/sleep set.
Therefore, the cross-correlation factor defined in (9) acts as
the performance parameter to decide the reward for a sensor
set. Since, the main objective of this study is to optimize the
energy sustainability of the node, the energy consumed by the
sensors upon selecting a sensor set defined in (10) is termed
as another performance parameter to calculate reward.

An optimal set Axi ∈ Sx needs to be selected that minimizes
both prediction error PExi in (11) and energy consumption Exi
in (10) in a way that maximizes the cross-correlation factor
Cxi in (9) and minimizes energy consumption Exi .

To incorporate energy awareness, the residual energy is
considered as another performance parameter for finding the
optimal sensor set. Let Ebatt be the battery capacity of the
node and Ex0 be its available energy in xth measurement cycle.
λx

∆
=

Ex0
Ebatt

is the normalized energy available at the node.
Let Rxi be the reward obtained from some distribution P xRi

for selecting a set Axi ∈ Sx at the xth measurement cycle,
then Rxi can be defined as:

Rxi =
λx(Cxi )γ

νx(Exi )β
, (12)

where νx = max
i∈Sx

(Cxi )γ

(Exi )β
.

The reward is bounded in [0, 1]. A higher value of Cxi means
a better sensing quality. If Cxi > cth for some set i ∈ S, the
corresponding active-sleep sets are correlated, which ensures
faithful reconstruction of the predicted signals. β and γ in (13)
are imposed to control the weight on Cxi and Exi in the reward.
Optimum values of β and γ would minimize the regret.

In contrast to the traditional UCB algorithm where the
reward is assigned to the selected set only, in the modified
UCB algorithm the reward is calculated for every set at
every measurement cycle based on the collected and predicted
samples. Since correlation among the slowly-varying signals
does not change rapidly, in deciding the next state the present

state carries significant information compared to the previous
states.

Assuming the rewards for ith sensor set up to xth cycle
R1
i , R

2
i , · · · , Rxi as a sequence of independent Gaussian ran-

dom variables with true mean µ and variance 1, the empirical
mean of the distribution of reward P xRi is estimated as:

µ̂xi =
1

x

x∑
t=1

Rti =
1

x

x∑
t=1

λt(Cti )
γ

νt(Eti )
β
. (13)

The objective function for selecting an optimal sensor set
at the (x+ 1)th measurement cycle is:

(P1) : Ax+1
i =maximize

i∈Sx
1

x

x∑
t=1

λt(Cti )
γ

νt(Eti )
β

+

√
2 ln 1

δ

T xi

s. t. Cxi > cth and Ix+1Ex+1
i < Ex0 .

(14)

For each sensor set, Cxi is updated after every measurement
cycle whereas Exi remains unchanged because of fixed sensing
energy consumption. Ix+1 denotes the number of samples
collected in (x + 1)th cycle for each parameter, T xi is the
number of times the ith sensor set is activated, and δ is defined
as a confidence bound. The parameter λ controls the weight
on energy efficiency in the reward. If E0 increases (in energy
harvesting nodes) Cxi gets relatively more weight, whereas for
decreasing E0 (in battery-operated or energy harvesting node)
the energy parameter in (14) gets more weight. The impact of
λ on the algorithm performance is explained in Section VI.

In the xth measurement cycle, if µxi∗ is the true mean of
the optimal sensor set i∗ and µ̂xi is the empirical mean of the
selected sensor set i, from [23] for any δ ∈ (0, 1),

P (µ̂xi ≥ µxi∗ +

√
2 ln 1

δ

T xi
) ≤ δ (15)

P (µ̂xi ≤ µxi∗ −

√
2 ln 1

δ

T xi
) ≤ δ. (16)

In (14), the first term is the empirical mean of the distribu-
tion of reward while the second term provides the confidence
bound. T xi is the number of times the set Axi is selected up
to xth measurement cycles. A higher value of T xi makes the
learner more confident about the distribution of reward. At the
end of every measurement cycle, the objective function in (14)
explores all the sets and selects an optimal set that satisfies the
constraints in (14). The first constraint is Cxi > cth; if a set is
not correlated in xth measurement cycle, the probability that
it will be optimal for x+1th measurement cycle is negligible,
although it might have obtained a higher reward in the previous
measurement cycles. The second constraint is related to the
node’s energy availability. The residual energy of the node
has to be more than the total energy consumed in sensing.
Initially, Ti = 1; ∀i ∈ S , as the reward for all the sets can
be calculated from the training samples. δ = 1

(x+2)2
at xth

measurement cycle is found to be appropriate [23].
The algorithm always returns a sensor set to be activated

at the next measurement cycle based on the past experience
unless the two extreme conditions occur: a) parameters are
totally uncorrelated, b) residual energy at the node is not
enough to continue sensing operation. The traditional UCB
algorithm works on the assumption of the stationary distribu-
tion of reward and selects the optimal set having the maximum
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probability of getting the highest reward. In contrast, the dis-
tribution of reward in the considered system is non-stationary.
To incorporate this non-stationarity, the reward is calculated at
every measurement cycle for every set, which helps the learner
to learn the distributions with the recently drawn samples.
Therefore, the function does not stick to choose some sub-
optimal set subsequently; rather it tends to select different sets
at different points of time. The UCB algorithm is re-initiated
while retraining the GPR model given in Section III.

The main objective of the learner is to minimize the regret
which is the price paid by the learner for not choosing the
optimal set. Regret is the expected deviation between the mean
of the optimal set and the selected set. If the selected set is
not optimal then the regret is greater than zero. Therefore,
the underlying cost function is a minimization problem. The
expression of upper bound on regret up to some measurement
cycle for the proposed method is given in (17) and the
derivation is given in the appendix.

Regx ≤
∑

i∈Sx;∆i>0

(1 + 2x2δ)∆i +
∑

i∈Sx;∆i>0

8 ln 1
δ

∆i
. (17)

UCB algorithm is effective as it provides an upper bound
on regret. Although the regret grows with the number of
measurement cycles, UCB offers minimal growth. ∆i is the
difference between the mean reward of the optimal sensor set
and the ith sub-optimal sensor set selected in that measurement
cycle.

The literature survey reveals that, this is the first reinforce-
ment learning-based sensor selection framework for multi-
parameter sensor hub.

B. Adaptive Data Collection Interval
In WSN, data transmission consumes a large percentage of

energy. In a slowly varying process, the correlation among
the sensing parameters changes slowly. Hence, data need
not to be transmitted after every sampling instant, rather
the sampled data can be stored in memory and transmitted
after a certain period which can be called the length of the
measurement cycle or data collection interval. Let, the length
of xth measurement cycle is T x.

The communication module consumes significant energy
during its ON period. By optimally activating the communica-
tion module, the energy consumption can be reduced. On the
other hand, the data correlation changes with time due to the
non-stationary nature of the environment at parameter values.
A smaller length of measurement cycle T x maintains a similar
cross-correlation among the parameters over the whole cycle,
however at the cost of a higher communication energy. On the
other hand, a larger T x reduces the communication energy but
the data correlation may change abruptly, thereby affecting the
optimality of sensor selection within the measurement cycle.
The fixed sample-based approach, proposed in [1], works on
individual sensors. Therefore, it is not suitable for the proposed
multi-sensing framework. Hence, the data collection interval
in the proposed work is adaptive to the stochasticity of the
environment.

The data collection interval T x in the proposed framework
is adapted using a parametric mapping function given in

(19) based on the change in cross-correlations among the
parameters given in (18) [24].

d =
1

N

N∑
i=1

|Cxi − Cx−1
i | (18)

y(d) = ao + a1(d)α (cycle/hour), (19)

where d is the average difference between present and past
cross-correlation factors over set S and y(d) is the frequency
of measurement cycle in cycle/hour. The length of xth mea-
surement cycle is T x = 1

y(d) . ao and a1 can be computed
using the boundary conditions: d ∈ [0, 1] for y(d) ∈ [bo, b1]
where bo and b1 are user-defined. α is the shape parameter
which decides the rate of adaptation. The optimum value
of α is determined numerically by minimizing the regret in
(17), which is convex with respect to ∆i. Regret varies with
the variation of α, as the number of samples collected at a
particular measurement cycle varies with α. Hence there exists
an optimum value of α which minimizes the regret function.

The sampling rate of the selected sensors is decided based
on Nyquist criteria. The maximum frequency of each pa-
rameter is computed after predicting the missing samples.
The largest one among all frequencies is declared as the
maximum frequency of the sensor hub and the Nyquist rate is
calculated accordingly. In a dynamic stochastic environment,
this sampling frequency may change in every measurement
cycle, hence it is recomputed.

C. Feedback Mechanism for Adaptive Sensor Selection
The adaptive sensor selection algorithm is given in Algo-

rithm 1 which runs at the CE and gives feedback to the sensor
node. Initially, the prediction model is trained at the CE using
a sufficient number of samples n collected at the node. The
prediction model consists of N sub-models for N subsets in S.
To retrain the model, the temporal correlation of the individual
parameters is exploited. As these are slowly varying temporal
signals, it is expected to have a strong temporal correlation
among the signals from cycle to cycle. Let, ctxp is the temporal
correlation of the pth parameter in xth measurement cycle and
ctp,th is the temporal correlation threshold of pth parameter,
defined by the user to maintain an acceptable rage of prediction
error. ctxp is computed by drawing an equal number of samples
from the reconstructed signals at the present and past cycles
at a fixed interval. Since prediction errors are random, the
increase in prediction error reduces the temporal correlations
among the signals. Hence, all the sensors are to be activated
in the (x + 1)th measurement cycle if ctxp � ctp,th∀p ∈ P
in xth measurement cycle. Samples collected in (x + 1)th

measurement cycle is used as a test data-set to find prediction
error (test error) for all the N sub-models. If the error for
any sub-model differs from the recorded error during training
(PEi) by some value (εi) then the complete GPR model is
retrained by collecting n training samples from all the sensors.
In Algorithm 1, PEi and PExi are the prediction errors of
the ith sensor set during training/retraining and during xth

measurement cycle respectively. The CE collects input from
the node, runs the algorithm, and sends feedback to the sensor
node. The inputs to the sensor hub are the optimal sensor
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Algorithm 1: Active sensor set selection at the CE

Input: Sampled data and Ex0 from the sensor node
if e=1 then

Retrain and test the model with recently collected
samples

Find PEi; ∀i ∈ S using (11)
Set x = 0, e = 0, and T x = T ′

else
if e’=1 then

Find PExi ; ∀i ∈ S using (11)
if |PExi − PEi| ≤ εi;∀i ∈ S

x then
Calculate y(d) from (18) and (19)
Set T x = 1

y(d)

Set e′ = 0
else

Set e′ = 0, and e = 1
Find maximum frequency fpm; ∀p ∈ P using

FFT
Set fxs = 2×max{f1

m, f
2
m, f

3
m....f

P
m}

Set T x = n
fxs

end
else

Predict the missing samples using the appropriate
sub-model of GPR

Calculate y(d) from (18) and (19)
Set T x = 1

y(d)
Find ctxp ;∀p ∈ P
while ctxp � ctp,th; ∀p ∈ P do

Set e′ = 1
end

end
end
while e=0 do

Construct Sx and calculate Cxi and Exi ; ∀i ∈ S
x using

(9) and (10) respectively
Find optimal active sensor set A(x+1)

i by solving (14)
Find maximum frequency fpm; ∀p ∈ P using FFT
Set fxs = 2×max{f1

m, f
2
m, f

3
m....f

p
m}

end
Set x = x+ 1
Output: Transmit updated T x, fxs ,A

(x+1)
i , e, e′ to the node

set Axi that contains the sensors to be activated in the xth

cycle, the length of xth measurement cycle, sampling rate fxs
in the xth cycle, and the status of the two flags e, e′. The
outputs of the sensor hub are the data collected by the sensors
belonging to Axi and the remaining energy of the node, which
are transmitted to the CE. Based on the status of the two flags
e, e′ and the sensors belonging to the active set Axi , the sensor
node activates the sensors. T ′ is chosen by the user for some
y(d) ∈ [bo, b1] as the length of first measurement cycle.

D. Complexity of the Proposed Framework
The computational complexity in training/retraining and

prediction with feedback mechanism are different. During
training, the parameters are computed where the complexity
is the O(N). Complexity of GPR model is O(n3), where
n is the number of training samples. If t, u, and v are the
numbers of α, β, and γ respectively comprising the search
space, then the total computational complexity in training
N sub-models with k-fold cross-validation is ≈ (t + u +
v)O(N) + k(

∑N
i=1Bi)O(n3). Complexity in prediction in

TABLE I: Specifications of sensors

Sensors Parameters Energy con-
sumption (J)

DHT11 Temperature, Humidity 12m
MQ-137 NH3 1.1
AFE-A4 alphasense NO2, Ozone, CO, SO2 54m
Alphasense OPC N3 PM10, PM2.5 29.55

the xth measurement cycle is ≈ BxIxO(n′
3
), where Bx

is the number of parameters in the inactive set selected to
turn off and Ix is the number of samples collected for each
parameter in xth measurement cycle. n′ = 1 is the number of
predictions made at an instant of time. Complexity in finding
optimal sensor set using (14) is O(N). Therefore, complexity
in prediction and feedback mechanism in xth measurement
cycle is given by ≈ BxIxO(n′

3
)+O(N), where N = 2P −2.

In contrast, the complexity of the algorithm in [1] is O(P ).
Although the complexity of the proposed framework is higher
than the existing competitive methods, the whole computation
is done by the CE and the sensor node has the only task of
sensing based on the active set input from the CE.

V. EXPERIMENTAL SETUP

The performance of the proposed algorithm explained in
Section IV is evaluated using experimental and simulation
results. To demonstrate the efficiency of the algorithm in real-
life applications, an air pollution monitoring sensor hub is
deployed on the campus to collect data. The sensor node
consists of seven sensors monitoring nine parameters in the air.
The various sensors used to collect data are listed in Table I
along with their energy consumption. The energy consumption
of sensors includes the energy to turn on the sensor, to heat-
up (heat-up time is the time required to prepare for sensing),
and sensing (to collect the first two good data) from the
environment. It is assumed that the energy consumption of
the sensor does not change with time or place. Four different
gas concentration monitoring sensors (NO2, Ozone, CO, SO2),
embedded in the 3rd sensor board, powered by a single supply
pin, makes it difficult to measure the energy consumption
of individual sensors. Therefore the sensing energy of the
four sensors is considered as 1.57J, 0.054J, 0.642J, and 1.35J
respectively [6].

Correlation exhibited among the parameters has been stud-
ied and it has been observed that most of the parameters have
a cross-correlation coefficient higher than 0.5. In Table I, it
can be observed that the OPC N3 used as a particulate matter
sensor consumes huge energy. Therefore it is required to
smartly handle this sensor. The main objective of the proposed
framework is to make such nodes energy efficient by optimally
operating the sensors.

The experimental setup gave a set of raw data based on
certain sampling periodicity, which gives a parameter variation
profile. The algorithm described in Section IV is applied on
that data set, which returns an active sensor set. Correspond-
ingly, some data has been chosen from that same data set while
the rest of the values are predicted. The simulation results
given in the next section validate that the predicted values
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combined with the actual values are sufficiently good with
respect to the actual values to reconstruct the signals.

VI. RESULTS AND DISCUSSION

This section demonstrates the significance of results with the
proposed framework. As discussed in Section V, the dataset
collected by deploying an air-pollution monitoring node with
nine sensors mounted on it is used to study the proposed
algorithm. The performance of the learning-based algorithm is
compared with the most recent and nearest competitive sensor
data collection algorithm in [1], based on the Anova model
and Bartlett test. The simulations have been performed in
MATLAB along with training/retraining the prediction models.

To find a suitable correlation threshold, the average of
max(CiEi );∀i ∈ S is calculated up to some measurement cycle
for cth ∈ [0, 1], shown in Fig. 1. It has been observed that the
maximum value lies on cth ∈ (0.5, 0.7). According to the
literature, if correlation coefficient between two parameters is
higher than 0.5, they can be declared as correlated[25]. Form
the Fig. 1 up to cth < 0.5, Ci is increases with increasing cth
but after cth > 0.7, Ei increases, as the number of sensor set
satisfying the criteria given in (8) is reduces. after cth > 0.9 it
is almost 0 because none of the parameters are having cross-
correlation higher than 0.9. Choosing cth = 0.5 make the
system more energy-efficient with relatively larger prediction
error, while choosing cth = 0.7 increases the predicted signal
quality by reducing the energy efficiency.

To find optimum training length for the models average
value of prediction error ( 1

N

∑N
i=i PEi;∀i ∈ S) has been

studied, where PEi is the prediction error of ith inactive
sensor set computed from (11). The prediction error of each
parameter is measured in terms of mean relative error (MRE),
given in (20). Form Fig. 2, it can be observed that increasing
the length of the training sequence reduces test error until the
model starts over-fitting the data. An optimum training length
can be chosen between 1500−1600 assuming that all N sub-
models perform well with minimum train and test error.

MRE for a parameter p ∈ P is defined as:

MREp =
1

I

I∑
i=1

|zp(i)− ẑp(i)|
|zp(i)|

. (20)

zp(i) and ẑp(i) are the ith samples of the actual and predicted
data sequence respectively. I is the total number of samples.
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Fig. 1: Optimum correlation
threshold 0.5.
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Fig. 2: Optimum training
length 1500.

A. Finding Optimum values Parameters
The optimum values of parameters (α, β, and γ) that mini-

mize the regret function defined in (17) have been determined

numerically based on the training samples and these values
are recomputed at the time of retraining the models.
β = γ = 1, bo = 1cycle/hr, and b1 = 2cycle/hr is set for

the objective function given in (14) to find the optimum value
of α for the function given in (19) that minimizes the regret
given in (17). Fig. 3(a) shows that the regret is minimum for
some α and slightly varies with the variation of measurement
cycles. An optimum value of α = 0.7 is chosen to simulate the
proposed algorithm. The ∆i;∀i ∈ S is changing with time, as
the reward distribution is non-stationary in practical. Since the
true mean is unknown, the averaged empirical mean is used
to find ∆i for the ith sensor set.

Similarly, β is chosen by setting α = 0.7 and γ = 1, shows
in Fig. 3(b). An optimum value of β = 1.8 gives minimal
regret. From Fig. 3(c), γ = 1 can be picked up as it minimizes
the regret for α = 0.7 and β = 1.8.

B. Simulation Results of the Proposed Algorithm
Simulation results on the proposed algorithm for cth = 0.5

using (14) are shown in Fig. 4. Fig. 4(a) presents the various
sensor sets activated at different measurement cycles. Since
optimal sensor set changes with time due to the non-stationary
distribution of reward, the learner selects different active sen-
sor sets at different measurement cycles. The cross-correlation
factor of the active sensor set at different measurement cycles
is shown in Fig. 4(b). Although the cth is set to 0.5, the
cross-correlation factor of the active sensor set is much higher
than the threshold, cth, which ensures a good prediction
performance. Fig. 4(c) shows that the data collection interval
is adaptive to the system dynamics.

Average energy consumed by the active sensors and average
prediction error of the parameters belongs to the inactive set
are considered up to some measurement cycles to show the
trade-off between energy consumption and prediction error,
which can be clearly observed in Fig. 5(a). Increasing the
number of active sensors with the order given in Table-
1 increases sensing energy consumption while reducing the
prediction error. The variation of prediction error with cth is
presented in Fig. 5(b), which shows that increasing cth reduces
the prediction error while increasing the energy consumption,
as more number of sensors are to be activated.

Fig. 6 shows that, using E0 increases the network lifetime
for lower values of cth. A higher value of cth reduces the
energy efficiency; the effect of E0 is negligible at cth = 0.8.

Incorporating energy awareness in the reward makes the
system adaptive to energy availability at the node.

C. Performance Comparison with State-of-the-Art:
As discussed in Section I-B, although many works have

been reported on sensor selection algorithm, most of the
recent works are dedicated to network-level adaptation. On the
contrary, the proposed sensor selection algorithm is dedicated
to node-level adaptation. The performance of the proposed
algorithm is compared with the most recent competitive data
collection algorithm proposed in [1]. The algorithm proposed
in [1] is based on a statistical approach, which uses one-way
Anova model and Bartlett test to find the new sampling rate.
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Fig. 4: Simulation results of the proposed algorithm, for cth = 0.5, l = 1, σ = 0.0005.
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tion error versus cross-correlation threshold.
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Fig. 6: Network life time with/without using E0 in the reward.

On the other hand, the proposed algorithm is based on learning
technique that selects a set of sensors in a measurement
cycle from the total number of sensors available in the node,
and these sensors collect samples based on the Nyquist rate.
Unlike the work in [1], where the adaptive sampling algorithm
is applied in the node itself, the proposed sensor selection
algorithm is computed at the CE, which reduces the processing
energy at the node.

Samples collected by the active sensors are received at the
central entity, where the missing samples of the parameters
belonging to the sleeping set are predicted. For a faithful
reconstruction of the signal, MRE given in (20) is used as
a performance index. zP (i) and ẑp(i) in (20) are respectively
the ith samples of the actual and reconstructed data sequence
for the pth parameter. Following [4], MRE threshold is set
as 1%. Reconstruction errors for the nine parameters using
Anova-based adaptive sampling [1] and proposed framework
for cth = 0.5, 0.7, and 0.8 are listed in Table II. It has
been observed that the reconstruction error in the proposed
framework for cth > 0.5 is below 1% for all the parameters.

TABLE II: Reconstruction error (MRE)

Parameters Anova
model

Proposed
framework
(cth = 0.5)

Proposed
framework
(cth = 0.7)

Proposed
framework
(cth = 0.8)

Temperature 0.00091 0.0007 0.00065 0.00051
Humidity 0.00072 0.00082 0.00061 0.0005
PM10 0.00093 0.0092 0.0019 0.0011
PM2.5 0.00086 0.0091 0.0015 0.0012
CO 0.0028 0.0098 0.0039 0.00107
NH3 0.0012 0.0035 0.0004 0.0003
NO2 0.00082 0.0033 0.00083 0.00081
Ozone 0.0011 0.0064 0.0018 0.001
SO2 0.00098 0.0048 0.001 0.0006

The parameters having lower energy consumption (Temper-
ature, Humidity) are activated more frequently. Hence, for
those parameters sensing error is lower in the proposed model
compared to the Anova-based model.

The average reconstruction error for P parameters at the
xth measurement cycle is given by,

REx =
1

P

P∑
p=1

MRExp , (21)

where MRExp is the reconstruction error for the pth parameter
at the xth measurement cycle.

Fig. 7(a) shows a comparison of average reconstruction
error, computed using (21), for the Anova-based model and
the proposed framework for three different values of cth. It is
analytically observed that, with cth = 0.7, the error for the
proposed learning-based model is similar to the Anova-based
model. Considering cth = 0.5, the error is higher than the
Anova-based model but it is still lower than 10−2. Following
[4], MRE < 10−2 is acceptable. The error goes below 10−3

for cth = 0.8. Thus, in the proposed model a suitable value
cth can be set to achieve the required error performance.

To obtain the energy efficiency of the proposed model over
the existing methods, the sensing energy consumption at the
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Fig. 7: Comparison of (a) energy consumption and (b) error of the proposed framework with Anova-based model [1].

TABLE III: Performance comparison of adaptive data collec-
tion interval with fixed sample based approach

Parameters Fixed
(W = 30
samples)

Fixed
(W = 50
samples)

Fixed
(W = 100
samples)

Adaptive
(T x ∈
[30, 60] min)

∆Cx
avg 0.083 0.129 0.153 0.0922

Communication
energy (J)

166.3277 117.8177 83.1677 110.8877

node is compared assuming the node is battery operated. If
Elp and Ela are respectively the sensing energy consumed up
to l cycles in the proposed framework and the Anova-based
adaptive sampling algorithm, then the percentage of energy
saved is given by,

Energy saved =

[
1

L

L∑
l=1

Ela − Elp
Ela

]
× 100%. (22)

From Fig. 7(b), it can be observed that the residual energy
of the node at any measurement cycle in the proposed model
with cth = 0.8, 0.7, and 0.5 are relatively much higher
compared to the Anova-based model. The energy efficiency
of the proposed model over the Anova-based model is com-
puted using (22). For cth = 0.7, the proposed framework
is 46% more energy-efficient compared to the Anova-based
adaptive sampling algorithm while maintaining a similar error
performance. Considering MRE in the acceptable range (1%),
the proposed framework with cth = 0.5 saves 54% energy
compared to the Anova-based model. For cth = 0.8, the
proposed model can save 27% energy with 30% improvement
in accuracy compared to the Anova-based model.

As discussed in Section IV-B, the data collection interval
T x in the proposed model is adaptive to the process dynamics.
This is in contrast with the Anova-based model [1], where the
data collection window (number of samples,W) is fixed. If the
ith sensor set is selected at the xth measurement cycle, then
the change in cross-correlation factor ∆Cx = |Cxi − C

x−1
i |

should be minimum for optimal operation. The average of
∆Cx (∆Cxavg) over a large number of measurement cycles is
computed to compare the performance of the proposed method
with that in [1]. Although ∆Cxavg is lower for lower values of
T x, it increases the communication energy consumption. Let
Ec = Ec1 +Ec2 is the total communication energy consumed
by the radio module over a day, where Ec1 is the ON state
energy required for the communication module and Ec2 is the

transmission energy. According to [26], Ec2 is much higher
than Ec1 . Thus, Ec is mainly decided by the number of times
data is sent to the CE. Considering that 32 bits are required to
represent a sample packet, Ec1 and Ec2 are calculated form
the theoretical measurements given in [26]. As shown in Table
III, ∆Cxavg increases and Ec reduces with increase in W .
The optimal condition is achieved for the adaptive length of
measurement cycle, where the ∆Cxavg is slightly higher than
that with the minimum fixed window size W = 30, but and
Ec is much lower than that with W = 30 and W = 50.

D. Sensitivity of the Proposed Framework to Different
Reinforcement Learning Algorithms

The proposed framework uses the UCB algorithm to define
the objective function and solve the trade-off between the
performance parameters. There are various algorithms avail-
able in the literature, such as Thompson sampling, Q-learning,
etc., to solve reinforcement learning problems. Q-learning
uses the Bellman equation to find the Q-values of the states
by estimating future rewards. The proposed framework is
considered as stateless, which is modeled as a MAB problem.
The MAB problems can be solved using ε-greedy, Thompson
sampling, UCB algorithm, etc. However, the stateless variant
of Q-learning also can be used to solve such problems [27].
The performance of the UCB algorithm in the proposed work
is compared with Q-learning and Thompson sampling with
respect to sensing energy consumption, cumulative reward,
and computation complexity. The results are listed in Table
IV. The ε-greedy method is used in Q-learning to choose
an optimal sensor set, where ε is decaying with time. In
this simulation initial value of ε, decay, and the learning
rate are chosen as 1, 0.95, and 0.9, respectively [27]. It has
been observed that the total sensing energy consumed at the
node and the total reward achieved over a long number of
measurement cycles are similar in the case of UCB and Q-
learning. However, Thompson sampling performance is poorer.
The complexity of UCB, Q-learning, and Thompson sampling
are O(N), O(NIitr), and O(N), respectively, where Iitr is
the number of iterations required to find the Q-value of each
sensor set. Although in terms of cumulative reward and sensing
energy consumption Q-learning performs marginally better, its
computational complexity is higher than UCB. Hence, UCB
is considered to be appropriate in the proposed framework.
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TABLE IV: Performance comparison of different reinforce-
ment learning algorithms in the proposed framework

Algorithms UCB Q-
learning

Thompson
sampling

Sensing energy
consumption (J)

2504.2 2502.3 2602

Cumulative reward 27.04 27.08 25.42
Computational
complexity

O(N) O(NIitr) O(N)
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Fig. 8: Variation of prediction error with measurement cycle

E. Signal Recovery
GPR (presented in Section III) directly predicts the time-

varying function with a certain confidence interval. Although
many sparse signal recovery techniques are discussed in the
literature, those are efficient if the data has a large feature
dimension and they exhibit sparsity. Unlike that, in the pro-
posed framework the sensor node consists of a limited number
of sensors, which makes the feature dimension very small.
Moreover, signals with multiple parameters exhibit less spar-
sity compared to the signals with a single parameter. Therefore
GPR is appropriate to use in the proposed framework.

From Fig. 8, it can be observed that the prediction error
PEx given in (11) increases with measurement cycle. Hence,
the GPR model is retrained when prediction error exceeds an
error threshold. For N sub-models different values of εi;∀i ∈
S are chosen such that the MRE remains within the 1% i.e,
εi = 0.01 − PEi. By exploring the data, ctp,th = 0.88 is
chosen for all the parameters such that the prediction error
remains within the error threshold. The sub-models having
MRE higher than 1% are discarded from S, hence the sets
corresponding to those sub-models are not considered while
choosing an optimal sensor set.

A comparison of actual and reconstructed signals for tem-
perature and PM10 are shown in Fig. 9. The actual signal cor-
responds to the data-set collected from the experimental setup
and the reconstructed signal combines the actual data (when
the sensor set is active) with the predicted data (when the
sensor set is inactive). It can be observed that the reconstructed
signals follow the actual signals, hence these are overlapping,
which validates the performance of the GPR model.

VII. CONCLUDING REMARKS

In this paper, a novel adaptive sensor selection strategy
is presented based on the GPR and UCB algorithm. In
a non-stationary environment, learning the system with all
previous experience gives better insight about the dynamics
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Fig. 9: Actual and reconstructed signals of the air pollution
monitoring parameters.

of the system rather than focusing on the immediate previous
experience only. The correlation factor developed in this paper
acts as a good performance index to indicate the sensing
quality of the predicted signals due to the infeasibility of
finding actual prediction error. The proposed method finds
an optimal sensor set based on the process dynamics with
efficient energy management. Extensive studies on the air
pollution monitoring data validate that the proposed algorithm
is significantly energy-efficient compared to the current state-
of-the-art. In future, temporal correlations for each parameter
will be exploited to find optimal sampling instants instead of
doing at Nyquist rate, which will further reduce the number
of samples that need to be collected.

APPENDIX

Let µ̂xi be the empirical mean of set i after x measurement
cycles; set i is selected for s ≤ x times. From [23, Ch. 7],
with δ as the confidence bound, we have:

Pr(∃ s ≤ x : µ̂xi ≥ µxi +

√
2 ln 1

δ

T xi
) ≤ xδ. (A.1)

Let i be any sub-optimal set and i∗ be the optimal. Assume
for all x the estimated mean is within the confidence bound.

From (15): µx−1
i +

√
2 ln 1

δ

T x−1
i

≥ µ̂x−1
i

From (16): µ̂x−1
i∗ +

√
2 ln 1

δ

T x−1
i

≥ µx−1
i∗ .

Suppose in xth measurement cycle set Axi is activated. If Axi
is a sub-optimal set then the loss suffered by the learner is
∆x
i = µxi∗ − µxi . Thus, we can write:

µx−1
i + 2

√
2 ln 1

δ

T x−1
i

≥ µ̂x−1
i +

√
2 ln 1

δ

T x−1
i

≥ µ̂x−1
i∗ +

√
2 ln 1

δ

T x−1
i

≥ µx−1
i∗ = µx−1

i + ∆x−1
i .

∴ T x−1
i ≤

8 ln 1
δ

(∆x−1
i )

2 and T xi ≤ 1 +
8 ln 1

δ

(∆x
i )

2 . (A.2)

(A.2) infers that the sub-optimal set is not selected too often.
Regret decomposition over the sets in x measurement cycles:
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Regx = E[

x∑
t=1

µti∗ − µti] = E[

x∑
t=1

∆t
i]

= E

x∑
t=1

[
∑
i∈Sx

1(At=Ai)∆i] =
∑
i∈Sx

∆iE[T xi ]

≤
∑

i∈Sx;∆i>0

∆i[1 + 2x2δ +
8 ln 1

δ

∆2
i

]

≤
∑

i∈Sx;∆i>0

(1 + 2x2δ)∆i +
∑

i∈Sx;∆i>0

8 ln 1
δ

∆i
.

(A.3)

The upper bound on regret can be achieved using (A.3).
In this decomposition it is assumed that the loss suffered by
selecting the ith sub-optimal set at any cycle is the same.
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