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Energy-Efficient Temporal Sensing:
An Age of Sample Based Approach

Vini Gupta and Swades De

Abstract—In this paper an energy-efficient temporal sensing
framework is proposed for a wireless sensor node (SN) moni-
toring a temporal process. A concept of age of sample (AoS)
is introduced, and expressions for the AoS and average AoS
functions are derived that capture freshness of sensed samples (or
inter-sample time). To incorporate the effect of process variations,
weighted AoS (WAoS) and its average functions are developed.
The framework solves a multi-objective optimization problem
(MOP) that optimizes this average WAoS function and energy
efficiency of the SN to select a few temporal sensing instances of
a sensing window while maintaining a predefined sensing quality.
An upper bound on the average WAoS is derived which makes the
MOP solvable. Using these few measurements, the process signal
across entire sensing window is estimated by leveraging inherent
temporal correlation. The idea of adapting sensing window
according to the changing correlation of the process is also
presented, which addresses non-stationary aspect of monitored
process. Simulation studies on real data-sets illustrate that, on
comparison with the closest existing scheme, the proposed scheme
provides 30.1% gain in sensing quality while consuming nearly
same sensing energy. Further, it consumes 22.4% lesser sensing
energy to maintain nearly same sensing quality.

Index Terms—Age of sample, energy efficiency, sensing win-
dow, sensing quality, temporal correlation, multi-objective opti-
mization

I. INTRODUCTION

In the era of Internet-of-Things (IoT), various real- and non-
real-time monitoring applications, such as smart healthcare
[1], environment sensing (pollution monitoring) [2], indus-
trial process monitoring [3], etc., rely mainly on wireless
sensor networks (WSNs). Such networks contain battery-
constrained sensor nodes (SNs) that limits their continuous
sensing operations. To alleviate this problem, intelligence is
imparted at the node-level to perform energy-efficient sens-
ing. This energy-efficiency is realized by exploiting temporal
correlation-induced sparsity present in a slowly-varying mon-
itored process. This allows sensing of the process at a few
time instances and using these few measurements to estimate
entire observation window without significant loss in sensing
quality.

A. Related Works

Early technique, presented in survey [4], altered duty cy-
cle

(
on time

(on + off) time

)
of a SN either randomly or based on

some logic. This saves SN’s energy and extends its lifetime.
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Likewise, the work in [5] dynamically altered the duty-
cycle of a mote using a machine learning-based preamble
sampling scheme. Further, some variants of random sampling
approaches are discussed in works [6]–[9]. Herein, for each
time instance k in a window of total K instances, a few sensors
are randomly activated. Thus, a sensor is activated only at a
few temporal instances out of total K instances.

Subsequently, several works were reported in literature that
exploit temporal variations of the to-be-sensed processes to
adapt the sampling rate at the nodes. In [7], sampling rate
is exponentially increased and additively decreased based on
some heuristic. In contrast, in [10], a linear increase and an
exponential decrease-based approach is employed to adapt the
sampling rate while simultaneously ensuring the required sens-
ing quality. Further, context-aware adaptive sampling schemes
were proposed in [11] for sensing dependent parameters in a
landslide monitoring scenario. Recently, various multi-sensing
approaches that adapt the sampling rate by exploiting tempo-
ral, spatial, and cross-correlation among various monitoring
processes were proposed in the work [12].

Analogous to the IoT monitoring application, the authors in
[13] proposed a cloud resource monitoring approach that used
certain user-defined policies as threshold for current stream
variability to adjust monitoring intensity. Recently, an adaptive
monitoring (AdaM) framework for IoT devices was proposed
in the work [14]. It dynamically adjusts temporal sampling
rate of the sensing device based on the confidence of the
model (probabilistic moving average estimation model) used
to estimate current evolution of metric stream.

The temporal sampling problem is also addressed from
communication perspective in works [15]–[19]. The sampling
schemes suggested therein, such as zero-wait [17], [19],
sample-at-change [19], uniform sampling, threshold policy
in signal variation [17], aimed to optimize the freshness of
information that a receiver has about the status of a source.
To capture the freshness, age of information (AoI) metric is
used in [17] while mutual information is employed in [18].

B. Research Gap and Motivation
The duty cycling and random sampling-based techniques do

not guarantee the required sensing quality, as highlighted in
[20]. Further, the sampling rate adaptation logic proposed in
random sampling-based work [7] may not provide significant
energy saving due to multiplicative increase in the sampling
rate when the process variation increases above a heuristically
chosen threshold value.

As suggested in [13], the sampling frequencies should be
adapted such that the changes in the statistical characteris-
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tics of the monitored time series (i.e., the sensed process)
are accommodated. The AdaM framework [14] accounts for
changes in the statistical properties of the process. However,
the window used for sampling period (T ∈ [Tmin, Tmax]) is
kept fixed for all scenarios. Intuitively, the duration of data
stream/process with high correlation should have a larger
window and vice-versa. Besides this, most of the prior works
do not incorporate measurement noise in the system model.
Thus, the thresholds set therein for sampling rate adjustment
may not work for noisy measurement scenarios. Further, the
works [13] and [21] give insight on the inability of the error
measure to guarantee an accurate quality measure for dynamic
processes. However, the approaches [6], [7], [14] considered
some form of the error measure only to achieve energy-
efficient temporal sampling.

The AoI-based monitoring system in [15] assumed a con-
stant inter-sample time which may not suit well for monitoring
both slowly and rapidly varying processes. The sampling
policies in [16], [17], [19] aimed to achieve the timeli-
ness/freshness of status updates at the receiver without con-
sidering energy efficiency aspect of the battery-constrained
sources (e.g. a sensor node). Further, in the threshold-based
[17] and sample-at-change [19] approaches, the sampling
decision (sense or not) at a time requires exact knowledge
of the process signal at that time, which can be obtained only
after performing sampling. Thus, there is no point in making
the sampling decision when sensing has to be performed
for the same. Also, this will require continuous sampling
which is inefficient from both the energy consumption and
communication perspective.

To fill these research gaps, this work proposes a novel
age of sample (AoS)-based energy-efficient temporal sensing
framework for a wireless sensor node. The AoS at any time
t accounts for the time elapsed since the sensing time of the
most recent sample of the monitored process (i.e., t− trecent).
The framework considers the temporal variation of the process
and jointly optimizes the average AoS function and energy
efficiency to activate the SN during a subset of time instances
in a sensing window such that the required sensing quality
is maintained. With the newly-introduced AoS function the
sensing instants within a sensing window are optimized. From
sensing perspective, this has potential applicability for real-
time monitoring/sensing. Further, the developed framework
adjusts the sensing window based on the correlation statistics
of the non-stationary monitored process. It also provides an
error-bounded estimate of the process signal across the entire
sensing window using a few sensed temporal measurements. It
is also notable that the measurement noise is considered in the
selection of temporal sensing instances and signal estimation
task as well.

The AoI-based freshness of data is modeled using channel-
induced data transmission delay from source to receiver in
[16]. In this context, the work [22] utilized the speed of the
reader and distance traveled by it to collect data from the
sensors of a cluster. Different from the AoI-based freshness of
data update at the receiver, the proposed AoS-based sensing
deals with freshness of the sampling process at the source
node. To the best of our knowledge, the optimization of

time/gap between the sensing operations within a sensing
window (quantified using AoS) has never appeared in the liter-
ature. In contrast to the AoI functions, the proposed weighted
AoS function depends on the variations of the monitored
process.

C. Contributions and Significance

Key contributions of this work are as follows:
1) A concept of AoS function for quantifying the staleness

of a sensed sample of an environmental process is
introduced. Generalized AoS and average AoS functions
are derived. A weighted AoS function is also defined to
capture the effect of variations of the process on the
proposed AoS-based temporal sensing framework.

2) A multi-objective optimization problem (MOP) is pro-
posed that jointly optimizes the weighted AoS function
and node’s energy efficiency subject to a constraint on
the sensing error. It selects a few sensing instances of a
sensing window which contains multiple time instances.

3) An upper bound on the average weighted AoS
function is derived that makes the proposed MOP
tractable/solvable.

4) A logic is developed to estimate the time instants at
which the statistics (mean value is considered here) of
the process changes. The length of sensing window is
adapted at this point according to the correlation present
in the monitored process. This captures non-stationarity
aspect as well of the monitored process.

5) The proposed framework is tested on real data-sets of
two pollutants monitored at different sites. Simulation
results demonstrate that the proposed framework pro-
vides a better average sensing quality compared to the
closest existing competitive scheme while consuming
nearly same sensing energy. Further, to provide same
sensing quality as that of the competitive scheme, the
proposed framework consumes lesser sensing energy.
Unlike the existing literature, this work adapts the
sensing window length according to the correlation of
the process. Heat-maps of the actual process and the
one estimated using the temporal sensing measurements
are also presented to highlight the obtained sensing
performance.

The proposed framework has immense utility in various IoT
applications such as smart healthcare, environment monitoring,
border surveillance, hazardous gas monitoring, etc.

D. Organization and Notation Conventions

The layout of the paper is as follows. The system model
for data acquisition and estimation are presented in Section II.
Section III presents the proposed concept of the AoS. Tem-
poral sensing framework is described in Section IV, followed
by simulation results and concluding remarks, respectively in
Sections V and VI.

In this work, a real-valued matrix of size M ×K and a real
vector of size K × 1 are denoted by V ∈ RM×K and v ∈
RK×1 respectively. The kth element and l2-norm of vector v
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Fig. 1: Set-up for sensing.

are respectively represented by v (k) and ∥v∥. The (m, k)th

element, mth row, and trace of V are represented by V (m,n),
V (m, :), and Tr {V} respectively. The operators (.)T , diag (·),
and |.| denote the transpose of the vector/matrix, the standard
diagonalization operation on a vector, and the cardinality of a
set respectively. The superscript (k) and subscript w refer to
the vector/matrix argument corresponding to kth time instance
of wth sensing window respectively.

II. SYSTEM MODEL: DATA ACQUISITION AND
ESTIMATION

Consider a SN monitoring a temporally varying
process. Let the temporal sensing instances be T
time units apart. A sensing window Aw that contains
total K time instances for sensing is considered.
Aw = {(w − 1)KT, (w − 1)KT + T, · · · , wKT − T} ,
w = 1, · · · ,W, with W being total number of sensing
windows in which entire sensing duration (WKT time units)
is divided as shown in Fig. 1. Note that the time duration
of w = 1th sensing window (A1) is [0,KT ) with sensing
instances {0, T, · · · , (K − 1)T}. The time [(K − 1)T,KT )
is included because before the next sensing operation at KT
time in the next window, the AoS will be governed by the
current sensing window (w = 1).

Let the signal corresponding to the monitored process
sensed by the SN during the K time instances of the
window w is represented by temporal signal vector zw =
[zw (1) , · · · , zw (K)]

T ∈ RK×1. Due to the temporal cor-
relation present in the process, it can be monitored/sensed
using a few time instances. Let a fusion center (FC) selects
Mw (≤ K) time instances for sensing by the SN during the
sensing window w. Let the active/sleep status of the SN during
the different temporal instances of window Aw be denoted
by a

(k)
w = 1/0, ∀ 0 ≤ k ≤ K − 1. These constitute a

binary activity set Mw such that |Mw| =
∑K−1

k=0 a
(k)
w = Mw.

For instance, if the SN senses at time instances 0T, (K-2)T,
and (K-1)T, then a

(0)
1 = 1, a

(K−2)
1 = 1, and a

(K−1)
1 = 1,

which results in M1 = {1, 0, · · · , 1, 1} as shown in Fig.
2. The activity set Mw is decided by the FC before the
window w’s duration starts as discussed in Section IV and
conveyed to the SN. The SN performs sensing operation during
each of the active time instances and simultaneously sends
the measurements to the FC. Note that the FC, however,
performs temporal sensing instances selection after every K

time instances, i.e. for a complete upcoming sensing window.
To represent system model for the sensing window w, let
Aw ∈ RMw×K denotes binary temporal sensing matrix which
captures active/sleep status of the SN during different time
instances of the sensing window Aw. Each row corresponds
to a distinct active time instance (i.e. a(·)w = 1). The row m
representing (n− 1)th active time instance, is given by,

Aw (m, k) =

{
1 (active) , k = n s.t. a(n−1)

w = 1

0 (sleep) , k∈{1, . . . ,K}\{n}
.

Let the temporal measurement vector yw ∈ RMw×1 contains
the signal sensed during the active time instances ∈ Mw.
Thus, the data acquisition model for the wth sensing window
is given by,

yw = Awzw + nw, (1)

where nw ∈ RMw×1 represents white Gaussian measurement
noise vector with independent and identically distributed com-
ponents having zero mean and variance σ2. Upon reception
of all Mw measurements, the FC estimates complete temporal
signal vector zw and run temporal instances selection problem
to convey temporal sensing schedule for the next sensing
window to the SN. These temporal instances selection and
estimation tasks are repeated for each sensing window.

Due to the temporal correlation inherent in the process, a
sparse representation of the system model is derived using
discrete Fourier transform (DFT)-based sparsification matrix
B ∈ RK×K as follows,

yw = AwBxw + nw, (2)

where xw ∈ RK×1 represents corresponding sparse vector.
In the work [23], the above binary sensing matrix (called
partial canonical identity (PCI) matrix therein) is shown to
be highly incoherent with the DFT matrix and thus, the
corresponding sparse vector can be reconstructed using sparse
recovery schemes such as compressed sensing (CS) [24] used
there. Motivated by the superior estimation performance of
the sparse Bayesian learning (SBL) scheme [25] in ill-posed
estimation scenarios, it is used to obtain estimate x̂w ∈ RK×1

of the sparse vector using the vector yw and dictionary matrix
AwB ∈ RMw×K . Estimate of the temporal signal vector is
then obtained as ẑw = Bx̂w ∈ RK×1.

It is worthwhile to mention here that the original sampling
period T is decided based on Nyquist rate as follows: fs >=
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Fig. 2: Temporal sensing instances selection at the FC.

2fmax which gives T <= 1
2fmax

, where fs = 1
T is sampling

frequency and fmax is maximum frequency of the measured
signal. If T is set as 1

2fmax
and the proposed framework

selects a few time instants (say Mw < K) of the sensing
window of length K for activation, then the time between
two consecutive samples (i.e., inter-sample time) may evaluate
to a value greater than T within this window. Although this
will violate the Nyquist rate, but the beauty of sparse signal
recovery used for sensing window’s signal estimation is that
it still recovers signal with good sensing quality. Note that
the sparse signal estimation is possible because of the sparse
representation of the signal owing to the inherent temporal
correlation.

Also, note the assumption that the SN is configured to sense
only at integer multiples of T time units if activated. Such
an SN will sense the signal every T time instance for the
conventional periodic sampling case. While for the proposed
temporal sensing framework (Section IV), the inter-sample
time of the SN could be a non-zero integer multiple of T .

III. AGE OF SAMPLE (AOS) FUNCTION

Fig. 3: Sample AoS pattern.

This section formulates an age of sample (AoS) function
which represents time elapsed between the current time t and
the sensing time of the most recently sensed sample of the
process trecent. Thus, at any time t, the AoS(t) = t− trecent.
It is a measure of freshness of the sensed sample. Smaller
value of the AoS function signifies lesser inter-sample time and
vice-versa. At any temporal instance kT activated for sensing,
the AoS(kT ) evaluates to zero because t = trecent = kT .
During absence of sensing, the AoS increases linearly in
time. Fig. 3 shows pattern of the AoS function for a sensing
window Aw with active sampling instances a

(1)
w , a

(3)
w , a

(k=6)
w ,

and a
(K−1=8)
w , i.e. Mw = {0, 1, 0, 1, 0, 0, 1, 0, 1}. Note that,

irrespective of whether the signal sampled at t = 0 (i.e.
a
(0)
w = 1/0), trecent = 0 until the first sample sensed after

0th time instance.
The generalized expression of the AoS at any time t ∈

[0,KT ) of the wth window, i.e., AoSw (t) in terms of the
elements a

(·)
w of the activity set Mw is given by,

AoSw (t) = t− max
{
ia(i)w T, 0 ≤ i ≤ (j − 1)

}
,

t ∈ [ (j − 1)T, jT ) , j = 1, · · · ,K. (3)

Note that, for a particular j, the AoSw (t) in (3) with t ∈
[ (j − 1)T, jT ) deals with the temporal sensing decision at a
new (j − 1)T instance

(
i.e. a(j−1)

w = 1 or 0
)

.
Since the AoSw (t) depends on the active/sleep status of

the SN during different sensing instances which are decided
based on some intelligence/logic, it is not straightforward to
characterize its distribution. Thus, the time average of the
AoSw function, denoted by AoSw, is computed as the area
under the sawtooth function in Fig. 3.

AoSw =
1

KT

∫ KT

0

AoSw (t) dt

=
1

KT

K∑
j=1

[∫ jT

(j−1)T

(
t− max

{
ia(i)w T, 0 ≤ i ≤ j − 1

})
dt

]

=
1

KT

∫ KT

0

tdt−
K∑
j=1

∫ jT

(j−1)T

max
{
ia(i)w T, 0 ≤ i ≤ j − 1

}
dt


=

KT

2
− 1

K

K∑
j=1

max
{
ia(i)w T, 0 ≤ i ≤ j − 1

}
(4)

Minimizing the AoSw function will only minimize the inter-
sample time. It evaluates to a minimum value of T

2 when the
process signal is sensed at every time instance (i.e., a(k)w =
1,∀k). However, it does not answer when to decrease/increase
the inter-sample time. Intuitively, the temporal sensing should
be governed by the variations of the underlying process. If the
process variation between two prospective sampling instances
is high, then the sampling frequency should be high, i.e., the
inter-sample time should be low resulting in a lower value
of the AoS function. To capture this notion, weighted AoS
function (WAoSw) is defined in (5).

WAoSw(t)= t−max
{(
δ(j−1)T−iT

)
ia(i)w T, 0 ≤ i ≤ (j − 1)

}
,

t ∈ [(j − 1)T, jT ) , j = 1, · · · ,K, (5)

where δ(j−1)T−iT represents average variations of the process
between time interval [iT, (j − 1)T ]. It is computed using the
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max
{(

δ(j−1)T−iT

)
ia(i)w T, 0 ≤ i ≤ (j − 1)

}
≥ 1

j

j−1∑
i=0

(
δ(j−1)T−iT

)
ia(i)w T (8a)

⇒ −max
{(

δ(j−1)T−iT

)
ia(i)w T, 0 ≤ i ≤ (j − 1)

}
≤ −1

j

j−1∑
i=0

(
δ(j−1)T−iT

)
ia(i)w T (8b)

⇒ KT

2
− 1

K

K∑
j=1

max
{(

δ(j−1)T−iT

)
ia(i)w T, 0 ≤ i ≤ (j − 1)

}
≤ KT

2
− 1

K

K∑
j=1

(
1

j

j−1∑
i=0

(
δ(j−1)T−iT

)
ia(i)w T

)
(8c)

⇒ WAoSw ≤ fUB

(
a(·)w

)
. (8d)

process signal estimated during previous sensing windows.
Since a particular j in the AoSw function (3) deals with the
sensing decision at (j − 1)T time instance, the variations of
the past instances are considered with respect to (j − 1)T
inside the max function in (5). The corresponding average
function WAoSw is computed on similar lines as done for the
function AoSw and is given by,

WAoSw=
KT

2
− 1

K

K∑
j=1

max
{(
δ(j−1)T−iT

)
ia(i)w T, 0≤ i≤ (j−1)

}
.

(6)
Activating the SN at time instances with higher δ(·) will
minimize the WAoSw (t) and WAoSw functions, resulting in
frequent sensing (or lesser inter-sample time). Note that the
AoSw function is non-negative while the WAoSw function
may give a negative value due to the incorporated weight δ(·).
In order to minimize the former one based on the process
variations, the latter function is minimized in the proposed
framework discussed in the Section IV). Further, to make
the optimization problem (Section IV-A) of the proposed
framework solvable/tractable, an upper bound on the WAoS
function

(
fUB

(
a
(·)
w

))
, derived in Lemma 1, is used.

Lemma 1. The average weighted AoS function WAoSw is
bounded above by a function fUB

(
a
(·)
w

)
, given by,

fUB

(
a(·)w

)
=

KT

2
− 1

K

K∑
j=1

(
1

j

j−1∑
i=0

(
δ(j−1−i)T

)
ia(i)w T

)
(7)

Proof: This follows from the fact that max {a, b, c, d} ≥
average (a, b, c, d) . Thus, using this fact in the equation (6),
the upper bound (7) is proved in (8a-d).

IV. TEMPORAL SENSING FRAMEWORK

This section develops the temporal sensing framework that
jointly optimizes the inter-sample delay and energy efficiency
of the SN. It adapts the sensing window length based on
changed statistics of the underlying monitored process.

A. AoS-based Optimization Problem

Intuitively, activating the SN at all the sampling instances
will give minimum average AoS (i.e., inter-sample time) at
the cost of huge energy expenditure. While activation at
a fewer sampling instances will save the SN’s energy at

the expense of increased average AoS. Thus, there exists a
trade-off between the age and energy. Optimizing this crucial
trade-off is necessary especially when there is redundancy
in measurements of the temporal process and the SN has
limited energy reserve. An optimization problem with multiple
contradicting objectives, developed in (9), is run by the FC
for selection of a few temporal sensing instances to monitor
varying process in the upcoming wth sensing window Aw.
It trades-off between the WAoSw and the energy efficiency of
the SN subject to the constraint on required sensing accuracy.

(P1) minimize
a
(k)
w , ∀k

[
WAoSw,Econs

]
(C11) s.t. a(k)w ∈ {0, 1}, k = 0, · · · ,K − 1, (9)

(C12) Tr

{(
1

σ2
BTAT

wAwB+ Γ−1
w

)−1
}

≤ γ.

The function WAoSw of (P1), given in (6), represents delay
in sensing or average age of consecutive samples which are
sensed based on the underlying process variations. Minimizing
WAoSw, minimizes the inter-sample time. The function Econs

of a SN represents the number of temporal sampling instances
at which the SN is activated out of the total K instances of
a sensing window, i.e., Econs = 1

K

∑W
w=1 a

(k)
w = Mw

K . As
the sensing operation consumes sensing energy (Es) of the
SN, minimizing the Econs function by selecting/activating a
few sensing instances will minimize the sensing energy con-
sumption of the SN, thereby, improving its energy efficiency.
Non-convex constraint (C11) captures active(1)/ sleep(0) sta-
tus of the SN at (kT ) time instance. Constraint (C12) sets
a maximum limit γ on the Bayesian Cramér-Rao bound
(BCRB). Note that the mean squared error

(
1
K ∥zw − ẑw∥2

)
is unknown during selection of temporal sensing instances
due to the unknown temporal signal vector zw whose some
components will be sensed based on the solution of the
MOP. Thus, the BCRB is used to characterize this error
similar to the work [26]. The BCRB expression for the
linear system model (2), derived in Appendix A, is given
by Tr{

(
1
σ2B

TAT
wAwB+ Γ−1

w

)−1}. The entity AT
wAw ∈

RK×K is a binary diagonal matrix with K diagonal elements-
a
(0)
w , · · · , a(K−1)

w .
The MOP (9) is difficult to solve due to the non-convex

constraint (C11) and structure of the WAoSw function. This
constraint is relaxed to a convex box constraint a

(·)
w ∈

[0, 1]. Now, the resulting optimization problem may not
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Algorithm 1 Exhaustive search-based solution

1: Generate
∑K

m=1 C
(
K
m

)
patterns of active temporal sensing

instances.
2: for each pattern do
3: Assign a

(k)
w ,∀k, as 0/1.

4: Compute BCRB (Sec. IV-A).
5: if BCRB ≤ γ then
6: Compute fUB

(
a
(·)
w

)
(7) and Econs (Sec. IV-A).

7: else break.
8: end if
9: end for

10: Pick sets of a(·)
w corresponding to minimum Econs.

11: From the above selected sets with minimum Econs, select a set
with minimum fUB

(
a
(·)
w

)
.

12: Set Mw =
∑K−1

k=0 a
(k)
w .

Output: Activity set Mw = {a(k)
w , k = 0, · · · ,K − 1} with

minimum Econs and minimum fUB , Mw.

have a tractable solution as it minimizes a concave prob-
lem (because of − max{· · · } in the expression (6)). How-
ever, using the upper bound fUB

(
a
(·)
w

)
(7) on WAoSw results

in a solvable convex MOP given in (10).

(P2) minimize
a
(k)
w , ∀k

[
fUB

(
a(·)w

)
,Econs

]
(C21) s.t. a(k)w ∈ [0, 1] , k = 0, · · · ,K − 1, (10)

(C22) Tr

{(
1

σ2
BTAT

wAwB+ Γ−1
w

)−1
}

≤ γ.

Note that minimizing fUB

(
a
(·)
w

)
of (P2) minimizes WAoSw.

The above relaxed MOP can be solved using the well-known
scalarization approach [27]. This approach associates scalar
weights with each objective function of the MOP and converts
it into a single objective optimization problem. The scalar
weights ∈ [0, 1] and their sum equals 1. However, deciding
reasonable scalar weights for each objective function could be
pursued as a separate research problem as done in [10] by
devising a separate algorithm for this. Another approach to
solve the relaxed MOP is to use ϵ−constraint method [27] in
which one of the objective function is set as a constraint. Since
the focus of the current work is to study the trade-off between
the AoS and energy efficiency, exhaustive search algorithm,
given in Algorithm 1, is used to solve the proposed MOP
(10) with binary constraint (C11). The algorithm generates all
possible activity sets and assigns corresponding a

(k)
w ,∀k. The

sets that do not obey the BCRB constraint (11) are discarded.
For the remaining sets, the values of fUB and Econs functions
are computed. Further, the sets with minimum Econs (i.e.,
energy consumption) are retained. From these sets, a set with
minimum fUB is chosen as the activity set Mw. The values(
a
(k)
w = 0/1,∀ k

)
of this set respectively give sleep/active

status of the SN during K sampling instants of the wth sensing
window. The number of active instants Mw is obtained by
summing the entities a

(·)
w of the solution set Mw.

Complexity of the Algorithm 1 increases with increase in
the length of sensing window, i.e. K. Intuitively, monitoring
a process with high temporal correlation requires a higher

value of K. For the data-set considered in simulation, K as
high as 12 is used for high temporal correlation case. Since
this algorithm is run separately at each SN of a WSN, its
complexity does not increase exponentially with the size of
the network (i.e. the number of SNs in the network). An
alternate solution is to use scalarization approach with equal
weights for each objective function in (10). Since fUB and
Econs are linear functions of a

(k)
w , the resulting objective

function (λfUB + (1− λ)Econs) is convex in a
(k)
w . Also, the

constraints (C21) is a convex set and (C22) is a convex
function [10]. Thus, the scalarized problem can be solved
using CVX [28].

The proposed framework considers sensing energy con-
sumption, while communication energy consumption and pri-
vacy issues will be considered in future work. The efficacy of
the proposed framework in energy saving can be best observed
for SNs that consume higher sensing energy compared to
the communication energy. Note that, using the proposed
optimization problem, the energy is saved in both sensing and
communication of the sparsely sampled process signal.

B. Sensing Window Adaptation for Non-Stationary Data

Most of the real-time data are non-stationary whose sta-
tistical properties (such as mean, correlation) change over
time. Using a constant length of the sensing window may
result in poor signal estimation performance over time. Portion
of real-time data with high correlation can have a longer
sensing window compared to the portion with low correlation.
More redundancy in highly correlated data can better aid the
estimation of signal for a longer duration using a few sensed
measurements compared to the data with low correlation (or
less redundancy). Thus, adapting the length of the sensing
window as per the changed statistics of the data is mandatory
to maintain same/required sensing quality.

An online mechanism is developed that runs at the FC
to determine the time instance at which the sensing win-
dow length needs to be altered due to the change in statis-
tics/distribution of the observed process. The mechanism com-
putes mean (or average) of the previously estimated data in
batches. Each batch contains data corresponding to 10 time
instances is considered in simulation. A larger batch size
will also do. If the mean changes significantly, i.e., more
than (±0.5× meantr) in the next few consecutive windows
(considered 5 here), then it indicates change in mean statistics
of the process. Note that meantr is the mean of data/process
signal computed during training time. This is followed by
a retraining period to adapt the sensing window length K.
The training/retraining assumes complete knowledge of the
monitored process signal for a few consecutive time instances
(≥ 1.5 × previous K; considered ∼ 20 in the simulations).
For the case when K needs to be increased, these many
training instances help in making a better choice of K by
analyzing the trade-off between energy utilization and sensing
quality with prospective higher values of K. During the train-
ing/retraining period, the temporal sensing instances selection
and sensing window’s signal estimation are carried out keep-
ing the BCRB constraint same throughout. Also, correlation
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Algorithm 2 AoS-based temporal sensing framework

1: Initialization: DFT matrix B, γ,K,W,meantr, data = [ ],
f lag = false,meanchangeloc = [ ], temploc = [ ], count =
0, startloop = 1, endloop = W .

2: while startloop ≤ endloop do
3: for w = 1 : W do
4: Obtain Mw and Mw by solving the MOP using Alg. 1.
5: Inform the SN about active sampling instances a

(·)
w = 1.

6: Collect the measurements yw from the SN.
7: Compute binary sensing matrix Aw (Sec. II).
8: Obtain the estimate ẑw using the SBL scheme [25].
9: data = [data; ẑw].

10: Calculate mean in batch of 10 instances of recently
estimated data/process signal (if available). Assign it to meanb.

11: if meanb /∈ [0.5× meantr, 1.5× meantr] then
12: if flag == false then
13: Set flag = true, count = count+ 1.
14: Set temploc = wK.
15: else if flag == true then
16: Set count = count+ 1.
17: end if
18: else Set flag = false, count = 0, temploc = [ ].
19: end if
20: if flag == true and count == 5 then
21: Set meanchangeloc = temploc.
22: break.
23: end if
24: end for
25: if (startloop < endloop) and (flag == true) then
26: temp = (WK)− (((w+4)K)+ (#retrain instances)).
27: Retrain to adapt K.
28: Set flag = false, count = 0, temploc = [ ].
29: W = floor(temp/K).
30: startloop = 1, endloop = W.
31: end if
32: end while

among the data is computed. If the correlation decreased
(increased) compared to that of the previous training data, then
decrease (increase) K till the sensing error range coincides
with that obtained for previous training/retraining. Since the
actual signal zw is also known during these periods, sensing
error, i.e., normalized root mean-squared error (nRMSE) =√

1
K ∥zw−ẑw∥2

∥zw∥2 , can be easily calculated.

Note that the mean change detection test is considered
as it is simple computation-wise. Further, in future, if this
computation is moved to the SN level in distributed setting,
then it is preferable to opt a test with less computation owing
to limited energy resource and computation capability of the
SN. Other tests such as Welch’s t-test [29] and chi-square test
could also be used to detect change in the process statistics.

Flow of the proposed temporal sensing framework run by
the FC is outlined in Algorithm 2. This algorithm first invokes
Alg. 1 to obtain the activity set Mw and Mw. The FC then
informs the SN about the active sampling instances

(
a
(·)
w = 1

)
of the wth sensing window. Thereafter, upon collection of the
measurements yw corresponding to the a

(·)
w = 1 from the SN,

the signal estimate ẑw is computed. This is followed by the
detection of change in the mean statistic of the monitored
process. If the change is detected, then the retraining phase
starts and sensing window length is adapted. Otherwise, the

process repeats for next sensing window using same value of
K.

V. SIMULATION RESULTS

This section illustrates the energy efficacy, adaptability, and
practicability of the proposed AoS-based temporal sensing
framework over the existing ones in [8], [10], and [14].

Real data-sets of two gaseous pollutants NO2 and SO2

collected from two sites (site-1 and site-2) [30] are used for
performance comparison. The data is divided into sensing
windows containing K sampling instances T time units apart.
Although, the data of granularity 15 minutes is used, but for
the sake of convenience T is set as 1 unit. The average varia-
tion of the process δrT is computed as average of |ẑw−1 (p)−
ẑw−1 (q) |,∀p, q ∈ {1, · · · ,K}, (p− q)T = rT. Total number
of sensing windows W =

⌊
data-set length

K

⌋
. The noise variance

is set as σ2 ≈ 10−5 similar to the work [26]. The process
signal estimate corresponding to a sensing window (obtained
using the SBL scheme) are averaged over 50 Monte-Carlo
iterations. The performance metrics used in the plots are- 1.
average sensing energy utilization

(
SEU

)
= 1

W

∑W
w=1

Mw

K . It
represents sensing energy consumed per sampling instance per
sensing window. Lesser SEU indicates better energy efficiency
of the SN. 2. AoS = 1

W

∑W
w=1 AoSw, and 3. average nRMSE(

nRMSE
)
= 1

W

∑W
w=1

√
1
K ∥zw−ẑw∥2

∥zw∥2 . Note that, the BCRB

is used as a constraint on the sensing quality in the MOP
(9) because the nRMSE cannot be computed at the FC due
to unknown zw. The nRMSE plots are used just to highlight
that acceptable nRMSE values (≤ 0.2) (suggested in [31]) are
obtained using the controlling parameter BCRB. Further, the
proposed framework is simulated in MATLAB.

A. Choice of Sensing Window Length K

Sensing window length (K)
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Fig. 4: Sensing window length estimation for NO2 parameter
of site-1.

In the proposed framework, the sensing decisions and signal
estimation tasks are performed for each sensing window. Thus,
finding appropriate length K of the window is of interest. In
Figs. 4(a)-(b), nRMSE and SEU are shown for the NO2 signal
sensed at the site-1. The data corresponding to 500 sampling
instances from April 12, 2020 to April 17, 2020 are used and
the upper limit on the value of BCRB is set as γ = 0.02. It can
be observed that, although the SEU decreases with increasing
K, the nRMSE increases significantly beyond K = 12. Hence,
the sensing window length is chosen as K = 12 for this data-
set. Further, the sensing performance can be better observed
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Fig. 5: Heat-maps of (a) actual and (b) estimated NO2 signal
at the site-1.

from the obtained similar variations of the actual and estimated
process signals shown in heat-maps Figs. 5(a)-(b). Likewise,
the window length K is set as 12 for the SO2 data-set of the
site-1 as shown in Figs. 6(a)-(b). Note that the decreasing trend
in SEU is observed because with increasing K, the BCRB
constraint (10) is satisfied with lesser Mw. The increasing
trend on nRMSE is seen because correlation among samples
of a window decreases as time lag (or K) increases which
may increase error in sensing window’s signal estimation.
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Fig. 6: Sensing window length estimation for SO2 parameter
of site-1.

It is important to mention that, using the training data, the
upper limit of BCRB (γ) is set such that the obtained nRMSE
is less than or equal to an acceptable threshold (e.g., nRMSE
≤ 0.2) even in the worst case. The nRMSE expected in the
upcoming sensing windows’ time instances (i.e., non-training
period) will depend on this set BCRB constraint. At no point,
the framework is trying to increase K until the nRMSE of
value 0.2 is achieved while choosing the window length K.
The controlling parameter BCRB plays a significant role in
this scenario and it can be set as per different application
requirements.

Note that the exhaustive search-based solution (Alg. 1)
worked well for K upto 18. Beyond this, it was not needed
to increase K because the BCRB constraint (11) violated for
the considered data. 1

Due to the observation of similar performance trend of
sensing the NO2 and SO2 pollutants, the subsequent studies
consider NO2 pollution data only as it contains both high and
low correlation data.

Remark 1. With increase in the sensing window length K
while maintaining the same upper limit on the BCRB, the SEU

1If required to further increase K, then equal weights can be assigned to
each objectives such that the sum of weights is 1. Thereafter, the scalarized
MOP can be solved using CVX [28] solver to analyze the performance.

decreases at the expense of increasing nRMSE.

Remark 2. The sensing window length K is chosen such that,
with increasing K, the sensing energy consumption decreases
without deteriorating the sensing quality.

B. Performance Comparison With State-of-the-Art Schemes

TABLE I: Performance comparison of the proposed framework
with the existing schemes using NO2 data subset-16 of site-2

Strategy nRMSE AoS SEU
Proposed (γ = 0.1) 0.068345 0.656626 0.7449799

Proposed (γ = 0.45) 0.0845349 0.699799 0.625502

Proposed (γ = 0.6) 0.0947235 0.723895 0.582329

Proposed (γ = 0.4) 0.079142 0.648594 0.686746

RS-CS [8], [24] 0.097819 0.791532 0.75

Adaptive Sensing [10] 0.077334 0.645161 0.840725

AdaM [14] 0.088728 0.75 0.75

Subset-16 of NO2 pollutant sensed at the site-2 is con-
sidered. The comparison of the proposed framework is done
with random sampling [8] and CS-based recovery [24] (RS-
CS), adaptive sensing [10], and AdaM scheme [14]. For the
sake of fair comparison of the proposed sensing framework
with the AdaM’s scheme, the SBL-based estimation is used
in the AdaM scheme. For the RS-CS, Mw is set as per
relation Mw ≥ Slog

(
K
S

)
[32], where S represents the

number of non-sparse components which herein comprises
95% of the total signal energy. The parameters of the RS-
CS, adaptive sensing, and AdaM are respectively set as
Mw = 3, {[α, β] , ϵth, δth} = {

[
1× 10−5, 0.6

]
, 50, 0.5842},

and {α, β, γ, λ} = {0.55, 1, 0.5, 1}. Note that these parame-
ters of the competitive schemes are set such that either the
achieved SEU or nRMSE are similar to that of the proposed
scheme. Further, the parameter K is set as 4 following the
approach outlined in Section V-A. It can be observed from
rows 1, 5, and 7 of Table I that the proposed framework
offers 30.1% and 22.9% gain in sensing quality

(
nRMSE

)
compared to the RS-CS and AdaM schemes respectively while
keeping nearly same SEU. On the contrary, comparing the
proposed framework with the RS-CS, adaptive sensing, and
AdaM schemes while maintaining nearly same sensing quality
(i.e., nRMSE in the rows {3, 5}, {4, 6}, and {2, 7}), the gain
in SEU are 22.4%, 18.3%, and 16.6% respectively. Further,
in both the comparative cases (same SEU and same nRMSE),
it can be observed that the AoS of the proposed scheme is
lower than that of the competitive schemes. Thus, the proposed
scheme is preferred for time-critical applications over the other
schemes.

Remark 3. In contrast to the existing schemes, the proposed
AoS-based framework provides energy-efficient temporal sens-
ing with lesser inter-sample delay without degrading the
sensing quality. It offers better sensing performance as well
while consuming the same sensing energy.

C. Effect of Sampling Interval ∆T on the Proposed Framework
This section considers site-1’s NO2 sensing data sampled at

T, 2T, and 3T sampling interval for a total duration of 480T
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TABLE II: Impact of sampling interval ∆T on sensing NO2

data of site-1

∆T K nRMSE SEU
T 12 0.076168 0.42378

2T 6 0.090548 0.730769

3T 4 0.110148 0.730769

time units. For the period T , the sensing window length K
is set as 12 such that the total number of sensing windows
evaluates to W = 40. Likewise, for the sampling intervals 2T
and 3T , the parameters {K,W} are set as {6, 40} and {4, 40}
respectively. The proposed framework is run for the above
three different cases keeping the same BCRB limit γ = 0.7. It
can be observed from Table II that the data with prospective
sampling instants T time units apart provides better sensing
quality and energy efficiency of the SN due to lesser SEU
compared to the other higher sampling intervals.

Remark 4. Increase in sampling interval (or decrease in
sensing frequency) results in reduction of correlation among
consecutive data samples, which deteriorates the sensing qual-
ity of the estimated signal.

D. Sensing Window Length Adaptation

Data batches (1 batch = 10 time instances data)
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Fig. 7: Mean change detection of non-stationary real NO2

sensing data of site-2.
For this part, NO2 data of the site-2 from January 1, 2020

to July 2, 2020 (∼ 16000 samples) is divided into subsets of
length 1000 each. Non-stationarity in the data can be observed
from Table III in which the subsets 1-15 have high correlation
while the subset 16 has low correlation. Data corresponding
to the subsets 2 and 16 are considered for simulation. The
sensing window length K is initially set as 10 for the subset
2. Thereafter, on detecting change in mean statistics of the
estimated data for ∼ 5 consecutive windows (using Alg. 2) as
observed around 100th batch (i.e., last window of the subset 2)
in Fig. 7, the framework is retrained to adjust K to 4 keeping
same BCRB constraint (with γ = 0.1) such that the sensing
quality remains nearly same.

From Table IV, it can be observed that the proposed frame-
work uses a longer (shorter) sensing window and consumes
lesser (higher) sensing energy for the portion of data with
high (low) correlation, while providing better sensing quality
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Fig. 8: Autocorrelation of respectively true and estimated data
of the two subsets of site-2’s NO2 data.

Time instances of 20th window

0 2 4 6 8 10

A
o
S
2
0

0

1

2

3

4

5

6

M20 = 5 active instances;M20 : {1,3,4,5,8}

Fig. 9: AoS pattern of 20th sensing window of NO2 data
subset-2.

(nRMSE). This can be further verified from the similar trend of
autocorrelation of actual and estimated process shown in Fig.
8. The sample AoS pattern obtained for w = 20 corresponding
to the subset 2 is shown in Fig. 9.

Remark 5. The proposed framework allows selective temporal
sensing of highly correlated data over a longer duration
with more energy efficiency without deteriorating the sensing
performance and increasing the inter-sample delay.

E. Intelligent Sensing versus Intelligent Pruning

This section compares the resource utilization performance
of the proposed intelligent sensing framework with that of the
intelligent pruning framework in [33]. The resource utilization
is calculated as sum of SEU and average bandwidth utilization(
BWU

)
. The metric BWU is computed as 1

W

∑W
w=1

MTx
w

K
with MTx

w being the number of units of sensed information
sent to the FC. It is assumed that a SN senses one unit of
information in one time instance. In the proposed intelligent
sensing, Mw units of information sensed in a sensing window
(length K) are transmitted to the FC. Thus, both SEU and
BWU are equal to 1

W

∑W
w=1

Mw

K . While in the intelligent
pruning, K units of information sensed in a sensing window
undergoes pruning and Mprun

w (≤ K) units are transmitted to
the FC, i.e., MTx

w = Mprun
w . Thus, SEU = 1

W

∑W
w=1

K
K = 1

and BWU = 1
W

∑W
w=1

Mprun
w

K in this case. The parameter
of intelligent pruning scheme is set such that the achieved
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TABLE III: Correlation statistics of non-stationary real NO2 sensing data of site-2

Time Data subsets
lags 1 2 3 4 5 6 · · · 10 11 12 13 14 15 16

1 1 1 1 1 1 1 · · · 1 1 1 1 1 1 1

2 0.9681 0.9712 0.9621 0.9773 0.9729 0.9569 · · · 0.9774 0.9666 0.9581 0.9806 0.9729 0.9331 0.2127

3 0.9199 0.9233 0.9054 0.9429 0.9325 0.9008 · · · 0.9426 0.9265 0.8983 0.9454 0.9198 0.8616 0.1993

4 0.8705 0.8763 0.8485 0.9051 0.8893 0.8417 · · · 0.9087 0.8880 0.8334 0.9086 0.8605 0.8049 0.2774

5 0.8234 0.8302 0.7903 0.8636 0.8433 0.7836 · · · 0.8770 0.8499 0.7713 0.8741 0.7986 0.7533 0.1751

6 0.7787 0.7840 0.7357 0.8207 0.7951 0.7273 · · · 0.8445 0.8118 0.7147 0.8422 0.7367 0.7066 0.1733

7 0.7356 0.7312 0.6860 0.7769 0.7463 0.6719 · · · 0.8088 0.7735 0.6640 0.8104 0.6822 0.6649 0.1396

8 0.6936 0.6739 0.6382 0.7297 0.6991 0.6223 · · · 0.7732 0.7331 0.6170 0.7777 0.6348 0.6277 0.1344

9 0.6507 0.6174 0.5923 0.6829 0.6543 0.5740 · · · 0.7370 0.6897 0.5732 0.7443 0.5903 0.5936 0.1529

10 0.6040 0.5628 0.5502 0.6364 0.6106 0.5326 · · · 0.7009 0.6454 0.5321 0.7111 0.5483 0.5591 0.1085

11 0.5533 0.5096 0.5125 0.5884 0.5704 0.4893 · · · 0.6650 0.6009 0.4910 0.6781 0.5086 0.5252 0.0964

12 0.5023 0.4599 0.4742 0.5379 0.5333 0.4451 · · · 0.6315 0.5526 0.4557 0.6451 0.4711 0.4963 0.0881

13 0.4538 0.4155 0.4346 0.4891 0.4979 0.4026 · · · 0.6007 0.5032 0.4194 0.6117 0.4345 0.4705 0.0814

14 0.4097 0.3775 0.3954 0.4410 0.4623 0.3652 · · · 0.5732 0.4543 0.3847 0.5783 0.3987 0.4504 0.1027

15 0.3707 0.3457 0.3541 0.3953 0.4283 0.3295 · · · 0.5479 0.4118 0.3521 0.5436 0.3641 0.4325 0.0737

16 0.3342 0.3165 0.3171 0.3521 0.3956 0.2928 · · · 0.5209 0.3737 0.3235 0.5092 0.3297 0.4122 0.0632

TABLE IV: Sensing window adaptation for non-stationary
NO2 data of site-2

Data Sensing window nRMSE SEUsubset length K

2 10 0.040844 0.683838
(HC)
16 4 0.068345 0.7449799

(LC)

nRMSE is nearly same to that in the intelligent sensing
case. Mprun

w = 1.7slog
(
K
s

)
with s being the sparsity in

the signal [33]. For the intelligent sensing and pruning cases,
the resource utilization respectively evaluates to 1.367676 (=
0.683838 + 0.683838) and 1.505050 (= 1 + 0.505050) with
nRMSE ≈ 0.04. Also, AoS is 0.930303 in the former case
and 0.5 (minimum value) in the latter case.

Remark 6. Intelligent sensing saves both sensing and trans-
mission energy; while intelligent pruning saves only transmis-
sion energy. Thus, intelligent sensing is preferred for SNs that
consume more energy in sensing than in transmission, e.g. PM
sensors, gas sensors, etc.

F. Tightness of the Convex Relaxation Used in the MOP P2

To investigate the tightness of convex relaxation used in
the MOP P2 (10) (where the constraint (C11) is relaxed to
the constraint (C21)), performance of the MOP P2 (10) with
the exact constraint (C11) (solved using exhaustive search
based algorithm) is compared with the performance using the
relaxed constraint (C21) (solved using ϵ−constraint method).
In the MOP performance with (C21), the objective function
Econs = 1

K

∑K
k a

(k)
w = Mw

K is set as constraint using the
value of Mw obtained from the MOP solution with (C11).
This ensures a fair analysis of the tightness of the convex
relaxation. Also note that, similar to [26], the result of the
relaxed case (a

(k)
w ,∀k, ∀w) is rounded to obtain a solution

feasible to the exact case.

Three scenarios with different values of γ (γ =
0.75, 0.2, 0.07) are considered for simulation and the tightness
of the relaxed case is captured by considering the difference
between the number of active instants of the actual case
(Mw|Exhaustive) and relaxed case (Mw|Relaxed) across all
sensing windows, i.e. (Mw|Exhaustive −Mw|Relaxed). There-
after, the degree of tightness between the two cases’ re-
sults across all the sensing windows is computed as 1

W ×
|{(Mw|Exhaustive −Mw|Relaxed) = 0, 1 ≤ w ≤ W}|.
The degree of tightness obtained in the three scenarios
γ = 0.75, 0.2, 0.07 is respectively 0.53, 0.69, 0.88. It can be
observed that, as the parameter γ decreases, the degree of
tightness of the relaxed case increases.

Remark 7. The convex relaxation becomes tighter with the
decreasing value of maximum allowable BCRB.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper has proposed a novel energy-efficient temporal
sensing framework for a SN. The framework jointly optimizes
inter-sample delay and energy consumption of the SN to select
a few temporal sensing instances of a sensing window for
activation such that a required sensing quality is maintained.
To capture the inter-sample delay, a novel AoS function has
been developed. Further, a weighted AoS function and its
upper bound have been formulated to incorporate process vari-
ations in the proposed selective sensing framework. Exploiting
the temporal correlation inherent in the monitored process,
the signal across entire sensing window has been estimated
using the few sensed measurements. A sensing window length
adaptation logic has been designed which detects the time
at which the statistics of non-stationary process changes and
adapts the sensing window length accordingly. Simulation
analysis using real data-sets of two gaseous pollutants have
demonstrated that, using the proposed AoS-based temporal
sensing framework, the sensing quality and energy saving gain
are consistently achieved with respect to the state-of-the-art
competitive approaches.



11

While in this study two limited available air pollutant data
from two sites have been considered, a more extensive study
is needed on other pollutants and at very different weather
conditions, for air as well as water pollution monitoring.
Further, AoS-based temporal monolithic and multi-sensing
aspects are required to be investigated at the network-level
for real-time monitoring applications. Since the current work
has considered linear increase in time between two sampling
instants, there is a scope of exploring the applicability of
non-linear inter-sample time and the changes required in the
structure of the AoS-based temporal sensing framework. The
possibility of modeling the AoS function to jointly incorporate
the effect of sensing delay and transmission delay can also be
analyzed for delay-sensitive IoT applications.

APPENDIX A
BAYESIAN CRAMÉR-RAO BOUND (BCRB)

For the system model (2), the BCRB is computed as
BCRB = Tr

{
J−1
B

}
, where JB ∈ RK×K represents the

Bayesian Fisher information matrix (FIM) [34] given by,

JB = −E(yw,xw)

{
∂2L(yw|xw;Γw)

∂xw (∂xw)
T

}
︸ ︷︷ ︸

JD

−E(xw)

{
∂2L(xw;Γw)

∂xw (∂xw)
T

}
︸ ︷︷ ︸

JP

,

where the terms L (yw|xw;Γw) ,L (xw;Γw) and JD,JP ∈
RK×K in (11) respectively represent the log-likelihood func-
tions of the vectors yw, xw parameterized by Γw and
FIMs with respect to yw,xw. The component Γw =
diag (αw) ∈ RK×K is a diagonal matrix of the hy-
perparameters of prior distribution of the vector xw con-
sidered in the SBL scheme. This distribution is given

by p (xw;αw) =
∏K

k=1 (2παw (k))
−1/2

e−
(xw(k))2

2αw(k) [25],
with the component αw (k) of the hyperparameter vector
αw = [αw (1) , · · · , αw (K)]

T ∈ RK×1 corresponds to
the variance of component xw (·). Using this distribution,
the log-likelihood function is evaluated as: L (xw;Γw) =(
c̃− 1

2 (xw)
T
(Γw)

−1
xw

)
, with c̃ being a parametric con-

stant. Its second order derivative with respect to xw gives
∂2L(xw)

∂xw(∂xw)T
= (Γw)

−1. Thus, the resulting FIM is given

by JP = (Γw)
−1. Likewise, the log-likelihood function

L (yw;xw), after ignoring the constant terms is obtained
as: L (yw|xw;Γw) = 1

2σ2 ∥yw −AwBwxw∥2. Thus, JD =
1
σ2 (B)

T
(Aw)

T
AwB. The BCRB is expressed as:

BCRB = Tr

{(
1

σ2
BTAT

wAwB+ Γ−1
w

)−1
}
. (11)

REFERENCES

[1] D. J. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, “Codeblue:
An ad hoc sensor network infrastructure for emergency medical care,”
in Proc. Mobisys. Workshop Appl. Mobile Embedded Syst. (WAMES).
Boston, MA, USA, 2004, pp. 12–14.

[2] Y.-C. Wang and G.-W. Chen, “Efficient data gathering and estimation for
metropolitan air quality monitoring by using vehicular sensor networks,”
IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7234–7248, 2017.

[3] G. Zhao et al., “Wireless sensor networks for industrial process moni-
toring and control: A survey.” Netw. Protoc. Algorithms, vol. 3, no. 1,
pp. 46–63, 2011.

[4] R. C. Carrano, D. Passos, L. C. Magalhaes, and C. V. Albuquerque,
“Survey and taxonomy of duty cycling mechanisms in wireless sensor
networks,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 181–194,
2013.

[5] K. Stone and M. Colagrosso, “Efficient duty cycling through prediction
and sampling in wireless sensor networks,” Wireless Commun. Mobile
Comput., vol. 7, no. 9, pp. 1087–1102, 2007.

[6] R. Masiero, G. Quer, D. Munaretto, M. Rossi, J. Widmer, and M. Zorzi,
“Data acquisition through joint compressive sensing and principal com-
ponent analysis,” in Proc. IEEE Global Telecommun. Conf. (GLOBE-
COM). Honolulu, HI, USA, 2009, pp. 1–6.

[7] G. Quer, R. Masiero, G. Pillonetto, M. Rossi, and M. Zorzi, “Sensing,
compression, and recovery for WSNs: Sparse signal modeling and
monitoring framework,” IEEE Trans. Wireless Commun., vol. 11, no. 10,
pp. 3447–3461, 2012.

[8] M. Hooshmand, M. Rossi, D. Zordan, and M. Zorzi, “Covariogram-
based compressive sensing for environmental wireless sensor networks,”
IEEE Sensors J., vol. 16, no. 6, pp. 1716–1729, 2015.

[9] M. Leinonen, M. Codreanu, and M. Juntti, “Sequential compressed sens-
ing with progressive signal reconstruction in wireless sensor networks,”
IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1622–1635, 2014.

[10] V. Gupta and S. De, “SBL-based adaptive sensing framework for WSN-
assisted IoT applications,” IEEE Internet Things J., vol. 5, no. 6, pp.
4598–4612, 2018.

[11] R. Prabha, M. V. Ramesh, V. P. Rangan, P. Ushakumari, and
T. Hemalatha, “Energy efficient data acquisition techniques using context
aware sensing for landslide monitoring systems,” IEEE Sensors J.,
vol. 17, no. 18, pp. 6006–6018, 2017.

[12] V. Gupta and S. De, “Collaborative multi-sensing in energy harvesting
wireless sensor networks,” IEEE Trans. Signal Inform. Process. over
Netw., vol. 6, pp. 426–441, 2020.

[13] M. Andreolini, M. Colajanni, M. Pietri, and S. Tosi, “Adaptive, scalable
and reliable monitoring of big data on clouds,” J. Parallel Distrib.
Comput., vol. 79, pp. 67–79, 2015.

[14] D. Trihinas, G. Pallis, and M. Dikaiakos, “Low-cost adaptive monitoring
techniques for the internet of things,” IEEE Trans. Services Comput.,
2018.

[15] Y. Inoue and T. Takine, “AoI perspective on the accuracy of monitoring
systems for continuous-time markovian sources,” in Proc. IEEE Conf.
Comput. Commun. Wkshps. (INFOCOM WKSHPS). IEEE, 2019, pp.
183–188.

[16] R. Wang, Y. Gu, H. Chen, Y. Li, and B. Vucetic, “On the age of
information of short-packet communications with packet management,”
in Proc. IEEE Global Telecommun. Conf. (GLOBECOM). IEEE, 2019,
pp. 1–6.

[17] Y. Sun, Y. Polyanskiy, and E. Uysal-Biyikoglu, “Remote estimation of
the Wiener process over a channel with random delay,” in Proc. IEEE
Intl. Symp. Inf. Theory (ISIT). IEEE, 2017, pp. 321–325.

[18] Y. Sun and B. Cyr, “Information aging through queues: A mutual
information perspective,” in IEEE Intl. Wkshp. Signal Process. Adv.
Wireless Commun. (SPAWC). IEEE, 2018, pp. 1–5.

[19] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Towards an effective age of information: Remote
estimation of a Markov source,” in Proc. IEEE Conf. Comput. Commun.
Wkshps. (INFOCOM WKSHPS). IEEE, 2018, pp. 367–372.

[20] W. Chen and I. J. Wassell, “Optimized node selection for compressive
sleeping wireless sensor networks,” IEEE Trans. Veh. Technol., vol. 65,
no. 2, pp. 827–836, 2015.

[21] A. Ramakrishnan and S. Saha, “Ecg coding by wavelet-based linear
prediction,” IEEE Trans. Biomed. Eng., vol. 44, no. 12, pp. 1253–1261,
1997.

[22] Q. Abbas, S. Zeb, S. A. Hassan, R. Mumtaz, and S. A. R. Zaidi,
“Joint optimization of Age of Information and Energy Efficiency in
IoT Networks,” in Proc. IEEE Veh. Technol. Conf. (VTC2020-Spring).
IEEE, 2020, pp. 1–5.

[23] N. Jain, A. Gupta, and V. A. Bohara, “PCI-MDR: Missing data recovery
in wireless sensor networks using partial canonical identity matrix,”
IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 673–676, 2018.

[24] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, 2006.

[25] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selection,”
IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153–2164, Aug. 2004.

[26] S. P. Chepuri and G. Leus, “Sparsity-promoting sensor selection for
non-linear measurement models,” IEEE Trans. Signal Process., vol. 63,
no. 3, pp. 684–698, 2014.



12

[27] Z. Fei, B. Li, S. Yang, C. Xing, H. Chen, and L. Hanzo, “A survey
of multi-objective optimization in wireless sensor networks: Metrics,
algorithms, and open problems,” IEEE Commun. Surveys Tuts., vol. 19,
no. 1, pp. 550–586, 2016.

[28] I. CVX Research, “CVX: Matlab software for disciplined convex
programming, version 2.0,” http://cvxr.com/cvx, Aug. 2012.

[29] S. Silvestri, R. Urgaonkar, M. Zafer, and B. J. Ko, “A framework for the
inference of sensing measurements based on correlation,” ACM Trans.
Sensor Netw., vol. 15, no. 1, p. 4, 2018.

[30] Data-sets. [Online]. Available: https://1drv.ms/u/s!
AoEH3xyPnnfYfV3xmzgNaX3xgOk?e=P3LKFX

[31] J. Qin, Q. Zhao, H. Yin, Y. Jin, and C. Liu, “Numerical simulation
and experiment on optical packet header recognition utilizing reservoir
computing based on optoelectronic feedback,” IEEE Photon. J., vol. 9,
no. 1, pp. 1–11, 2017.

[32] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, 2008.

[33] S. Tripathi and S. De, “An efficient data characterization and reduction
scheme for smart metering infrastructure,” IEEE Trans. Ind. Inform.,
vol. 14, no. 10, pp. 4300–4308, 2018.

[34] H. L. Van Trees, Detection, estimation, and modulation theory. John
Wiley & Sons, 2004.


