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Edge Intelligence Framework for Data-Driven
Dynamic Priority Sensing and Transmission

Sushmita Ghosh, Swades De, Shouri Chatterjee, and Marius Portmann

Abstract—Owing to the limited storage capacity, battery-
powered wireless sensor nodes often suffer from energy sus-
tainability. To optimize the energy consumption of a multi-
parameter sensor hub, a novel edge intelligence-based data-
driven priority-aware sensing and transmission framework is
proposed in this paper. The proposed framework jointly exploits
the cross-correlation among the sensing parameters and temporal
correlation of the individual sensing signals to find an optimal
active sensor set and optimal sampling instants of the sensors in
the next measurement cycle. The length of measurement cycle
is dynamically decided based on the change in cross-correlation
among the parameters and the system state. A discounted upper
confidence bound algorithm-based optimization function is for-
mulated to find the optimal active sensor set by solving the trade-
off among cross-correlation, energy consumption, and length of
measurement cycle. The proposed framework uses Gaussian pro-
cess regressor-based prediction models to estimate the temporal
and cross-correlated parameters of the active and inactive sensor
set, respectively. The sampling interval of each active sensor is
dynamically adapted based on the temporal prediction error.
Extensive simulations are performed on air pollution monitoring
dataset to validate the efficacy of the proposed framework in both
real-time and non-real-time applications. The proposed algorithm
saves up to 41% energy and 32% bandwidth with 68% data
accuracy compared to the existing competitive frameworks for
non-real-time systems. The proposed framework also identifies
the time-critical sensing scenarios with 98% accuracy.

Index Terms—Temporal correlation, cross-correlation, adap-
tive sensing, edge intelligence, optimal sensor set, optimal sam-
pling instants, priority-aware sensing.

I. INTRODUCTION

The evolving Internet-of-Things (IoT) technology is ex-
pected to connect billions of devices that are used in our daily
lives. To sense the environmental conditions, IoT sensor nodes
have enormous applications in today’s world and it is growing
at a significant rate. To monitor various parameters in the
environment, sensor hubs are equipped with multiple sensors.
Such a large number of sensor hubs, wirelessly connected to
an edge node or a central entity (CE) constitutes a wireless
sensor network (WSN). WSNs are used in industrial process
monitoring, smart city, smart agriculture, hospital monitoring,
border surveillance, etc. Good quality environmental sensors
are highly energy consuming. In many cases, sensing energy
is higher than communication energy [1]. Hence, the energy
efficiency and sustainability of sensor nodes with limited
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battery capacity are of major concern [2], [3]. In such scenarios
managing high energy demand over a massive deployment of
sensor nodes is very challenging. To mitigate these problems
and increase the energy efficiency of WSNs, various intelli-
gent sensing strategies are considered in the literature. The
edge intelligence-based adaptive sensing strategies can reduce
the energy consumption at the sensor nodes by shifting the
computation/processing complexity at the edge node [4], [5].

The sensing parameters of a multi-sensing node often pos-
sess temporal correlation and cross-correlation, which can be
exploited at the node-level to predict some parameters from
the other parameters. In many applications, the parameter
variations are captured and stored at the individual sensor
nodes, which are transmitted to the edge node at the end
of a period called measurement cycle [6]. These mechanisms
reduce the energy consumption in the case of non-real-time
systems [7], where the data is not time-critical. However,
in the case of real-time systems, the samples need to be
transmitted to the edge node immediately after sensing. Hence,
energy consumption in a time-critical WSN is still a subject
of significant research interest.

A. Related Works

In most of the studies, sensor data collection mechanism
is considered as a non-real-time process. The sensors collect
samples over a cycle and transmit the stored data to the CE or
edge node at the end of the cycle. The works in [1], [8]–[10]
are dedicated to node-level analysis, where the sampling rate
of a sensor is adapted based on the previously collected time
series samples. On the other hand, the works in [4], [11], [12]
are dedicated to network-level analysis, where some sensor
nodes are activated to collect samples while the other nodes
remain inactive in the network.

In [8], three different adaptive sampling algorithms were
proposed for node-level analysis. The first one uses the Anova
model and Bartlett test, the second and third methods use
the Jaccard similarity function and the Euclidean distance
function respectively to find the new sampling rate based
on the previously collected samples. These algorithms were
applied on temperature and humidity sensors independently.
The adaptive sampling algorithm, proposed in [9] uses Kalman
Filtering based estimation technique to adapt the sampling
interval based on the estimation error.

The work in [10] proposed an adaptive sensor selection
mechanism that exploits the cross-correlation among the sens-
ing parameters of a sensor hub to find an optimal active sensor
set at each measurement cycle based on the cross-correlation
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and sensing energy consumptions of the parameters; the sen-
sors collect samples at the Nyquist sampling rate.

A sparse Bayesian learning (SBL)-based adaptive sensing
strategy was proposed in [11], where some sensors in the
network are selected over a measurement cycle based on
the spatio-temporal correlations among the sensing signals.
The sensor nodes were considered to have a single sensor to
monitor a single parameter in the environment. To increase the
energy efficiency of densely deployed multi-sensing networks,
an adaptive sensing framework was proposed in [4]. The
algorithm in [4] exploited the spatio-temporal correlation and
cross-correlation among the parameters to find an optimum
number of sensors to be activated in the next measurement
cycle. Similarly, a Compressive sensing algorithm, proposed
in [12] selects some sensor nodes from a large set of nodes in
a heterogeneous sensing environment.

A Gaussian process regression (GPR)-based prediction
model was proposed in [13] to predict spatio-temporal pa-
rameters of a mobile sensor network. According to [14]–[16],
GPR can predict the spatio-temporally varying signals with
good accuracy.

The adaptive sensing strategies discussed above considered
that the sensing process is non-real-time, where the data are
transmitted to the edge node at the end of the measurement
cycle. However, the works, in [17], [18] considered a real-
time system, where the data collected at the sensor node are
transmitted immediately to the edge node to monitor the sys-
tem state. Similarly, a node-level adaptation was proposed in
[1] for a real-time snow monitoring application. The algorithm
detects the maximum frequency of the sensing signal using fast
Fourier transform of the previously collected samples and the
new sampling rate is decided based on Nyquist criteria. The
collected samples are transmitted to the base station without
any delay. Hence, the energy consumption in real-time systems
is much higher than that in non-real-time systems.

B. Research Gap and Motivation

As noted above, several studies have been reported on
learning-based adaptive sensing to reduce the energy consump-
tion in WSNs. However, in a large-scale deployment scenario,
limited battery capacity of a miniature sensor hub limits the
network lifetime.

A comparison of the state-of-the-art and the proposed
framework is presented in Table I. The considered sampling
rate adaptation algorithm in [1], [8], [9], [19] are applicable
on individual sensors. The adaptive sensing algorithm in
[10], exploits only cross-correlation of the parameters to find
optimal active sensor set, where the sensors collect samples
at a fixed Nyquist sampling rate. The studies in [11]–[13]
considered densely-deployed WSN for monitoring the same
parameter, where a subset of sensor nodes is activated in
the network based on the spatio-temporal correlation of the
sensing parameter and the remaining energy of the nodes. The
above algorithms do not exploit the cross-correlation among
multiple sensing parameters in a sensor hub.

In the SBL-based multi-sensing framework [4], the recon-
struction accuracy is achieved by jointly predicting the sensing

TABLE I: Comparison of state-of-the-art
State-of-
the-art

System
model

Sensing
Parameters

Correlation ex-
ploited

System
state

Sampling
interval

[1], [8],
[9]

node
level

single not exploited non-real-
time

adaptive

[4] network
level

multiple spatio-temporal
and cross

non-real-
time

fixed

[10] node
level

multiple cross-
correlation

non-real-
time

fixed

[11] network
level

single spatio-temporal non-real-
time

fixed

Proposed
work

node
level

multiple temporal and
cross

adaptive adaptive

signals based on the spatio-temporal correlation and cross-
correlation among the parameters. However, it did not consider
multi-parameter sensor hub in a typical sparse deployment
scenario, such as in an individual home or office environment,
where spatial signal information do not exist. Hence, the SBL-
based framework is not suitable in such scenarios.

So far, none of the works in the literature have exploited
both the temporal correlation and cross-correlation of a dis-
tributed multi-parameter sensor hub. Also, the existing sensing
algorithms consider the systems dealing with either purely
real-time applications or purely non-real-time applications.
The sensed signal aware dynamic adaptability of sensing and
transmission time-criticality has not been addressed before.

C. Contributions

We observe that, in real-life, multi-sensing optimization
at the individual sensor nodes are of interest in scenarios
where for lack of network connectivity and/or security/privacy
sensors, such as in ambient parameter sensing in home/office
spaces and medical health monitoring, network-level (inter-
node) cooperation is not possible. Further, sensing and data
reporting in such applications may need to be adapted from
non-time-critical (‘good’ state) to time-critical (‘bad’ state)
depending on the values of some sensed parameters. Thus,
motivated by the need for individual node-level multi-sensing
and transmission optimization, and dynamic adaptation, a
learning-based data-driven priority aware sensing and trans-
mission is proposed in this paper, which exploits the sensing
process dynamics of a multi-parameter sensor hub. At every
measurement cycle, an optimal set of sensors are activated
by exploiting the cross-correlation among the parameters and
temporal correlation of the selected sensing signals based on
reinforcement learning (RL) techniques [10], [20]. In view
of the non-stationary distribution of sensing parameters, dis-
counted upper confidence bound (UCB) algorithm is adopted
to find the next optimal set of sensors. The proposed frame-
work uses GPR models to estimate the temporal and cross-
correlated parameters for non-real-time and real-time modes
of data handling. To the best of our knowledge, such data-
driven dynamic multi-sensing and adaptation has not been
considered before in the literature.

The key contributions and significance of the proposed
approach are as follows:

1) A novel edge intelligence-based framework on dynamic
priority sensing and transmission to optimize the energy
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sustainability of a multi-parameter sensor hub is pro-
posed in this paper. The algorithm exploits the cross-
correlation among the parameters and temporal corre-
lation in a selected time sequence of data to find an
optimal active sensor set and optimal sampling instants
at every measurement cycle.

2) Unlike the prior art, sensing and communication priority
of the sensed parameters are dynamically varied from
non-real-time (in ‘good’ state) to time-critical (real-time,
in ‘bad’ state) depending on the value of the sensed
parameters. The corresponding GPR models are also
developed for the estimation of missing temporal/cross-
correlated parameter samples.

3) An optimization function is formulated to find the opti-
mal length of measurement cycle for each active sensor
set by exploiting the cross-correlation of the parameters
and the ‘good’ state probability of the sensors that
belong to the inactive/sleep set in that cycle.

4) An optimization function is developed to find the opti-
mal sensor set for the next measurement cycle by solving
the trade-off among the cross-correlation, energy con-
sumption of the sensors, and the length of measurement
cycle using discounted UCB algorithm.

5) The proposed framework detects the time-critical (i.e,
‘bad’) states of the system with 98% accuracy in report-
ing the events to the edge node.

6) With O(I) computational complexity for predicting I
samples at the sensor node, the proposed RL-aided in-
telligent multi-sensing algorithm saves up to 41% node-
level sensing energy and 32% communication bandwidth
compared to the multi-sensing framework in [4].

D. Paper Organization

Section II presents the system model and problem definition.
The characterization of sensing signal dynamics is discussed
in Section III, followed by the GPR-based temporal and cross-
correlated parameter prediction model in Section IV. The
proposed data-driven adaptive sensing framework is explained
in Section V, followed by results and discussion in Section VI
and conclusion in Section VII.

Notations: A denotes a set; A ∈ RN×1 denotes a P
dimensional vector, and A ∈ RN×I denotes a matrix of size
N × I; and the cardinality of a set A is denoted as |A| = A.

II. SYSTEM MODEL AND PROBLEM DEFINITION

The proposed system model is presented in Section II-A,
followed by the problem definition in Section II-B.

A. System Model

As shown in Fig. 1, a multi-parameter sensor hub consists
of P sensors to monitor P different parameters in the envi-
ronment. The sensor node is wirelessly connected to an edge
node to report the sensed data. The edge node further transmits
the data to the cloud. An intelligence algorithm is executed at
the edge node to find the optimal parameters of the system
based on the data received from the individual sensor nodes

Edge node 
Sensor node

𝒏𝒑 time series 

samples for 𝒑𝒕𝒉

parameter

Temporal and cross-correlation 

information of multiple sensing 

parameters are exploited here

Pollution 
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Data and 𝑬𝟎
𝒙

𝑨𝒊
𝒙 , 𝑻𝒙 , 𝒇𝒔
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Fig. 1: Smart sensing system model.

and the information is transmitted back to the sensor nodes,
as depicted in Fig. 1. Consider a set P = {Pp; 1 ≤ p ≤ P}
that contains all the parameters. The data sensed by the pth

parameter at ith sampling instant of the xth measurement cycle
is denoted as zxp (i). If Nx

p is the number of samples collected
for pth parameter in xth measurement cycle, Zx

p ∈ RNx
p ×1

contains the temporal measurements of the pth parameter,
which can be expressed as [21]

Zx
p = Yx

p + ηx
p , (1)

where Yx
p ∈ RNx

p ×1 is the true signal vector and ηx
p ∈ RNx

p ×1

is the identically and independently distributed measurement
noise vector associated with the pth sensor, where η ∼ N(0, σ)
for all the parameters.

B. Problem Definition

In the system model, depicted in Section II-A, the sensor
node consists of P sensors. Consider that the pth sensor col-
lects data at a fixed Nyquist sampling interval tp and transmits
the samples to the edge node which is placed at a fixed point
nearby. If the sensing signals remain within the satisfactory
level/threshold, the system is considered to be in ‘good’ state
and behaves as a non-real-time system, where the data can be
sent to the edge node at the end of the measurement cycle. If
any signal crosses the threshold, the system is considered to be
in ‘bad’ state and acts as a real-time system, wherein and the
data is sent to the edge node immediately with higher priority.
When the system acts on non-real-time basis, the interval
between two data transmissions or the length of measurement
cycle depends on the process dynamics. Let τx be the length
of xth measurement cycle, where τx = Nx

p tp. To reduce the
complexity, tp is considered to be fixed in every measurement
cycle. Since the time series data exhibits a strong temporal
correlation, the signals can be reconstructed with Mx

p ≪ Nx
p

number of samples, where Mx
p is the number of optimal

sampling instants for pth parameter at the xth measurement
cycle. Let Nx ∈ R1×P and Mx ∈ R1×P be the vectors
containing the total sampling instants and the optimal sampling
instants of P parameters, respectively, such that Nx(p) = Nx

p

and Mx(p) = Mx
p .

As observed in [4], the sensing signals exhibit cross-
correlation, hence all the sensors need not to be activated
all the time. N ′ = (2P − 2) number of sensor sets can be
created Using P sensors, excluding the null set and the set
containing all parameters. Let Ax

i = {PAx
i ,m

; 1 ≤ m ≤ Ax
i }
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Fig. 2: (a) Two-state Markov model of sensing signal, (b) distribution of 1st order time derivative of PM2.5, and (c) distribution of 1st order
time derivative of CO.

be the ith active sensor set in the xth measurement cycle,
then Bx

i = P − Ax
i contains the inactive/sleeping sensors.

Hence, ith sleep set in the xth measurement cycle is Bx
i =

{PBx
i ,k

; 1 ≤ k ≤ Bx
i }. Sx = {(Ax

i ,Bx
i ); 1 ≤ i ≤ N ′}

contains the active-sleep pair of sets.
The sensor node collects samples based on the optimal

active sensor set and optimal sampling instants of the active
sensors. The data collected by the sensor node is transmit-
ted to the edge node as per non-real-time/real-time priority.
Section III describes the process of deciding the non-real-
time/real-time nature of the system based on the sensed signal
values. If any of the sensing signals crosses above a user-
defined satisfactory level, the system operates in real-time
mode, else it operates in non-real-time mode. The missing
samples are estimated at the edge node using GPR-based
prediction models, as described in Section IV. At the end
of every measurement cycle, the edge node exploits cross-
correlation among the parameters and temporal correlation
of the sensing signals to find an optimal sensor set and the
optimal sampling instants for the next measurement cycle
based on the adaptive sensing algorithm proposed in Section
V-D and the information is transmitted to the sensor node.
By optimizing the number of samples to be collected at each
measurement cycle, the proposed framework achieves energy
saving as well as bandwidth saving.

III. CHARACTERIZATION OF SENSING SIGNAL DYNAMICS

This section describes the characterization of sensing signal
dynamics. The sensing signals are usually non-stationary [22].
If any signal remains within its satisfactory level it is said to
be in ‘good’ state. Otherwise, the signal is considered to be in
‘bad’ state. Thus, according to [23], [24], a two-state Markov
model can be created for each signal; shown in Fig. 2(a). In the
proposed model, the system is statically defined. The system
acts on non-real-time basis when all the parameters are in
‘good’ state. If any parameter enters into the ‘bad’ state, the
system acts as a real-time system.

Let Zp(t) be the amplitude of pth parameter signal at time
t. The signal is said to be in ‘bad’ state if Zp(t) > Zp,th,
else it is in ‘good’ state. If Zp(t) = Z0

p at the present time
slot, then its amplitude after time Tp can be expressed as,
Zp(t + ∆1) ≈ Z0

p + Żp∆1, where ∆1 << 1s is the slot
duration. Let Z1

p = Żp∆1, similarly after j slots Zj
p = Żpj∆1.

To find the distribution of time derivative of sensing signals,
an air-pollution monitoring dataset with parameters PM2.5,
CO, NH3, NO2, Ozone, SO2 are studied. It has been observed

that the distribution of sensing parameters are non-stationary,
however, the time derivative of these signals follow Gaussian
distribution, as shown in Fig. 2(b) and Fig. 2(c). Thus,
Żp =

dZp

dt is a zero mean Gaussian random variable (RV)
i.e, Żp ∼ N(0, ˙σZp), where ˙σZp is the standard deviation.
Following the study in [25], Zj

p is a truncated Gaussian RV
and its probability density function is given by,

fZj
p
(Zj

p) =


1

√
2πσ̇

Z
j
p
(1−Φ(−

Z0
p

σ̇
Z

j
p

))
exp(− Zj

p
2

2σ̇2

Z
j
p

), Zj
p ≥ −Z0

p

0, elsewhere,

where σ2
Żj

p
= jσ2

Ż1
p

and Φ(x) =
∫ x

−∞
1√
2π

exp(− t2

2 )dt. If
Zp(t) = Z0(< Zpth

), the Gaussian mixture distribution of
the temporal variation of the signal over the next ζ slots is:

fΓ(γ|Zp(t) = Z0, ζ)=


1
ζ

∑ζ
j=1(

exp(− γ2

2σ̇2

Z
j
p

)

√
2πσ̇

Z
j
p
(1−Φ(

−Z0
σ̇
Z

j
p

))
),γ ≥ −Z0

0, elsewhere.

The probability that the pth parameter will remain below
threshold up to ζ slots is given by,

P g
p (Zp(t) = Z0, ζ) = Pr(Zp(t) < Zpth

)

=
1

ζ

ζ∑
j=1

1

(1− Φ(−Z0

σ̇
Z

j
p

))

∫ Zpth

0

1√
2πσ̇Zj

p

exp(− (γ − Z0)
2

2σ̇2
Zj

p

).

(2)

The probability that the pth parameter will be above threshold
up to ζ slots is:

P b
p (Zp(t) = Z0, ζ) = Pr(Zp(t) > Zpth

)

= 1− P g
p (Zp(t) = Z0, ζ).

(3)

Let τx be the length of xth measurement cycle which can
be divided into J slots such that τx = ∆1J . Then P g,x

p =
P g
p (Zp(t) = Z0

p , J) and P b,x
p = P b

p (Zp(t) = Z0
p , J) are the

‘good’ and ‘bad’ state probabilities of the pth parameter in the
xth measurement cycle, which will be subsequently used in
Section V-A to find the optimal length of measurement cycle.

IV. GPR-BASED TEMPORAL AND CROSS-CORRELATED
PARAMETER PREDICTION MODEL

This section describes the GPR-based signal recovery mod-
els to predict the sensing signals. As stated in Section I-A,
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GPR is widely used to predict sensing parameters in WSNs
due to its efficient signal recovery performance. GPR exploits
all possible functions, drawn from a Gaussian distribution
passing through the points rather than assuming a fixed para-
metric model of the data and finds a suitable function that
fits the data well with ±1 standard deviation [26]–[28]. The
proposed framework uses GPR model to predict the temporal
and cross-correlated parameters, as it performs better than the
existing signal recovery methods [13]–[15].

In the proposed approach, two GPR models are used. GPR1

model consists of P regressors to predict the time series data
from their previous samples based on the temporal correlation
of the individual parameters. The P regressor models are
implemented in both the edge node and the sensor node.
The sensor node predicts the next sample from the previous
samples of each parameter belongs to Ax

i . Based on the
predicted data, the node decides the next state of the parameter.
If the parameter goes to the ‘bad’ state the sensor node collects
the next sample for that parameter and verify the state of the
signal. If it still remains in the ‘bad’ state, the sensor node
immediately transmits the data to the edge node. GPR2 is
used to predict the parameters of Bx

i from the cross-correlated
parameters of Ax

i . The GPR2 model consists of N ′ sub-models
for N ′ active-sleep pairs of S. If Ax

i ⊂ P is activated in the
xth measurement cycle, the ith sub-model is selected to predict
the parameters of Bx

i . Intuitively, the correlated parameters
have more significance in prediction. GPR1 and GPR2 models
are briefly described in Section IV-A, and IV-B, respectively.

A. GPR Model for Time Series Prediction

The GPR model used to predict the temporal values of
the parameters, named as GPR1 is placed at both the edge
node and the end/sensor node. The GPR1 model consists of
P regressors to predict the temporal samples of P parameters.
Let p ∈ P is selected to activate in the xth measurement
cycle. The jth temporal sample of pth parameter can be
predicted from previous lp samples, where lp is the lag value.
Thus, the true signal value is Y x

p (j) = f(Zx
p (j − 1), Zx

p (j −
2), · · · , Zx

p (j − lp)).
The training matrix and target vector for pth regressor model

are respectively Zp ∈ Rn×lp and Zp ∈ Rn×1, where n is
the number of training samples. To predict Y x

p (∗) in the xth

measurement cycle, GPR finds the underlying function fp as,

Y x
p (∗) = fp(Zx

p(∗)) = fx
p,∗, (4)

where fp ∼ N(0,Kn×n). Kn×n = [k(Zp(r),Zp(s))]n×n,
where k(Zp(r),Zp(s)) is the covariance function between the
rth and sth instant of design/training matrix Zp. According to
[29, Ch. 2], the squared exponential covariance function for
the pth regressor of GPR1 model is given by,

k(Zp(r),Zp(s)) = exp{− 1

2l′2

lp∑
q=1

|Zp(r, q)− Zp(s, q)|2}

+σ2δrs. (5)

The pth prediction model of GPR1 is given by,
fx
p,∗|Zp,Zp,Zx

p(∗) ∼ N(fx
p,∗,Cov(fx

p,∗)), where fx
p,∗ and

Cov(fx
p,∗) are the mean and covariance function, respectively,

which can be derived from (A.1) and (A.2) of Appendix A.
From [29, Ch. 2], fx

p,∗ and Cov(fx
p,∗) are expressed as,

fx
p,∗ = K(Zp,Zx

p(∗))[K(Zp,Zp) + σ2I]−1Zp (6)

Cov(fx
p,∗) = k(Zx

p(∗),Zx
p(∗)) +K(Zx

p(∗),Zp)[K(Zp,Zp)

+σ2I]−1K(Zp,Zx
p(∗)). (7)

B. GPR Model for Cross-correlated Parameter Prediction

The GPR model used to predict cross-correlated parame-
ters, named as GPR2 is placed at the edge node. Let Ax

i

be the optimal sensor set selected to activate in the xth

measurement cycle and the parameters of Bx
i need to be

predicted from the cross-correlated parameters of Ax
i using

the ith sub-model of GPR2. The ith sub-model contains Bx
i

number of regressors, each predicts one parameter of Bx
i .

The training matrix of the kth regressor of the ith sub-
model of GPR2 is ZAi

∈ Rn×Ai and the target vector
is ZBx

i
(k) ∈ Rn×1. Each row of ZAi

corresponds to one
feature vector. The jth row of ZAi

is expressed as ZAi
=

{ZAi(j, 1), ZAi(j, 2), · · · , ZAi(j, Ai)}. During prediction in
the xth measurement cycle, the measurement vectors of
Ax

i and Bx
i for the jth sampling instant are expressed as

Zx
Ai

(j) = {Zx
Ai

(j, 1), Zx
Ai

(j, 2), · · · , Zx
Ai

(j, Ax
i )} ∈ R1×Ax

i

and Zx
Bi
(j) = {Zx

Bi
(j, 1), Zx

Bi
(j, 2), · · · , Zx

Bi
(j, Ax

i )} ∈
R1×Bx

i , respectively.
The equation (1) for Ax

i and Bx
i can be written as, Zx

Ai
(j) =

Yx
Ai

(j)+ηx
Ai

(j) and Zx
Bi
(j) = Yx

Bi
(j)+ηx

Bi
(j), respectively.

For a test vector Zx
Ai

(∗), GPR finds the underlying function
fx,k
i,∗ for the kth regressor as,

Y x
Bi
(∗, k) = fk(Zx

Ai
(∗)) = fx,k

i,∗ ∈ R∀k ∈ Yx
Bi
(∗), (8)

where fk
i ∼ N(0,Kn×n). Kn×n is the covariance matrix

whose elements are derived from the squared exponential
covariance function, as described in Section IV-A.

The prediction model for GPR2 is given by,
fx,k
i,∗ |ZAi

,ZBi
(k),Zx

Ai
(∗) ∼ N(fx,k

i,∗ ,Cov(fx,k
i,∗ )). Thus,

the mean function and the covariance function, derived from
(A.1) and (A.2) of Appendix A are expressed as,

fx,k
i,∗ = K(ZAi

,Zx
Ai

(∗))[K(ZAi
,ZAi

) + σ2I]−1ZBi
(k) (9)

Cov(fx,k
i,∗ ) = k(Zx

Ai
(∗),Zx

Ai
(∗)) +K(Zx

Ai
(∗),ZAi

)

[K(ZAi
,ZAi

) + σ2I]−1K(ZAi
,Zx

Ai
(∗)). (10)

These prediction models will be used in Section V to
estimated temporal values of the parameters at the edge/end
node and cross-correlated parameter values at the edge node.

V. PROPOSED FRAMEWORK

This section describes the proposed data-driven dynamic
priority sensing and transmission framework. The formulation
of optimization function to find the optimal length of mea-
surement cycle is presented in Section V-A, followed by the
method to find optimal lead values of the sensing parameters
in Section V-B. Section V-C presents the formulation of
UCB-based optimization function to find optimal sensor set,
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followed by the algorithms applied at the edge/sensor node in
Section V-D and complexity of the framework in Section V-E.

As discussed in Section I, a sensor node has limited energy
availability, which needs to be used optimally to enhance the
network lifetime. The adaptive sensing algorithm, running at
the sensor node increases the processing energy consumption
of the node. To reduce the complexity and hence energy
requirement of the sensor node, an edge intelligence-based
adaptive sensing framework is proposed in this section.

Let a and b are two sensing parameters having cross-
correlation coefficient c(a, b). a and b are said to be correlated
if |c(a, b)| ≥ cth, where cth is the cross-correlation threshold.
As discussed in Section II, 2P − 2 active-sleep pair of subsets
can be created from P sensors excluding the set having all the
parameters and the null set. The ith sensor set is said to be
correlated if all the parameters of Bx

i are correlated with at
least one parameter of Ax

i . The strength of cross-correlation
between Ax

i and Bx
i is defined by the cross-correlation factor

Cx
i . If Ax

i and Bx
i are cross-correlated, Cx

i is given by,

Cx
i =

1

Ax
i B

x
i

Bx
i∑

k=1

Ax
i∑

m=1

|cx(m, k)|;∀k ∈ Bx
i and m ∈ Ax

i . (11)

If Ax
i and Bx

i are not cross-correlated, Cx
i = 0 for the ith

active-sleep sensor set.
The performance of the proposed algorithm is measured

in terms of reconstruction error of the sensing parameters at
the edge node. If Pexp is the reconstruction error of the pth

parameter in the xth measurement cycle, the average error is:

PEx
i =

1

P

P∑
p=1

Pexp ;∀p ∈ P. (12)

A. Optimal Length of Measurement Cycle

Let, AT ∈ RP×1 be the binary sensing vector such that
A(p) = 1 if p ∈ P is active. A set Qx = {Ax

i ; 1 ≤
i ≤ N ′} is the set of vectors created from N ′ active sets
in Sx. A correlation matrix Cx ∈ RP×P contains the cross-
correlation coefficients of the parameters such that Cx(p, q) =
|c(p, q)|;∀p, q ∈ P , where c(p, q) is a function of the length of
measurement cycle τ . If τ increases the signal estimation error
increases due to the large variation in environmental conditions
between two cycles. Thus c(p, q) decreases with the increase
in τ . Moreover, the P g

k ;∀k ∈ Bx
i should be higher than the

threshold P g
th to ensure that the inactive sensors will not go

to ‘bad’ state over the whole measurement cycle.
If any signal enters into ‘bad’ state, the data stored in the

sensor node need to be transmitted immediately. Let, Ec be
the total communication energy required for one transmission.
Ec = Ew+Et, where Ew and Et are the wake up and data
transmission energy, respectively. Ew is assumed to be fixed
and Et increases with the increase in the number of samples
to be transmitted. Hence, the transmission energy consumption
of ith active sensor set in the xth measurement cycle is:

Etxi = Et1

Ax
i∑

m=1

Mx
m;∀m ∈ Ax

i . (13)

Et1 is the transmission energy consumed by the radio module
to transmit one sample. Since Ew is the initial energy required
to turn on the communication module, it is much higher
than Et. Although data transmission energy increases with
the length of measurement cycle, total communication energy
over a large period decreases due to the fewer number of
activations of the radio module. Therefore, an optimal length
of measurement cycle τ has to find by solving the trade-off
among Cx, P g

k ;∀k ∈ Bx
i , and Ew. Due to the unavailability

of data for the (x+ 1)th cycle, the cross-correlation factor is
calculated from the data received at the xth cycle. However,
the ‘good’ state probabilities of the parameters are estimated
for (x+ 1)th cycle using (III). It is assumed that the sensing
signals are slowly varying [11]. Hence, the cross-correlation
among the parameters does not change drastically. Thus, Cx

can be used to find the length of (x+1)th cycle. τ is a function
of Ax

i . For each active set Ax
i , the optimal value of τxAi

is:

τxAi
= max{ζc}

s.t.
1

Ax
i B

x
i

|Ax
i Cx

1(U
T − Ax

i
T )− Ax

i Cx
ζc(UT − Ax

i
T )| < δ

P g
k (Zk(t) = Z0,

∆2

∆1
ζc) > P g

th∀k ∈ Bx
i

ζc ∈ {ζcmin, ζ
c
max}.

(14)
Cx

1 is the cross-correlation matrix obtained from the most
recent samples of the xth measurement cycle and Cx

ζc is
obtained by shifting the data window up to past ζc slots, where
the duration of each slot is ∆2. ∆2 should be very small and
it is assumed that the process dynamics are similar over ∆2.

B. Optimal Lead Values of the Sensing Parameters
The GPR1 model, discussed in Section IV-A is used to

predict the consecutive samples of the active sensors from their
previous samples. If the prediction error remains below the
threshold, these samples need not be collected by the sensors,
which reduces the sensing energy further.

Let, ctxp(n) be the temporal correlation between Zx
p (i) and

Zx
p (i − n). If ctxp(n) ≥ ctp,th, n consecutive samples can be

predicted from their previous samples with prediction error
below etth. The maximum value of n is the lead value of the
pth parameter in the xth cycle; defined as lead value ζt

x
p . At

the edge node, the optimal value of ζtxp is given by,

ζt
x
p = max n

s.t. ctxp(n) ≥ ctp,th.
(15)

Thus, Mx
p =

Nx
p

(ζtx
p+1) =

T x

tp(ζtx
p+1) is the number samples need

to be collected for the pth parameter in the xth measurement
cycle. Here tp is the interval between two collected/predicted
samples, obtained using Nyquist sampling rate. For simplicity
of the algorithm tp is not computed at every cycle. ζt

x
p ,

obtained form (15) is used to estimate Mx
p which is further

used to find the optimal active sensor set for (x + 1)th

measurement cycle.
If etp(n) is the temporal prediction error of the pth param-

eter for the nth sample, etp(n) can be represented as,

etp(n) = αpn
βp . (16)
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αp, βp = min
α,β

{
np∑
n=1

(etp(n)− αnβ)2}. (17)

The optimal values of αp and βp are estimated using (17).
After receiving Ax+1

i , the sensor node updates the lead val-
ues of the active sensors to dynamically adapt their sampling
intervals based on the temporal prediction error. If etp,0 is the
prediction error at the nth

p,0 slot in the sensor node, the new
ζt

x+1
p in the x+ 1th measurement cycle at the sensor node is

given by,

ζt
x+1
p = min

n
(etp,0 + αp(n

β − nβ
p,0)− etth)

2. (18)

The deviation of temporal prediction error from its threshold
value decides the new value of ζt

x+1
p . After ζt

x+1
p slots the

sensor node collects lp samples for the pth active parameter
to predict the next consecutive samples.

C. Discounted UCB-based Optimization Function for Sensor
Selection

The optimization functions formulated to find the optimal
sensor set to be activated in the next measurement cycle are
discussed in this subsection. (19) presents the optimization
function used to find the optimal sensor set for the next cycle
from the data collected at the present cycle. To make the
system more predictive, an optimization function is formulated
in (21), that finds the optimal sensor set for the next cycle
from the data collected at the present and past cycles using
discounted UCB algorithm.

Let Es be a diagonal matrix whose diagonal elements
contain the energy consumed by the sensors to collect one
sample. Thus, Es(p, p) = Es1p, where Es1p is the energy
consumption of ph sensor to collect one sample. Hence, the
total sensing energy consumption of the ith active set in the
xth measurement cycle is Esxi = Ax

i EsMx, where Mx con-
tains the optimal sampling instants of the parameters obtained
using (15) and Ax

i is the binary sensing vector. Let UT ∈ RP×1

be a unity vector such that U(i) = 1; 1 ≤ i ≤ P . The cross-
correlation factor of the ith active set for the first slot (ζc = 1)
is given by, Cx

i (1) = Cx
i = 1

Ax
i B

x
i
[Ax

i Cx
1(U

T −Ax
i
T )]. Higher

value of Cx
i gives better sensing quality. Let Gx

i ∈ RP×1 be
a vector such that Gx

i = Cx
1Ax

i
T . Ax

i and Bx
i are correlated if

Gx
i (k) > cth;∀k ∈ Bx

i .
To incorporate the energy awareness, the residual energy

is considered as another performance parameter for finding
optimal sensor set. Let Ebatt be the battery capacity of the
sensor node and Ex

0 be its available energy in xth measure-
ment cycle. λx ∆

=
Ex

0

Ebatt
is the normalized energy available at

the sensor node. The objective is to maximize Cx
i , τxAi

and λx

and minimize Esxi .
The optimization function formulated to find Ax+1

i by
solving the trade-off among the cross-correlation, energy con-
sumption, residual energy of the sensor node, and length of
measurement cycle is given by,

max
Ax

i ∈Qx

λxCx
i τ

x
Ai

Esxi
s.t. Gx

i (k) > cth;∀k ∈ Bx
i

Esxi < Ex
0 .

(19)

The above optimization function explores all the binary
sensing vectors of Qx and selects an optimal sensing vector Ax

i

for the next cycle. The above function is a concave function,
whose proof is given in the Appendix B. The first constraint
ensures that the selected active and sleep sensor sets are
correlated and each parameter of Bx

i can be predicted from
at least one parameter of Ax

i . The second constraint ensures
that the required sensing energy for the selected active sensor
set is available at the sensor node.

The optimization function, given in (19) can find an optimal
sensor set for the next measurement cycle based on the present
state of the system, without having any knowledge about
the previous states. Since the environment is non-stationary,
predicting the next state from only the present state may not
give the optimal solution. The system becomes more predictive
when it includes past experiences along with the present state.
If a sensor set obtains higher rewards in the past cycles,
its probability of being optimal in the next measurement
cycle is higher than the other sets. Considering a sensor hub
collecting samples of various parameters from an environment
is a random process, an RL model can be created where the
learner can learn the system with time, based on previous
experiences. To this end, an RL algorithm such as UCB
algorithm is used in the proposed framework to select an
optimal sensor set to be activated in the next measurement
cycles based on the present and previous rewards of the sensor
set. UCB is widely used to select optimal arm in the multi-
armed bandit problems. Finding an optimal arm in multi-armed
bandit problems is analogous to finding an optimal sensor
set in the proposed adaptive sensor selection problem. Let
Rx

i =
λxCx

i τ
x
Ai

νxEsxi
be the reward obtained for the ith sensor

set in the xth measurement cycle, where νx = max
i∈Qx

Cx
i τ

x
Ai

Esxi
.

By putting ν in the denominator, the reward is bounded to
[0, 1]. An optimal active sensor set can be chosen for the
(x + 1)th measurement cycle based on the rewards of the
sensor sets obtained in the present and past cycles. It has been
observed that the reward distribution changes abruptly in a
non-stationary environment. In such cases, the most recently
collected samples are more responsible to decide the next state
compared to the old samples. Since the sensing parameters
follow non-stationary distribution, discounted UCB algorithm
is more suitable in the proposed framework. The rewards are
discounted using γ ∈ (0, 1) to give more weightage to the
recent samples [30]. In the proposed discounted UCB-based
sensor selection framework, the reward is computed for all the
sensor sets at every measurement cycle.

Let R1
i , R

2
i , R

3
i , · · · , Rx

i be the rewards for the ith active-
sleep pair of sensor set up to xth measurement cycle. The
rewards are identically and independently distributed Gaussian
random variables. Thus, the empirical mean of the distribution
of Ri is given by,

µ̂x
i =

1∑x
t=1 γ

x−t

x∑
t=1

γx−tRt
i =

1∑x
t=1 γ

x−t

x∑
t=1

γx−t
λtCt

i τ
t
Ai

νtEsti
.

(20)
The modified optimization function to find an optimal
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sensor set in the (x+ 1)th measurement cycle is given by,

max
Ax

i ∈Qx

1∑x
t=1 γ

x−t

x∑
t=1

γx−t
λtCt

i τ
t
Ai

νtEsti
+

√√√√ α′

T x
i

log(

N ′∑
i−1

T x
i )

s.t. Gx
i (k) > cth;∀k ∈ Bx

i

Esxi < Ex
0 .

(21)
In (21), the first term is the empirical mean of the distribu-

tion of reward while the second term provides the confidence
bound, where T x

i =
∑x

t=1 γ
x−t1[At=Ai]. A higher value of

T x
i makes the learner more confident about the distribution

of reward Rx
i [10]. At the end of every measurement cycle

the optimization function explores all the sensor sets and
selects an optimal sensor set that satisfies the constraints
given in (21). If sufficient energy available at the node, the
optimization function always returns an optimal sensor set, as
proven in the Appendix B. If Ax+1

i is selected to activate in
the (x+1)th cycle, the length of (x+1)th measurement cycle
is τx+1 = τxAi

.

D. Data-Driven Dynamic Priority Sensing and Transmission
Mechanism

As discussed in the problem definition in Section II, the
sensor node transmits data to the edge node at the end of every
measurement cycle when the system is in ‘good’ state and it
transmits data immediately when the system is in ‘bad’ state.
When the system is in ‘good’ state the data can be predicted
with lesser accuracy, however, during the ‘bad’ state the data
should be predicted with good accuracy. Hence, three different
error thresholds are defined in the proposed algorithm. When
the system is in ‘bad’ (‘good’) state, the temporal prediction
error of GPR1 model should be below etbth (etgth). The overall
error, which is the reconstruction error of the GPR2 model is
considered as eth. eth is the average reconstruction error of
all the parameters over a measurement cycle. If a parameter
is in ‘bad’ state, its temporal prediction error is below etbth.
However, the overall error can be above etbth.

Initially, the sensor node collects n samples for all the
parameters at their respective Nyquist rates and transmits them
to the edge node. The edge node receives the samples and
reconstructs the sensing signals for all the parameters and
sample data at a high sampling rate (maximum of all the
Nyquist rates of the parameters) from all the sensing signals.
As described in Algorithm 2, the GPR2 model is trained using
the samples drawn from the reconstructed signals at a fixed
sampling rate. The P regressors of GPR1 model are trained
using the data received from the sensor node based on their
respective Nyquist rate. An identical GPR1 model is created
at the sensor node to predict temporal samples. The sensor
node transmits only the collected samples to the edge node.
The samples predicted by the GPR1 model at the sensor node
are not transmitted to the edge node, as these samples are
predicted at the edge node using the same GPR1 model at both
‘good’ and ‘bad’ states. The hyper-parameters of the algorithm
such as, lag values, α, β, cth, ζcmax, ζcmin, ctth, and δ are
estimated during training/retraining the models. At every xth

Algorithm 1: Data-driven dynamic priority sensing algo-
rithm at the sensor node
Initialization: etgth, etbth, cth, Zth, α, β, x = 1, create

GPR1 model for time series prediction, find ζtx .
Input: Receive Ax

i , τx, Nx, tx from edge node.
if (e = 1) then

Activate all sensors and collect samples at Nyquist
sampling interval tx untill Time > τx

Retrain and test GPR1 model for P parameters
with recently collected samples.

else
for all Pp ∈ Ax

i do
Activate sensors belongs to Ax

i
Collect lp samples ∀Pp ∈ Ax

i
Set j = lp + 1 and np,0 = 1
while (j < Nx

p ) do
Predict next sample Z̃x

p (j) using GPR1 model;
Collect next sample Zx

p (j)
if ((Zx

p (j) < Zp,th)) then
Find etp,0 = |Zx

p (j)− Z̃x
p (j)|,

Find new ζt
x

p by putting etth = etgth in (18)
Set k = ζt

x

p

while (k > 0 && Z̃x
p (j) < Zp,th) do

Predict next sample Z̃x
p (j)

Set k = k − 1, j = j + 1, and
np,0 = ζt

x

p − k
end

else
Collect w consecutive samples and find

average Z̄p

Set j = j + w and np,0 = ζt
x

p − k + w
while (Z̄p > Zp,th) do

Set emp = 1; Send emp = 1 to the
edge node

Transmit the stored samples of all the
parameters of Ax

i
while (emp = 1) do

Predict next sample Z̃x
p (j); Collect

next sample Zx
p (j) and transmit to

edge node
if ((Zx

p (j) > Zp,th)) then
Find etp,0 = |Zx

p (j)− Z̃x
p (j)|

Find new ζt
x

p by putting
etth = etbth in (18)

Set k = ζt
x

p

while (k > 0 & Z̃x
p (j) > Zp,th)

do
Predict next sample Z̃x

p (j)
using GPR1 model

Set k = k − 1 and j = j + 1
end

else
Set emp = 0; Send emp = 0 to
the edge node

end
end

end
end

end
end
Set x = x+ 1
Output: Transmit data and Ex

0 to the edge node.
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Algorithm 2: Data-driven dynamic priority sensing algo-
rithm at the edge node

Initialization: etgth, etbth, eth, cth, ctbth, Zth, x = 1,
e = 0, find tx and Nx using FFT, create GPR1 and
GPR2 models using recently collected samples.

Input: Receive data and Ex
0 from sensor node.

if (e = 1) then
Find tx and Nx for P parameters using FFT
Retrain and test GPR1 model for P parameters
with recently collected samples.

Retrain and test GPR2 model for N ′ active-sleep
sensor sets with recently collected samples.

Set e = 0
else

Predict the missing samples ∀Pp ∈ Ax
i using GPR1

model (Section IV-A)
Reconstruct the signals ∀Pp ∈ Ax

i
Draw samples from the reconstructed signals at

interval t = min{txk; 1 ≤ k ≤ Bx
i }

Predict the cross-correlated parameters ∀Pp ∈ Bx
i

using GPR2 model (Section IV-B)
tx+1 = tx and Nx+1 = Nx

end
Set x = x+ 1
Find ctx−1

p ;∀p ∈ P
if (ctx−1

p ≱ ctbp,th;∀p ∈ P) then
Set e = 1
Ax

i = P , τx = n×max(tx)
else

if (Cx
i ≤ cth;∀i ∈ Sx||P g

p (Zp, ζ
c
min) ≤ P g

th;∀p ∈
P) then

Ax
i = P , τx = τx−1

else
Find ζt

x
p∀p ∈ P , τx, and Ax

i using (15), (14),
and (21), respectively

end
end
Transmit tx, Nx, Ax

i , τx, and e to the sensor node
Start listen mode
Set Time = 1
for all Pp ∈ Ax

i do
while (Time < τx) do

while (emp = 1) do
Send ACK= 1 to sensor node
Receive the stored samples of all the

parameters of Ax
i

while (emp = 1) do
if (no sample received) then

Predict the missing sample and store
else

Store the received sample
end

end
end

end
Receive remaining samples

measurement cycle, the edge node selects the active set Ax
i

using (21) and transmits Ax
i , τx, tx, Nx, and status flag e to

the sensor node. Based on the received information, the sensor
node collects samples and transmits the collected samples
and Ex

0 to the edge node. When the temporal correlation of
the parameters falls below ctbth, all the prediction models are
retrained. Algorithm1 is programmed at the sensor node and
Algorithm2 is programmed at the edge node.

TABLE II: Specification of sensors
Sensing pa-
rameter

Energy consump-
tion (J)

Threshold
(Zpth )

PM2.5 29.55 60µg/m3

CO 26m 1mg/m3

NH3 1.1 30µg/m3

NO2 20m 38µg/m3

Ozone 50m 50µg/m3

SO2 26m 40µg/m3
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Fig. 3: Variation of temporal prediction error with lp.

E. Computational Complexity of the Proposed Framework

The proposed framework is mainly edge intelligence-based,
where GPR models for time series prediction and cross-
correlated parameter prediction are developed at the edge
node. For n training samples the computational complexity
of GPR is O(n3) in training. However, the complexity in pre-
diction is O(Ix), where Ix is the total number of samples pre-
dicted in the xth measurement cycle. cth, lp, and ctth are es-
timated during training/retraining with complexity O(P ). The
complexity in finding τ is O(Pζmax)+O(P 2ζmax)+O(N ′),
where O(Pζmax) and O(P 2ζmax) are the complexity in
finding P g

p and C for P parameters over ζcmax slots and O(N ′)
is the complexity in finding τ for N ′ sensor sets. Similarly, ζt

for P parameters are estimated with complexity O(P ) and the
optimal active sensor set is selected with complexity O(N ′).
Thus, the total complexity in training/retraining and estimating
the hyper parameters is (N ′+P )O(n3)+O(P ). The compu-
tational complexity at the edge node in the xth measurement
cycle is O(Ix)+O(Pζmax)+O(P 2ζmax)+2O(N ′)+O(P ).
The sensor node is also programmed with GPR1 model to
predict the temporal samples of the sensing parameters. Hence,
the complexity of the sensor node during training/retraining is
PO(n3) and prediction in the xth cycle is O(Ix).

VI. RESULTS AND DISCUSSION

The simulation results of the proposed framework, described
in Section V are discussed in this section. An air pollution
monitoring setup, consisting of six sensors has been deployed
in the campus to capture the variation of six parameters
(PM2.5, CO, NH3, NO2, Ozone, SO2) in the environment and
store the data in the memory [31]. The dataset, retrieved from
the sensor node is used to simulate the proposed algorithm in
MATLAB. From [31] and [4], the energy consumption of the
six sensors for monitoring six parameters are listed in Table
II. To decide the ‘good’ and ‘bad’ states of the parameters, the
respective threshold values considered for the parameters are
also listed in Table II. The threshold values are chosen based
on the dataset and the satisfactory level of the parameters. The
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Fig. 4: Variation of temporal prediction error and temporal correlation with lead value ζt.

parameters are assumed to be in ‘bad’ state when the signals
exceed their respective threshold values.

A. Finding Optimum Values of Hyper-Parameters

In the proposed framework, the performance of the predic-
tion models are evaluated by choosing appropriate values of
temporal correlation threshold ctth ∈ R1×P for P parameters
and cross-correlation threshold cth. The sensing error for each
parameter is calculated in terms of normalized mean squared
error (nMSE) using (22).

If Zx
p and Ẑ

x

p are respectively the measurement vectors of
the actual and predicted/reconstructed data sequence of the pth

parameter in xth measurement cycle, the nMSE is given by,

nMSEx
p =

||Zx
p − Ẑ

x

p ||
||Zx

p ||
. (22)

Initially, the temporal prediction error of each parameter is ob-
served for different lag values. In [4], the nMSE achieved is on
the order of 10−5. Hence, nMSE = 10−5 is considered as the
temporal prediction error threshold etbth when the parameters
are in ‘bad’ state. It ensures good accuracy of the recovered
signal at the edge node during ‘bad’ state. On the other
hand, nMSE = 10−4 is chosen as temporal prediction error
threshold etgth in ‘good’ state. Since the signals need not be
predicted accurately in ‘good’ state, energy consumption gets
more priority than accuracy. However, the optimal lag value
for each parameter of the temporal prediction model GPR1 is
chosen to achieve error below 10−5. As shown in Fig. 3, the
lag values for the parameter set {PM, CO, NH3, NO2, Ozone,
SO2} are set as {lp, 1 ≤ l ≤ P} = {3, 2, 1, 3, 5, 2}. When
the pth sensor is turned on, it collects lp consecutive samples.
The next consecutive samples are predicted from previous lp
collected/predicted samples until the prediction error exceeds
the threshold at that state. To reduce complexity at the sensor
node, Nyquist sampling interval tp for each parameter is
computed at the beginning while training GPR1 model and
is not updated at every cycle. The values are recomputed at
the time of retraining the GPR1 model. The sampling interval
set, obtained from the simulation is {21, 65, 22, 75, 58, 41}.

The variation of temporal prediction error and temporal
correlation with the increase in lead value ζt for each pa-
rameter is shown in Fig. 4. As discussed in Section V-B,
the relation between temporal prediction error and ζt is
established as, etp(ζ

t) = αpζ
tβp , which is validated by

Fig. 4. αp and βp for pth parameter is obtained from the
initial training samples using (17). Since the temporal cor-
relation decreases and prediction error increases with ζt, a
temporal correlation threshold ctgp,th (ctbp,th) is set for pth

parameter, such that the prediction error remains below etgth
(etbth). Thus, from Fig. 4, ctgth and ctbth for P parameters
are respectively set as {0.96, 0.95, 0.93, 0.95, 0.96, 0.96} and
{0.98, 0.97, 0.955, 0.965, 0.99, 0.985}. If P g

P ≥ P g
th, ctgp,th

is used to solve (15), else ctbp,th is used to find ζtp for pth

parameter in (15).

The ‘bad’ state parameters of the active set are predicted
with an error below 10−5, whereas the ‘good’ state parameters
of the active set are predicted with an error below 10−4 using
GPR1 at both the sensor node and the edge node. The pa-
rameters of the inactive set are predicted from the parameters
of the active set using GPR2, as discussed in Section V-D.
After predicting all parameters of the inactive set, the signals
are reconstructed at the edge node and the reconstruction
error is calculated in terms of nMSE. It is observed that the
multi-sensing strategy, proposed in [4], achieved nMSE on
the order of 10−5 due to joint prediction at the network level,
where the spatial samples of the parameters are were also
available. However, the proposed model in [4] is completely
dedicated to the node-level analysis of a multi-parameter
sensor hub. Applying the adaptive multi-sensing strategy of
[4] in the proposed model, the average signal reconstruction
error achieved is 2.1× 10−3. Hence, the reconstruction error
(nMSE) threshold for GPR2 is set at 10−3 to find optimum
values of cth and δ. As shown in Fig. 5a, the reconstruction
error decreases and energy consumption increases with cth.
Thus, cth = 0.72 is set as the optimum value. It is observed
in Fig. 5a that the error increases with δ, whereas δ = 0.01
results in a small length of measurement cycle which in turn
increase the communication energy. Hence, an optimum value
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Fig. 5: (a) Average energy consumption and reconstruction error versus cross-correlation threshold and (b) Variation of cross-correlation
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0

50

100

150

A
ct

iv
e 

se
n

so
r 

se
t 

in
d

ex

0 20 40 60 80 100

Measurement cycle

(a)

0

1000

2000

3000

4000

L
en

g
th

 o
f 

m
ea

su
re

m
en

t 
 

  
  

  
  

  
  

  
cy

cl
e 

(s
ec

) 
  

  
  

  
  

  
  

  

0 20 40 60 80 100

Measurement cycle

(b)

0

0.02

0.04

0.06

0.08

 C

0 20 40 60 80 100

Measurement cycle

(c)
Fig. 6: (a) Optimal active sensor set, (b) adaptive length of measurement cycle, and (c) deviation of average cross-correlation coefficient of
the active set.

of δ is set as 0.05.
As discussed in Section V-A, the length of measurement

cycle for each sensor set is obtained using (14), where the
time slot ζc is bounded to [ζcmin, ζ

c
max]. As shown in Fig.

5b, the average cross-correlation factor of N ′ sets is changing
with time. With slot duration ∆2 = 1 sec, ζcmax is set as 3690.
Hence the maximum length of measurement cycle is 3690 sec,
whereas the minimum length of measurement cycle is the set
as the minimum value of all the Nyquist sampling intervals of
the parameters i,e. 21 sec. The noise variance is considered as
σ2 = 10−6 for all the parameters [11].

B. Validation of the Proposed Algorithm

The proposed algorithm is simulated over 100 measurement
cycles to validate the efficacy of the algorithm. Fig. 6(a)
captures the variation of optimal active sensor set at different
measurement cycles. The variation of length of measurement
cycle is shown in Fig. 6(b), which shows that the τ remains
within the bound [21, 3200] sec. ∆C = is the change in
cross-correlation factor of the selective sensor set over the
cycle. It can be observed that ∆C remains below δ = 0.05
in almost every cycle. Although it exceeds 0.05 in some
cycles, the deviation is very small. The average of ∆C is
0.018 < 0.05, which validates the efficiency of the algorithm.
Fig. 6 shows that the proposed algorithm is adaptive to the
process dynamics.

C. ‘bad’ states Detection Accuracy

As discussed in Section III, the proposed system model
is statically defined. If any parameter crosses above the
‘bad’ threshold value, the system responds on real-time basis.
Otherwise, the system responds on non-real-time basis. To
detect the state of the system, the parameter values are either

TABLE III: Comparison with state-of-the-art

Proposed
framework

Nyquist-based
framework

Sensing energy (J) 264.3 2210
Communication energy (J) 0.0055 0.0998
Number of samples 68 810
Reconstruction error 7× 10−4 2.5× 10−6

‘bad’ states detection efficiency 98% 100%

predicted or collected at the sensor node at their individual
Nyquist sampling rate. To find the accuracy of the proposed
algorithm in detecting ‘bad’ states of the system, it is com-
pared with the Nyquist-based adaptive sampling algorithm
proposed in [1]. In the Nyquist-based algorithm, all the sensors
periodically collect data at their individual sampling intervals
and transmit sporadically to the edge node. However, in the
proposed model the data is transmitted sporadically during
‘bad’ state. In Fig. 7(a), it has been observed that the ‘bad’
states detection accuracy increases with higher P g

th and lower
etbth. Considering 100% ‘bad’ states detected in Nyquist-
based model, the proposed model detects 98% ‘bad’ states
with P g

th = 0.95 and etbth = 10−5. When P g
th = 0.9 and

etbth = 10−4, the ‘bad’ state detection accuracy is 96%. Hence,
required accuracy can be achieved by by adjusting P g

th and
etbth. A comparison of reconstruction error and residual energy
between the proposed framework and Nyquist-based model
are respectively shown in Fig. 7(b) and Fig. 7(c) considering
P g
th = 0.95 and etbth = 10−5. It has been observed that the

signal reconstruction error (nMSE) in the proposed framework
is much higher than the Nyquist-based framework due to
prediction errors of GPR1 and GPR2, however, it is below the
threshold (10−3). Fig. 7(c) shows that the proposed framework
is more energy-efficient compared to [1].

A performance comparison of the proposed framework with
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Fig. 8: Comparison of actual and reconstructed sensing signals.

the Nyquist-based framework in terms of average sensing en-
ergy consumption, average communication energy consump-
tion, average number of samples, average reconstruction error,
and ‘bad’ states detection accuracy is shown in Table III.

Remark 1: The proposed framework is 88% more energy-
efficient and 91% more bandwidth-efficient compared to the
Nyquist-based adaptive sampling algorithm [1] with moderate
complexity, while maintaining a sensing error below 10−3 and
detecting the system states with 98% accuracy.

D. Reconstruction Performance Evaluation

The comparison of actual and reconstructed sensing signals
at both ‘good’ and ‘bad’ states is presented in this subsection.
As shown in Fig. 8, the signals are sampled at a faster rate
when they exceed the threshold. The sensors are not collecting
samples when they are inactive.

The reconstruction error (nMSE) of all the six parameter
are presented in Fig. 9. It is observed that the error is below
10−5 when the parameters are in ‘bad’ state. However, the
error is bounded to [10−5, 10−3] when the parameters are in
‘good’ state. Fig. 8 and Fig. 9 validates the efficiency of the
GPR-based prediction models, discussed in Section IV.

E. Performance Comparison with State-of-the-Art

In the proposed framework, both temporal- and cross-
correlation of the parameters are exploited. A performance
comparison in terms of error and energy efficiency between

the proposed signal recovery and the SBL-based approach,
proposed in [4], is studied in this subsection.

Since the SBL-based prediction framework in [4] considers
the system as non-real-time, it is unable to detect the time-
criticality of the system. On the other hand, the proposed
framework detects the time-criticality of the system with
98% accuracy. It is assumed that the active sensors in [4],
collect samples at Nyquist sampling rate. However, due to
time series prediction model at the edge node and the end
node in the proposed framework, the active sensors collect
only a few samples, which gives a huge reduction in energy
consumption and bandwidth utility. Considering NB-IoT as the
radio module, the communication energy (Ec = Ew+Et) is
computed using (13), where each sample is represented in 32
bits [31], [32].

As shown in Fig. 10(a), GPR-based prediction models
performs better than SBL-based model in terms of accuracy.
Although the proposed framework consumes more energy and
bandwidth in ‘bad’ states compared to ‘good’ states, Figs.
10(b)-(e) depict that the proposed framework is more energy
and bandwidth-efficient compared to SBL-based approach [4].
The average sensing error in the proposed and SBL-based
framework are respectively 7× 10−4 and 2.1× 10−3.

Remark 2: The proposed framework saves 41% sensing
energy, 67% communication energy, and 32% bandwidth com-
pared to the framework in [4] with 68% reduction in sensing
error, while detecting the system states with 98% accuracy.
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Fig. 9: Reconstruction error of the parameters at the edge node.
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Fig. 10: Performance comparison of the proposed framework with SBL-based approach [4].

TABLE IV: Performance comparison of the proposed framework with
and without RL

Without
RL

with RL
(UCB)

with RL (Q-
learning)

Average energy consumption 340.35 J 264.3 J 264.2 J
Average reconstruction error 9× 10−4 7× 10−4 6.4× 10−4

Computational complexity O(N) O(N) O(NIitr)

F. Sensitivity of the Proposed Framework to RL-based Opti-
mization Functions

To analyze the efficiency of the proposed discounted UCB-
based adaptive sensor selection algorithm, the performance
matrices are compared using RL-based optimization func-
tion (21) and without RL-based optimization function (19).
As discussed in Section V-C, the proposed framework uses
discounted UCB algorithm to find optimal active sensor set
for the next measurement cycle, where γ and α′ in (21) are
respectively set as 0.9 and 0.95 [30]. However, Q-learning
algorithm is also used widely to solve RL problems. A
performance comparison of discounted UCB and Q-learning-

based optimization function is shown in Table IV. Table IV
also lists the performance matrices without using any RL
algorithm in the optimization function as given in (19). Here
the Q-learning is used as a stateless variant with ϵ-greedy
method, as discussed in [33]. The values of ϵ, learning rate, and
decay are respectively set as 1, 0.9, and 0.95. In Q-learning,
the Q-value of a sensor set is estimated iteratively. If Iitr is
the number of iterations, the complexity to find optimal sensor
set out of N ′ sets is O(N ′Iitr).

Remark 3: The energy consumption and error in RL-
based methods are much lower compared to without RL-
based method. Although Q-learning performs slightly better,
the computational complexity of Q-learning is much higher
than that of discounted UCB.

VII. CONCLUSION

A novel data-driven edge intelligence-based priority aware
sensing and transmission framework has been presented in
this paper. The cross-correlation among the parameters and
temporal correlation of the sensing signals have been exploited
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to find the optimal active sensor set and optimal sampling
instants of the sensors. The optimal active set has been esti-
mated by solving the trade-off among performance parameters
using discounted UCB-based optimization function. Exten-
sive simulation studies on air-pollution monitoring parameters
have validated the efficacy of the proposed framework. The
GPR-based prediction models perform better in the proposed
framework compared to the SBL-based prediction model. The
application of reinforcement learning in finding optimal sensor
set in a non-stationary environment increases the efficacy of
the proposed framework. The proposed framework is both
energy and bandwidth-efficient compared to the existing real-
time and non-real-time adaptive sensing algorithms, while
detecting the system states with close to 100% accuracy.

As an immediate extension, the proposed framework will
be implemented in a real-life sensor network to validate its
efficiency. The sensor node will be wirelessly connected to
an edge node to transmit data and receive instructions based
on the intelligence algorithm programmed in the edge node.
It will be interesting to study the energy efficiency of the
proposed framework in real operation scenario applications, as
there is a clear tradeoff of sensing and communication energy
saving versus computational energy overhead.

APPENDIX A

Let f(Z) ∼ GP (m(Z), k(Z,Z′)) ∀ Z,Z′ is a Gaussian
process, where m(Z) = E[f(Z)] is the mean function and
k(Z,Z′) = E[(f(Z)−m(Z))(f(Z′)−m(Z′))] is the covari-
ance function. If Z is the training matrix with n feature vectors,
Y is the target vector, and W is the weight vector, the prior
and posterior distributions of the underlying function f for a
test point Z∗ are respectively given by,

Pr(f(Z∗)) =

∫
W
Pr(f |W,Z∗)Pr(W)dW (A.1)

Pr(f(Z∗)|Z,Y) =

∫
W
Pr(f |W,Z∗)Pr(W|Z,Y)dW. (A.2)

Assuming Pr(W) is Gaussian and Pr(f |W,Z∗) is deter-
ministic, Pr(f(Z∗)) and Pr(f(Z∗)|Z,Y) are also Gaussian
[29, Ch. 2]. Equation (A.1) and (A.2) are used in Section
IV to find the mean and covariance functions of GPR-based
temporal and cross-correlated parameter prediction models.

APPENDIX B

The optimization function to select an optimal sensor set A
in the (x+ 1)

th measurement cycle is given by,

F x+1(A) =
x∑

t=1

γx−t
E0

t

Ebatt

1
AB [ACt

1(U
T − AT )]τ tA

νtAEsMt

+

√√√√ α′

T x
A
log(

N ′∑
i−1

T x
A ). (B.1)

In (B) νt = max
A∈Qt

1
AB [ACt

1(UT−AT )]τt
A

AEsMt
is constant for a measure-

ment cycle and independent of At. Similarly, E0
t

Ebatt
and τ tAi

are
also independent of At. Although T x

A in (B) is a function of

Ax, it is the number of times vector A is selected to activate
up to x measurement cycles. Thus, (B) can be rewritten by
replacing the constant terms with c1 and c2 as, F x+1(A) =∑x

t=1 c
t
1F

t
1(A) + cx2 , where F1(A) =

AC1(UT−AT )

AEsM . If F1(A)

is concave, F (A) is also concave. The Frechet derivative of
F1(A) is given by [34],

F1(A + V)− F1(A) =
(A + V)C1(U

T − (A + V)T )

(A + V)EsM
−

AC1(U
T − AT )

AEsM

=
(AC1UT + VC1UT − AC1AT − AC1VT − VC1AT − VC1VT )(AEsM)

(AEsM + VEsM)(AEsM)

−
(AC1(U

T − AT ))((A + V)EsM)

(AEsM + VEsM)(AEsM)

=
(VC1UT − AC1VT − VC1AT − VC1VT )(AEsM)

(AEsM + VEsM)(AEsM)

−
(AC1UT − AC1AT )(VEsM)

(AEsM + VEsM)(AEsM)

=
(VC1UT − AC1VT − VC1AT − VC1VT )(AEsM)

(AEsM + VEsM)(AEsM)

−
(VC1UT − VC1AT )(AEsM)

(AEsM + VEsM)(AEsM)

=
(−AC1VT − VC1VT )(AEsM)

(AEsM + VEsM)(AEsM)
=

(−AC1VT − VC1VT )

(A + V)EsM
.

(B.2)
Putting VC1VT = 0 and (A + V) ≈ A, we get the Frechet
derivative of F1(A) as, ∇F1(A) =

−AC1

AEsM
. Similarly, the

Hessian of F1(A) is given by,

∇2F1(A) =
0

AEsM
= 0 (B.3)

According to [34], a twice differentiable function F (A) is
concave if and only if ∇2F (A) ≤ 0∀A ∈ RP×1. Thus, the
optimization functions in (19) and (21) are concave, which
ensures a single maximum point exists. Since the domain of
A is discrete, it makes a non-convex set. It can be converted
to a convex set by considering the convex hull of Qx.
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