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Energy-efficient Edge Computing Framework

for Decentralized Sensing in WSN-assisted IoT

Vini Gupta and Swades De

Abstract

This paper addresses the problem of decentralized sensor selection in an energy-constrained wireless

sensor network-based Internet-of-Things, for monitoring a spatio-temporally varying process. To do so,

an adaptive edge computing framework and its variants are proposed which distributedly optimize a

critical trade-off between sensing quality and remaining energy of the sensor nodes (SNs). Unlike the

existing distributed sensing approaches, the proposed one aims to maintain energy balance among the

SNs. The original sensor selection problem is decoupled into multiple sub-problems, each solvable

at an edge node elected as head of a coverage region containing a set of SNs. The sub-problem in

each coverage region is adapted to variations of the underlying process. In each region, the process

is estimated using PCA-SBL (principal component analysis-sparse Bayesian learning) on noisy signal

measured by the respective active SNs. Further, to correctly adapt to the process and estimate the signal,

a novel logic is designed that indicates requirement of network retraining in the next measurement cycle.

The results from extensive simulation studies illustrate improved energy efficiency and network energy

balance of the proposed framework over the existing closest competitive centralized and decentralized

approaches. The proposed framework is tested on synthetic as well as real data-sets of a sensor network.

Index Terms
Wireless sensor networks, adaptive and decentralized sensor selection, sparse Bayesian learning,

principal component analysis, network residual energy

I. INTRODUCTION

Rapid growth of smart wireless sensors deployment for Internet-of-Things (IoT) applications

is expected to exponentially increase the energy consumption and delay [1]. In this context,

intelligent sensing and transmission at the field sensor nodes (SNs) can prolong their life span

[2], [3]. In a densely-deployed wireless sensor network (WSN) for monitoring a spatio-temporal
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process, inherent redundancy in the signal can be exploited to perform parsimonious sensing

without sacrificing the sensing quality [4]. Further, decentralized processing at the edge nodes

can overcome the scalability issues.

A. Prior art and motivation

The existing works on sensing mainly focus on centralized decisioning wherein the fusion

center (FC) receives information (noisy measurements) from the SNs, takes sensing decision,

and conveys it back to the SNs. The approaches in [5], [6] randomly activate a fixed number

of SNs without paying attention to energy efficiency. A greedy selection approach in [7] aimed

at improved energy efficiency. The aspect of sensing quality has gained recent attention. For

instance, in [8] a sensor selection scheme was presented for a linear measurement model using a

well known D-optimal performance criterion. In [9] the Cramér-Rao lower bound performance

measure was employed as sensor selection criterion for a non-linear measurement model. For

monitoring a temporally-correlated source, in [10] a sensor selection scheme was developed that

optimizes the sensing quality subject to a prescribed power budget for the energy harvesting

(EH) system. Subsequently, in [11] a sensor selection scheme was proposed that minimizes the

estimation error at the FC subject to energy and spectral budgets of an EH IoT network. The

work in [12] optimizes both sensing quality and energy efficiency while selecting a fixed number

of SNs. To address the shortcoming of sensing a dynamic process by activating a fixed number

of SNs, centralized sensing schemes in [13]–[16] adapted the number of active sensors.

The centralized sensor selection approaches involve high communication and energy overheads

and processing complexity. To overcome these limitations in large-scale WSNs, decentralized

strategies have been developed in recent studies. An offline iterative distributed sensor selection

scheme was proposed in [17], [18], employing dual subgradient method. Likewise, the study

in [19] suggested an optimization problem for decentralized sensor selection and solved using

a fast empirically converging iterative alternating direction method of multipliers. Distributed

implementation of the approach in [8] was formulated in [20], in a network with two leader nodes.

Further, considering a Bayesian framework a low-complexity greedy decentralized algorithm for

heterogeneous sensing environment was developed in [21].

Iterative nature of the existing distributed sensor selection approaches [17]–[21] requires local

information exchange among the SNs in each iteration, which significantly increases the energy

and processing overheads. These works assume regression coefficients to be known a priori,
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which may not be realistic. Moreover, these approaches did not account for the critical aspect of

unequal remaining energy of the SNs. Consequently, a few SNs may be repeatedly selected over

the others, which may result in a network coverage outage. Also, importantly, these approaches

are non-adaptive to the dynamics of the sensed process; they fix one of the two performance

measures (sensing quality and the number of active SNs) and optimize the other. Intuitively,

optimizing both the measures as per the process dynamics and minimum required sensing quality

may yield a better performance.

B. Novelty and Contribution

To overcome the above-mentioned lacuna in the literature, this work proposes an adaptive

edge computing framework for decentralized sensor selection that jointly optimizes the sensing

quality of a slowly-varying process and WSN energy efficiency. To the best of our knowledge

this framework is first to provide energy balance among the SNs by accounting for their unequal

remaining energy in the sensor selection problem. The existing works considered distributed

sensor selection and remaining energy in isolation, without factoring that the SNs can be selected

for sensing only if they have sufficient remaining energy. In contrast to the prior art, the proposed

framework accounts for energy consumption at each step and does not require iterative local

information exchange in each cycle. Another important aspect is that the proposed framework

learns the regression matrix online using previously estimated signals to better adapt to spatio-

temporally evolving process, unlike a random Gaussian matrix considered in the literature. To

keep a check on accumulated estimation error, a retraining logic is also developed. In an edge

computing framework, entire processing is done by the edge nodes in contrast to the cloud

computing where the central entity performs all such computations. In network’s context, the

centralized sensor selection is analogous to the cloud computing. Similarly, for decentralized

sensor selection, this paper considers edge computing framework that is realized by dividing

the WSN field in coverage regions/clusters with an elected cluster head (CH) in each. The CHs

perform the role of edge nodes by taking sensing decisions and sharing them with the cloud (FC)

and the field SNs. Thus, the novel ideas are decoupling the sensing quality and energy efficiency-

based sensor selection problem into various sub-problems, integration of energy consumption,

non-iterative decentralized sensing decisions, and data-driven retraining of the network/coverage

regions(s). The contributions of this work are as follows.
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1) A decentralized sensor selection framework and its four variants are proposed to jointly

optimize the sensing quality and energy efficiency.

2) A closed-loop adaptive mechanism is developed which runs on the edge nodes to predict

the number of active SNs in the next measurement cycle in the respective regions.

3) The sensor selection and estimation processes rely on sparsification matrices constructed

using previously estimated signals. To limit the accumulation of estimation errors over the

measurement cycles, a retraining logic is designed to indicate the next retraining instants.

4) For monitoring a spatio-temporally dynamic process, a sparsification matrix is updated in

each measurement cycle using principal component analysis (PCA) which utilizes w past

instances of signal samples estimated via sparse Bayesian learning (SBL). The window

size w is chosen by addressing a trade-off between retraining overhead and cluster head-

to-cluster head (CH-to-CH) communication overhead.

5) Energy consumption in sensing, processing, and transmission is inherently integrated into

the proposed framework. It is also integrated with the closest existing approaches [15],

[18], and [21] for fair performance comparison.

6) Relative performance of the proposed framework with the closest approaches in [18], [21]

demonstrates the achieved gain in energy efficiency (up to ≈ 84%) and network energy

balance. Performance of the proposed framework is verified on real WSN data as well.

C. Organization

The WSN data acquisition model, sparse signal representation, and recovery are presented in

Section II. Section III describes the proposed decentralized sensing problem. Energy cost and

coverage regions are discussed in Section IV. Sections V, VI, and VII respectively presents the

proposed decentralized sensing framework and its variants, simulation results, and concluding

remarks. The main symbols and abbreviations used are listed in Table I.

II. SYSTEM MODEL, SPARSIFICATION, AND RECOVERY

A. WSN system model and its distributed counterpart

A homogeneous WSN is considered where energy-constrained SNs are deployed for monitor-

ing a slowly-varying spatio-temporal process (e.g., air pollution shown in Fig. 1). Due to dense

deployment, there exists spatial correlation among signals across the SNs. This can be used for

energy-efficient sensing by activating a subset of SNs while the remaining ones can sleep.
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TABLE I: Symbols and abbreviations
Notation Description

R,Rr , Nr = |Rr| Number of coverage regions, set containing SNs of region r, total number of SNs in region r

A(k)
r , M(k)

r = |A(k)
r | Set containing active SNs of region r in kth cycle, number of active SNs of region r in kth cycle

z
(k)
r , ỹ

(k)
r Spatial signal

(
∈RNr×1

)
across SNs of region r in kth cycle, signal measured by active SNs in setA(k)

r

(
∈RM

(k)
r ×1

)
A

(k)
r ,B

(k)
r Sensing matrix

(
∈ RM

(k)
r ×Nr

)
and sparsification matrix

(
∈ RNr×Nr

)
of region r in kth cycle

E
(k)
c (n), Es, E(k)

rem (n) Energy consumed by nth SN in transmission and sensing (in J), remaining energy of nth SN in kth cycle (in J)

E
(k)
proc (·) , Etx (dt−r) Energy consumed by SN in processing tasks and transmission of b bits of information at a distance dt−r (in J)

Erx, Eelec, η Energy spent by SN to receive b information bits (J), consumed by radio electronics (J/bit), amplifier energy (J/bit/m2)

[α, β] Lower and upper limits of BCRB

M
(k+1|k)
r Number of active SNs of region r predicted for (k + 1)th cycle based on signal estimated during current cycle k

Ak|M
(k)
r −i

r Pruned active set obtained by removing i SNs with the lowest signal amplitude |z(k)r (·)| from A(k)
r

x̂
k|M(k)

r −i
r ∈RNr×1 Sparse signal estimate obtained using measurements from SNs ∈ Ak|M

(k)
r −i

r

BCRBk|M
(k)
r −i

r , ε̂
(k)
r BCRB corresponding to SNs ∈ Ak|M

(k)
r −i

r , euclidean distance between x̂
(k)
r and x̂

k|M(k)
r −i

r

δ̂
(k)
r Heuristic giving an idea of process variability with respect to (k − 1)th cycle

t1, t2 Time required to compute the matrix B
(k)
r using the PCA scheme and run update step of the adaptive mechanism

t3, t4 Time required in SBL-based recovery of x
(k)
r and prediction step of adaptive mechanism and to run retraining logic

BCRBr , SSr , CHr , FC Bayesian Cramér-Rao bound, sensor selection function, cluster head (or edge node) for region r, fusion center

Tr{A}, ‖a‖, (·)T , diag (·) Trace of matrix A, l2-norm of vector a, transpose of the vector/matrix, diagonalization operation on a vector

Fig. 1: Decentralized WSN system.

Let the signal corresponding to the random process observed across N SNs in the kth mea-

surement cycle be denoted by the spatial signal vector z(k) =
[
z(k) (1) , · · · , z(k) (N)

]T ∈ RN×1.

Let A(k) ⊆ {1, · · · , N} represent the set of SNs activated for sensing in the kth cycle (called

active set); the total number of active SNs is given by M (k) =
∣∣A(k)

∣∣ ≤ N . The active SNs

are selected using a sensor selection problem (Section III-A) solved by the FC in a centralized

setting. Let the activity status of the SNs be captured in a binary sensing matrix A(k) ∈ RM(k)×N .

Each row of A(k) corresponds to a distinct active SN. Hence, there will be M (k) unique rows

in the matrix A(k). If the mth row represents the ith active SN, then its entries are given by,

A(k) (m,n) =

1, n = i s.t. i ∈ A(k)

0, n ∈ {1, · · · , N} \ {i} .
(1)
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Likewise, if another row (say l) represents a different active SN (say j), then A(k) (l, j) = 1 and

A(k) (l, n) = 0, (n 6= j). The measurement vector ỹ(k) ∈ RM(k)×1 contains signals measured by

the SNs ∈ A(k). Similar to [15], [21], the system model in the centralized setting is given by

ỹ(k) = A(k)z(k) + n(k), (2)

where n(k) ∈ RM(k)×1 is the additive white Gaussian noise vector with independent and identi-

cally distributed (IID) components of zero mean and variance σ2. It comprises both measurement

and channel noises, distributed as n
(k)
m ∼ N (0M(k) , σ2

mIM(k)) and n
(k)
ch ∼ N (0M(k) , σ2

chIM(k)),

respectively. These noises are independent of each other, as one is due to sensing/measurement

impairment while the other is due to signal reception over the wireless channel. Thus, the overall

noise n(k) = n
(k)
ch +n

(k)
m with variance σ2 = σ2

ch+σ2
m, i.e., n(k) ∼ N (0M(k) , σ2IM(k)). Note that the

spatial correlation among the process signal across different SNs due to their dense deployment

is captured by the spatial signal vector z(k). It is not related to the noise. In general, the scenario

where ambient noise corrupts the SNs’ measurements may result in colored measurement noise,

distributed as nm ∼ N (0M(k) ,Q), where Q ∈ RM(k)×M(k) is the colored covariance matrix.

Then, n(k) ∼ N (0M(k) ,Σn) , where Σn = (σ2
chIM(k) + Q) ∈ RM(k)×M(k) . For simplicity, the

case with white noise is considered throughout the paper.

In a centralized setting [15], the FC receives components of the vector ỹ(k) from the currently

active SNs, processes it to estimate the unknown spatial vector z(k) (i.e., the signal across the

entire WSN field), computes A(k+1) (active set for next cycle), and broadcasts A(k+1) to the

SNs. In a decentralized setting, adaptive sensor selection (proposed in Sections III-B, III-C) and

signal estimation are carried out at the node level. The WSN field is divided into R coverage

regions/clusters, each containing Nr SNs given by the set Rr = {1, 2, . . . , Nr} , ∀ 1 ≤ r ≤ R,

such that Nr = |Rr|. Note that Rr,∀r, are the sets of non-overlapping SNs and
∑R

r=1 Nr = N .

One SN from each region is elected as the cluster head (CHr), called edge node, which receives

the measurement signal vector ỹ
(k)
r ∈ RM

(k)
r ×1 from the set of SNs A(k)

r that are activated from

the respective region r. The total number of active SNs in region r is M (k)
r =

∣∣∣A(k)
r

∣∣∣ ≤ Nr, and⋃R
r=1A

(k)
r = A(k). The CHr processes ỹ

(k)
r to estimate the spatial signal across all the SNs of

that region denoted by z
(k)
r ∈ RNr×1, which is followed by computation of the region’s active set

A(k+1)
r for the next measurement cycle. Subsequently, each CHr sends the estimate of the signal

vector z
(k)
r to the FC for archival purpose and broadcasts A(k+1)

r in their respective regions. To

formulate the distributed sensor selection problem, the system model in (2) is represented as in
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(3), by placing the rows of the sensing matrix A(k) corresponding to the active SNs of each

region Rr one after the other and denoting the submatrix as Ǎ
(k)
r ∈ RM

(k)
r ×N .

ỹ
(k)
1

...

ỹ
(k)
R

 =


Ǎ

(k)
1

...

Ǎ
(k)
R




z
(k)
1

...

z
(k)
R

+


n

(k)
1

...

n
(k)
R

 , (3)

with M (k) =
∑R

r=1 M
(k)
r and n

(k)
r ∈ RM

(k)
r ×1,∀r, denoting the noise across the SNs belonging to

A(k)
r . The measurement vector of the rth region ỹ

(k)
r has no contribution from the signal across

the SNs of the other regions, i.e., z
(k)
j , ∀ 1 ≤ j ≤ R, j 6= r. Thus, the sensing submatrix Ǎ

(k)
r

can be truncated by considering the columns corresponding to the SNs ∈ Rr only. Denoting the

truncated matrix as A
(k)
r ∈ RM

(k)
r ×Nr , the system model for Rr, ∀r, is given by

ỹ(k)
r = A(k)

r z(k)
r + n(k)

r . (4)

Also, the correspondence between A(k)
r and A

(k)
r is given by,

A(k)
r (m,n) =

{
1, n = i s.t. i ∈ A(k)

r

0, n ∈ {1, · · · , Nr} \ {i} .
(5)

The system model in (4) is used in the decentralized sensor selection problem proposed in Section

III-B. A detailed discussion on finding the number of regions R and their edge nodes is provided

in Section IV-B. These edge nodes are re-elected, as mentioned in the proposed variants of the

decentralized framework (Section V). The considered homogeneous network setting enables any

SN to serve as a candidate edge node for the region in which it is located.

B. PCA-SBL based signal sparsification and recovery

The unknown signals from all SNs (vectors z(k) in (2) and z
(k)
r ,∀r, in (4)) are required to be

reconstructed using the measurements from a few active SNs (vectors ỹ(k) in (2) and ỹ
(k)
r ,∀r, in

(4)) in ill-posed estimation scenarios. This is possible using sparse signal recovery frameworks,

such as SBL and compressed sensing [4], that enable estimation of sparse signals using the

under-sampled measurement vectors within certain accuracy level. However, this requires a priori

information of the sparsification matrices that can make the observed signals (z(k), z
(k)
r ) sparse.

Since there exists spatial correlation among the signals across the SNs, the vectors z(k) and

z
(k)
r ,∀r, can be represented in sparse form using PCA-based sparsification matrices similar to

[13], [15]. PCA-based sparsification is known to work well with real signals compared to other

existing transformation matrices [22]. Thereafter, using the SBL framework, the sparse vectors
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can be estimated respectively from the under-sampled measurement vectors y(k) and y
(k)
r , ∀r, of

the sparse system model, that is discussed next.

PCA-based sparsification: For the system model (2), let B(k) ∈ RN×N be an orthogonal

sparsification matrix obtained using PCA for representing the vector z(k) as a sparse vector

x(k) ∈ RN×1. Then, the system model (2) becomes

y(k) = Θ(k)x(k) + n(k), (6)

where Θ(k) = A(k)B(k) ∈ RM(k)×N denotes the measurement matrix and y(k) ∈ RM(k)×1 is the

equivalent measurement vector. The details on PCA-based sparse representation are presented in

Appendix A. Similarly, sparse representation of the regional system model (4) is given by (7),

with Θ(k)
r =A

(k)
r B

(k)
r ∈RM

(k)
r ×Nr and B

(k)
r ∈RNr×Nr being regional measurement and sparsification

matrices, respectively.
y(k)
r = Θ(k)

r x(k)
r + n(k)

r , ∀r, (7)

In the cycle immediately after training/retraining, the matrix B(k) is computed using Ktr

instances of the vector z(·). In other cycles, this matrix cannot be computed as presented in

Appendix A due to the unknown vector z(k). Exploiting the fact that the considered densely-

deployed WSN monitors a slowly-varying process, the matrix B(k) is anticipated to change

slowly. This fact along with the availability of previous signal estimates allow online computation

of B(k) using w most recent instances of the estimated signal vector in the learning set, i.e.,

T = {ẑ(k−w), · · · , ẑ(k−2), ẑ(k−1)}, such that |T | = w. This adapts the sparsification matrix to

the varying process better and avoids ensuing loss in sensing quality due to the usage of a

stale estimate of B(k) and hence Θ(k) in recovering the unknown vector x(k)
(
or z(k)

)
. A similar

argument goes for regional sparsification matrices B
(k)
r ,∀r, where the region-wise sets Tr =

{ẑ(k−w)
r , · · · , ẑ(k−1)

r },∀r, are used. The parameter w, referred to as the window size, is chosen

by suitably addressing a trade-off observed in variations of retraining overheads and CH-to-CH

transmission overheads, as detailed in Section VI-B. A larger value of w compared to Ktr is

considered in simulations (Section VI) because error due to the use of previously estimated

signals is absent in the latter case which uses the exact signal.

SBL-based recovery: A basic requirement of the adaptive sensing framework is a reliable

estimate of the sensed signal to update the sparsification matrix and accurately provide feedback

on the process dynamics for sensing and recovery purposes. SBL is known to give improved

sparse signal estimate in ill-posed estimation scenarios [23]. It assigns a parameterized Gaussian
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distribution to the unknown sparse vector and uses evidence-maximization criterion to estimate

those hyperparameters. This work uses SBL to obtain estimate of the unknown vector x
(k)
r

denoted by x̂
(k)
r ∈ RNr×1 from which the spatial signal vector estimate ẑ

(k)
r is obtained. It

employs a dictionary matrix Θ(k)
r = A

(k)
r B

(k)
r and an equivalent measurement vector y

(k)
r during

each kth cycle in the rth region, ∀1≤ r≤R, considering the regional system model (7). SBL-

based signal recovery is explained in Appendix B. In presence of colored noise, CoNo-SBL

scheme [24] is used for signal estimation.

The sparsification and recovery techniques presented here are used in the formulation of the

decentralized sensing problem in the next section.

III. PROPOSED DECENTRALIZED SENSING PROBLEM AND ADAPTIVE SOLUTION

A. Sensor selection problem formulation

A practical sensing scheme needs to optimize a critical trade-off between sensing quality
and energy efficiency. Sensing quality is measured by the mean-squared error (MSE) in the
estimation of the unknown vector x(k): MSE = Ex(k)

{∥∥x(k) − x̂(k)
∥∥2
}

. However, the MSE in
the underlying ill-posed scenario (6) may not have a tractable closed-form expression [12]. Also,
its dependence on the actual estimator x̂(k) and x(k) makes it practically unsuitable since the
sensor selection task is followed by the estimation of x(k). Therefore, similar to [15], [21], the
current work exploits a theoretical lower bound, called Bayesian Cramér-Rao bound (BCRB), to
measure sensing quality. It enables sensor selection before data acquisition and does not mandate
availability of either x(k) or y(k) (measurement vector). The BCRB in the kth cycle is expressed
in (8); for the derivation and convexity proof, see Appendix C and [15] respectively.

BCRB(k) = Tr

{(
1

σ2

(
B(k)

)T
diag

(̃
a(k)
)
B(k)+

(
Γ(k)

)−1
)−1
}
, (8)

where ã(k) ∈ RN×1 contains binary diagonal elements of the diagonal matrix Ã(k), i.e., diag
(
ã(k)
)

=

Ã(k) =
(
A(k)

)T
A(k) ∈ RN×N . These diagonal elements have a one-to-one correspondence

to the SNs; ã(k) (n) = 1 implies an active state of the nth SN, i.e., ã(k) (n) = Ã(k) (n, n) ={
1, n ∈ A(k)

0, n /∈ A(k)
. The parameter Γ(k) ∈ RN×N represents a diagonal matrix with variance of the

components of sparse vector x(k) as its diagonal elements. These elements are set as the eigen
values of the matrix Σ̂T , computed using PCA in Appendix A, as done in [15]. For the energy
efficiency of the WSN, consider a weighted sensor selection (SS) function:

SS(k) =

N∑
n=1

(
E

(k)
c (n) + Es

)
E

(k)
rem (n)

ã(k) (n) , (9)
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where E
(k)
c (n) , Es, and E

(k)
rem (n) respectively denote the energy consumed by the nth SN in

signal transmission, sensing and its remaining energy in the kth cycle detailed in Section IV-A.

The sensor selection problem needs to simultaneously minimize the BCRB (expression (8)) and

SS function (expression (9)). Minimizing the BCRB minimizes the MSE [9], [12]. Minimizing

the SS function gives more weight to the activation of the SNs with a low energy consumption(
E

(k)
c + Es

)
and high remaining energy

(
E

(k)
rem

)
. This ensures efficient energy utilization and

aids in energy load balancing among SNs. Basic constraints that are required to be handled by a

practical sensing problem of a WSN are- (1) active/sleep state of the SNs
(
ã(k) (n) = 1/0,∀n

)
,

(2) SNs with zero remaining energy
(
E

(k)
rem (n) = 0

)
should not participate in sensing, and (3)

coverage constraint (activates one SN from each designated regions) to enable better monitoring,

ensure network energy balance, and prevent the creation of coverage holes. The binary constraint

(1) makes the sensing problem non-convex; solving it using exhaustive search is infeasible for

large number of nodes (N ). Hence, similarly as in [8], [25], a convex sensing problem is realized

by considering relaxed convex box constraint
(
ã(k) (n) ∈ [0, 1] ,∀n

)
. Thus, the relaxed convex

multi-objective sensor selection problem [15] is given by (10). Its decentralized formulation is

proposed in the next section.
minimize
ã(k)(n) ∀n

[
BCRB(k),SS(k)

]
(10a)

s.t. ã(k)(n) ∈ [0, 1] , n = 1, · · · , N, (10b)

ã(k)(n)=0, n∈
{
i|E(k)

rem (i) = 0, 1≤ i≤N
}
, (10c)∑

j∈Rr

ã(k) (j) ≥ 1, r = 1, · · · , R. (10d)

B. Decentralized sensor selection:Edge computing paradigm
In decentralized sensing, (10) is decoupled into R sub-problems, solvable at the edge nodes

of the clusters. The BCRB (8) is decoupled as follows. Using the orthogonality property of the
PCA-based matrix B(k), i.e.

(
B(k)

)T
B(k) = B(k)

(
B(k)

)T
= IN , cyclic property of trace operator,

i.e. Tr{PQR} = Tr{RPQ} [26], and dropping the subscript (k) for brevity, expression (8)
becomes BCRB = Tr

{(
BΓ−1BT + AT 1

σ2 IMA
)−1
}

. Further, employing the matrix inversion
lemma [26] and property Tr {C + D} = Tr {C} + Tr {D} [26], the BCRB is given in (11).
Denoting P = AB and Q = ΓBTAT in (11) and using identity (I + PQ)−1 P = P (I + QP)−1

[26], the BCRB simplifies to (12). Using the notation ATA = Ã (mentioned along with (8)),
(12) is rewritten as (13). If all the SNs are active, i.e. Ã = IN , the second term in (13) becomes
Tr
{

BTB
(
σ2IN + ΓBTB

)−1
Γ2
}

. Further, using orthogonality property of B, it reduces to
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BCRB(k) = Tr
{
BΓBT

}
− Tr

{(
σ2IM + ABΓBTAT

)−1
ABΓ2BTAT

}
(11)

= Tr
{
BΓBT

}
− Tr

{
AB

(
σ2IN + ΓBTATAB

)−1
Γ2BTAT

}
(12)

= Tr {Γ} − Tr
{

BT ÃB
(
σ2IN + ΓBT ÃB

)−1

Γ2

}
(13)

=

R∑
r=1

(
Tr {Γr} −

∑
n∈Rr

Γr (n, n)
2

σ2 + Γr (n, n)

)

=

R∑
r=1

(
Tr {Γr} − Tr

{(
σ2INr + Γr

)−1
Γ2
r

})
(14)

=

R∑
r=1

(
Tr {Γr} − Tr

{
BT
r ÃrBr

(
σ2INr + ΓrB

T
r ÃrBr

)−1

Γ2
r

})
. (15)

Tr
{

(σ2IN + Γ)
−1

Γ2
}

=
∑N

n=1
Γ(n,n)2

Γ(n,n)+σ2 . Thus, the contribution of the nth SN to the BCRB is(
− Γ(n,n)2

Γ(n,n)+σ2

)
. Segregating the SNs’ contributions region-wise, (13) can be rewritten as in (14)

with the diagonal elements of Γ(k)
r ∈ RNr×Nr equal to Γ(k) (n, n) , n ∈ Rr. Further, employing

the orthogonality property of Br and the assumption of all active SNs (Ãr = INr), the BCRB
expression (14) can be generalized as in (15). Following the intermediate steps (11) to (12) in
reverse order and applying the dropped subscript (k) of the measurement cycle in (15), one
obtains BCRB(k) as the sum of regional BCRB(k)

r functions:

BCRB(k)=

R∑
r=1

Tr

{(
1

σ2

(
B(k)
r

)T
diag

(̃
a(k)
r

)
B(k)
r +

(
Γ(k)
r

)−1
)−1
}

︸ ︷︷ ︸
BCRB(k)

r

, (16)

where ã
(k)
r ∈ RNr×1 contains diagonal elements of the diagonal matrix Ã

(k)
r which have a one-to-

one correspondence with SNs ∈ Rr, i.e., diag
(
ã

(k)
r

)
= Ã

(k)
r . Note that, (16) holds true when all

the SNs are active; while for the other cases it is approximated as BCRB(k) <
∑R

r=1BCRB(k)
r .

Validity of this approximation is verified via simulations, in Section VI-D. Further, the SS
function can be rewritten as a sum of regional SS(k)

r functions,

SS(k) =

R∑
r=1

∑
n∈Rr

(
E

(k)
c (n) + Es

)
E

(k)
rem (n)

ã(k)
r (n)︸ ︷︷ ︸

SS(k)
r

. (17)

Employing (16), (17) in (10) and interchanging minimization and summation, the relaxed

sensor selection problem (10) is decoupled into R sub-problems as:
minimize
ã
(k)
r (n), n∈Rr

[
BCRB(k)

r ,SS(k)
r

]
s.t. ã

(k)
r (n) ∈ [0, 1] , n ∈ Rr,

ã
(k)
r (n) = 0, n∈

{
i |E(k)

rem(i) = 0, i∈Rr

}
,∑

n∈Rr ã
(k)
r (n) ≥ 1.︸ ︷︷ ︸

R sub-problems

(18)
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The number of active SNs M (k)
r and the active set A(k)

r in Rr are obtained from the solution
of (18) as:

M (k)
r = round

(
Nr∑
n=1

ã(k)
r (n)

)
, (19)

A(k)
r = Indices of M (k)

r largest elements of ordered set:
{
ã(k)
r (n) |ã(k)

r (n) ≥ ã(k)
r (m) ,∀n,m∈{1, . . . , Nr}

}
.(20)

The solution can also be obtained by first rounding ã
(k)
r (n) to the nearest integer and then

computing M (k)
r and A(k)

r , or using randomized rounding [9]. Note that the aim of current work

is not to compare the decentralized and centralized sensing problems, but to propose and solve

a decentralized sensing problem with components similar to the centralized one (Section III-A).

C. Proposed adaptive solution for decentralized sensing

The R multi-objective optimization problems for regional sensor selection (18) are solved at

the respective edge nodes by using the scalarization method [27], with the difference that, here

a mechanism is proposed to adapt the scalar weights λ(k)
r ,∀r, in the kth cycle. The scalarized

sub-problem in (21) is solved using the CVX solver [28] due to its convex nature (similar to

the sensor selection problem in [15]).

minimize
ã
(k)
r (n), n∈Rr

(
1− λ(k)

r

)
BCRB(k)

r +
(
λ(k)
r

)
SS(k)

r (21a)

s.t. ã(k)
r (n) ∈ [0, 1] , n ∈ Rr, (21b)

ã(k)
r (n) = 0, n∈

{
i |E(k)

rem(i) = 0, i∈Rr

}
, (21c)∑

n∈Rr

ã(k)
r (n) ≥ 1. (21d)

The motivation behind the adaptation method is two-fold. First, it is intuitive that a higher number

of active SNs is required to sense a process with a faster dynamics, so as to obtain the same

sensing accuracy [29]. Second, it is observed that associating a fixed scalar weight λr gives more

importance to the decreasing energy based function SS(·)
r over the BCRB(·)

r as the measurement

cycle progresses. This may keep increasing the value of BCRB(·)
r and the corresponding MSE.

A feedback-based adaptation mechanism (run by each CHr) is proposed that predicts the

number of active SNs M (k+1|k)
r for the (k + 1)th cycle based on signal variations estimated using

current estimates of x̂
(k)
r and ẑ

(k)
r . This value is further updated considering the SNs’ updated

energies ( i.e., E(k+1)
rem (n) , E

(k+1)
c (n) + Es,∀n ∈ Rr) while keeping the estimation error within a

tolerable range. For this, it is ensured that the BCRB(k)
r ∈ [α, β] during each cycle, with α and β
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respectively being lower and upper BCRB limits required by the sensing application. The energy

information is sent by the SNs to the respective CHrs along with the measured signal y(k)
r (·).

Prediction step: In kth cycle, a heuristic δ̂(k)
r (defined in (22)) is computed to estimate the

process variability with respect to the (k − 1)th cycle. If the value of δ̂(k)
r is greater than a

suitably chosen threshold δthr , then the predicted value is increased as M (k+1|k)
r =

(
M

(k)
r + 1

)
.

δ̂(k)
r =

∥∥∥ẑ(k)
r − ẑ

(k−1)
r

∥∥∥
√
Nr

. (22)

When δ̂(k)
r ≤ δthr , the value of M (k+1|k)

r is decreased as follows. Consider the pruned active set

A
(
k|M(k)

r −i
)

r by removing i SNs (starting i = 1) with the lowest signal amplitude |ẑ(k)
r (·)| from

the set A(k)
r . Employ A

(
k|M(k)

r −i
)

r -based signal estimate x̂

(
k|M(k)

r −i
)

r to compute another heuristic
ε̂

(k)
r defined in (23). If ε̂(k)

r ≤ εthr (an appropriate threshold) and BCRB(k|M(k)
r −i)

r ∈ [α, β], set
M

(k+1|k)
r =

(
M

(k)
r − i

)
; repeat the process with unit increment of i until BCRB(k|M(k)

r −i)
r /∈ [α, β]

or non-selection of any SN from the region i.e.
(
M

(k)
r − i

)
< 1. The reason is to explore

the possibility of maximum achievable decrease in M
(k)
r for the (k + 1)th cycle such that the

estimates x̂

(
k|M(k)

r −i
)

r and x̂
(k)
r (current one) are similar and BCRB(k|M(k)

r −i)
r ∈ [α, β].

ε̂(k)
r =

∥∥∥∥x̂(k)
r − x̂

(k|M(k)
r −i)

r

∥∥∥∥ . (23)

Update step: The scalar λ(k+1)
r and active set for the next cycle A(k+1)

r with M (k+1|k)
r active

nodes, are computed by considering energy resources in the network, the updated B
(k+1)
r , and

employing modified binary search (MBS) (Alg. 1) algorithm [15]. The matrix B
(k+1)
r is updated

using the updated learning set Tr =
{
Tr \ ẑ

(k−w+1)
r

}
∪
{

ẑ
(k)
r

}
as discussed in Section II-B. The

MBS minimizes the sub-problem (21) on a search space
[
λLr , λ

U
r

]
∈ [0, 1] with λUr −λLr < ∆ or∑

n∈Rr ã
(k+1)
r (n) = M

(k+1|k)
r as the stopping criteria and ∆ being a small positive number. The

active set is extracted from the output ã
(k+1)
r . If the corresponding BCRB(k+1)

r belongs to [α, β],

then the SNs ∈ A(k+1)
r are used for data acquisition. Otherwise M (k+1|k)

r is increased or decreased(
i.e. min

{
M

(k+1|k)
r + 1, Nr

}
or max

{
M

(k+1|k)
r − 1, 1

})
for the cases with BCRB(k+1)

r > β or

< α. The update step reiterates until BCRB(k+1)
r ∈ [α, β] is achieved.

The adaptation mechanism stops when the energy of all SNs of a region is exhausted, i.e.,∑
n∈Rr E

(k+1)
rem (n) = 0 or when it is not possible to satisfy the BCRB requirement with all alive

SNs i.e. λUr −λLr < ∆. At this juncture, it is worth noting that despite the unavailability of the true

MSE, the adaptation mechanism ensures from the beginning that BCRB(k+1)
r ∈ [α, β] ,∀k. Thus,

the proposed approach is practically useful. A stepwise description of the proposed adaptive
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Algorithm 1 Modified Binary Search (MBS)
Input: Es, E

(k+1)
c (n) , E

(k+1)
rem (n) ,∀n∈Rr,B(k+1)

r , M
(k+1|k)
r ; Initialization:

[
λLr , λ

U
r

]
← [0, 1].

while λUr − λLr ≥ ∆ do

Set λ(k+1)
r =

(
λLr +λUr

2

)
and obtain ã

(k+1)
r by solving (21) using λ(k+1)

r ,B
(k+1)
r , Es, E

(k+1)
c (n) , E

(k+1)
rem (n) , ∀ n ∈ Rr .

if
∑
n∈Rr̃a

(k+1)
r (n)>M

(k+1|k)
r then λLr ← λ

(k+1)
r .

else if
∑
n∈Rr̃a

(k+1)
r (n)<M

(k+1|k)
r thenλUr ←λ

(k+1)
r .

else break.
end if

end while
Output: ã

(k+1)
r , λ

(k+1)
r .

mechanism that runs at each edge node is given under block 2 head of Algorithm 2. The energy

update equations and the other blocks included in Algorithm 2 are explained in Section V.

Note that, the temporal correlation (or variations) of the process is used to adapt the number

of active SNs (M (k)
r ) in a region in each cycle, while the spatial correlation is used in the MOP

(18) to select these M (k)
r SNs out of total Nr SNs. This MoP ensures that the same SNs may

not be selected in each cycle. Thus, this mechanism implicitly adjusts the inter-sample time of

each SN (i.e., gap between cycles in which a SN is activated for sensing). The spatio-temporal

modeling of synthetically generated process signal is discussed in simulation section VI.

IV. ENERGY COST AND COVERAGE REGIONS

A. Operational energy costs in WSN

The energy stored in a SN is used for transmission, reception, sensing, sleeping, and pro-

cessing. Unlike the existing literature on distributed sensor selection, this work incorporates the

energy information to improve energy efficiency.

Sensing cost: The energy consumed per sensing operation depends on the process to be sensed

and the type of sensors that are used. The measurement time varies with the sensors, so does

their sensing energy Es [30]. It can be obtained from the data-sheet of the used sensor.
Processing cost: In the proposed framework, an edge node (i.e., CH in that cycle) performs

computation for taking sensing decision of the SNs in the cluster. The processing energy con-
sumption of the CH in the kth cycle is computed as E(k)

proc

(
t
(k)
f

)
= VfIf t

(k)
f [31], where Vf is the

supply voltage of the processor at operating frequency f , If is its average current, and t
(k)
f is

the computation time required in the kth cycle for making sensing decision for the next cycle.
t
(k)
f is expressed in terms of number of clock cycles N (k)

clk needed to execute the task in kth cycle

as t
(k)
f =

(
N

(k)
clk

f

)
. Thus, E(k)

proc

(
t
(k)
f

)
= VfIf

(
N

(k)
clk

f

)
. To approximately obtain N

(k)
clk of the sensor

board’s processor, the task is run on a computer’s processor (e.g., Intel i7-6700 CPU). The time
t
(k)
proc required to run current cycle’s sub-problems on the computer is measured and N (k)

clk is then
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set to t
(k)
proc

1/f̃
where f̃ is the processor’s operating frequency. Thus, the energy consumed by the

on-board processor is approximated as:
E(k)
proc

(
t(k)
proc

)
= VfIf

(
t
(k)
proc

1/f̃

)
·
(

1

f

)
. (24)

Since a non-CH does not carry out any computation, its processing energy is E(k)
proc

(
t
(k)
proc

)
= 0 J.

Radio energy cost: To account for the radio energy consumption, the model in [32] is used.

The energy spent by a SN to transmit and receive a b bits long packet at a distance dt−r, denoted

respectively by Etx (dt−r) and Erx, are given by

Etx (dt−r) = bEelec + bη (dt−r)
ν and Erx = bEelec, (25)

where Eelec (J/bit) is the energy consumed by the radio electronics, η (J/bit/mν) characterizes

the amplifier energy, and ν is the path loss exponent considered as 2. It is assumed that each SN

knows its distance to the other SNs in its cluster. In the proposed framework, communication

takes place between the SNs and their respective CHs, CHs and FC, and among CHs; thus, dt−r

and Etx vary accordingly. The communication among CHs happens when a new CH is elected

because the existing CH’s remaining energy is on the verge of exhaustion. The old CH transfers

control information to enable the new CH to execute the decentralized sensor selection task.

This is explained in block 1 (control operations) of the proposed framework in Section V.

B. Number of coverage regions and their formation

In the proposed framework, the number of coverage regions R is determined during the initial
stage (before the start of any sensing operation). It is calculated by considering the energy
consumed in communication per measurement cycle, as noted in [32]. However, the energy
consumed in processing and CH-to-CH communication are not considered because they are
unknown at the initial stage. The frequency of occurrence of CH-to-CH communication depends
on the remaining energies of the SNs and CHs left (based on the outcome of the decentralized
sensor selection problem) and to-be-chosen new CHs. Eproc is tracked during the execution of
the decentralized framework (block 2, 3 of Section V). Consider a SN deployment density in
the ith region of radius ri as ρi with probability distribution fρ, the average number of SNs in
the region is then given by N i =

∫∞
0
ρir

2
i fρ (x) dx. For simplicity, we consider the same radius

for each region, i.e. ri = r, ∀i. Accordingly, N i = constant = N
R

, where R is the number of
equal sized coverage regions. Thus, with N

R
nodes per region on average, energy dissipated per

cycle of a non-CH node (Enon−CH) and a CH node (ECH) are given by,
Enon−CH = bEelec + bη (dSN−CH)

2︸ ︷︷ ︸
Etx: SN to CH comm.

+ bEelec︸ ︷︷ ︸
Erx: CH to SN comm.

, (26)
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ECH = (N/R− 1) bEelec︸ ︷︷ ︸
Erx: SN to CH comm.

+ bEelec + bη (dCH−SN )
2︸ ︷︷ ︸

Etx: CH to SN comm.

+ bEelec + bη (dCH−FC)
2︸ ︷︷ ︸

Etx: CH to FC comm.

. (27)

It is assumed that every SN packs information in payload part of the b bits long packet, with
zero padding if the information is less. Since the number of active SNs in a cycle is not known
at the initial stage, consider all the SNs to be active in a cycle; the total communication energy
consumption per cycle is Etotal ≈ R [ECH + (N/R− 1)Enon−CH ] . The number of coverage
regions R in a F × F m2 field that minimizes Etotal is obtained by setting its derivative with
respect to R to zero [32]:

R ≈

√√√√ NF 2

2π
(

(dCH−FC)
2 − Eelec

η

) . (28)

Out of N SNs, R SNs with the highest remaining energy are chosen as edge nodes (designated

as CHr, ∀ r) whenever coverage regions are formed/reformed. However, in simulations (Section

VI), initially (when sensing starts, i.e. with k = 0) all the SNs are considered to have the same

remaining (initial) energy. To avoid skewed selection of positions of the CHs in the network, κ-

medoid [33] algorithm is used. It ensures a good distribution of the CHs over the WSN field. In

the κ-medoid algorithm, spatial distance-based cost function is used. Since communication energy

Etx depends on the spatial distance, using κ-medoid energy load is evenly distributed among all

the SNs. This avoids any overly-utilized SN that may run out of energy before the others. Each

remaining SN chooses to connect with one CHr that requires minimum communication energy.

V. PROPOSED DECENTRALIZED SENSING FRAMEWORK

This section presents the proposed edge computing framework for decentralized sensor se-

lection and its variants. The variants are proposed to get insights on the network performance

provided by them which could help in deciding their suitability for different application scenarios.

The computational complexity of the framework has also been discussed. In the schematic shown

in Fig. 2, block 1 is customized according to the variant, while blocks 2 and 3 are generic for

all the variants, and thus explained only once in Section V-A.

Fig. 2: Edge computing framework for decentralized sensing.

A. Variant 1
In this variant, the coverage regions remain fixed.
Block 1: This block carries out control/training operations in all the regions. When the remain-

ing energy of the current edge node of a region is on the verge of depletion i.e., E(k)
rem (CHr) ≈ 0,
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another SN from the same region with the highest remaining energy is elected as the new CHr.
If the region does not require retraining, i.e., if retrain flag = 0, this new CH election process
incurs CH-to-CH communication (hence energy) overhead due to transmission of w instances of
recently estimated signal vectors ẑ

(·)
r from the previous CH to the new one so that the required

matrix B
(k)
r can be computed at the new CH. The remaining energies are updated as follows:

E(k)
rem

(
CHr(old)

)
=E(k−1)

rem

(
CHr(old)

)
−wEtx

(
dCHr(old)−CHr(new)

)
, (29a)

E(k)
rem

(
CHr(new)

)
=E(k−1)

rem

(
CHr(new)

)
−wErx. (29b)

If the region requires retraining as well (retrain flag = 1), the energy is consumed only due to
retraining (using Ktr instances of the signal z

(·)
r ) and not CH-to-CH communication. Thus, the

remaining energy is computed as:
E(k)
rem (n) = E(k−1)

rem (n)−KtrEs, 1 ≤ k ≤ K, n ∈ Rr. (30)

For the case E(k)
rem (CHr) > 0, the current CHr continues to remain the edge node. Further, if

retraining is not needed, the region’s operations continue without any overheads. Otherwise, the

region is retrained without changing CH and the corresponding energy update is given by (30).
Block 2: This block comprises the proposed adaptive solution for decentralized sensing and

SBL-based recovery (Section III-C) that is run in parallel by the CHs in all regions. The SNs ∈ Rr

are informed by CHr about their active/sleep status by running the sub-problem (21). Thereafter,
the measured data y

(k)
r is sent by the active SNs to the respective CHr. The remaining energies

of CHr and the active/sleeping SNs are updated as,
E(k)
rem(CHr) = E(k−1)

rem (CHr)− ErxM (k)
r − Etx

(
d̄CHr−SN

)
− E(k)

proc (t1 + t2) , (31a)

E(k)
rem(n) = E(k−1)

rem (n)−Erx−Etx(dn−CHr )−Es [for active SNs, n ∈ A(k)
r ], (31b)

E(k)
rem(m) = E(k−1)

rem (m)− Erx − Esl [for sleeping SNs, m ∈ Rr −A(k)
r ], (31c)

where t1 and t2 are respectively the time required to compute the matrix B
(k)
r and to run the

update step of the adaptive solution (Section III-C) for decentralized sensor selection, d̄CHr−SN
is the average distance of the CHr to any SN ∈ Rr, and Esl denotes the energy needed by
a SN to sustain network operations without collecting data in sleep mode. The vector x̂

(k)
r is

estimated at CHr using the SBL approach (Section II-B) and then the estimated spatial signal
vector ẑ

(k)
r is transmitted to the FC. Further, the value M (k+1|k)

r and hence λ(k+1)
r are predicted

using the mechanism described in Section III-C. The remaining energy of CHr is then updated
as in (32) with t3 being the processing time required in the SBL-based recovery of x

(k)
r and

prediction step of the adaptive mechanism.
E(k)
rem(CHr)=E(k−1)

rem (CHr)−Etx(dCHr−FC)−E(k)
proc(t3) . (32)

Block 3: This block runs the retraining logic at CHr at the end of every measurement cycle.
The remaining energy is updated as in (33) with t4 being processing time to run the logic.
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Algorithm 2 Adaptive decentralized sensing framework

1: Input: Tr =
{
z
(−Ktr+1)
r , . . . , z

(−1)
r , z

(0)
r

}
,Rr, α, β, δthr , εthr .

2: Initialization: k = 1, E
(1)
c (·), E(0)

rem(·), λ(1)r , exitflag=0.

3: -Compute z̄Tr , Σ̂Tr , & B
(0)
r using PCA (Section II-B); set

B
(k)
r ≈ B

(k−1)
r ; calculate t1.

4: -Solve (21) and construct M(1)
r ,A(1)

r using (19), (20).

5: Obtain A
(1)
r using (5); calculate t2.

6: while exitflag == 0 do

7: Block 1: Execute operations; update energy (29,30).

8: Block 2: Broadcast A(k)
r , collect y

(k)
r , E

(k+1)
rem (·) from active

SNs.

9: Update remaining energy using (31).

10: Start clock to measure time t3. Set Θ
(k)
r = A

(k)
r B

(k)
r .

11: Compute x̂
(k)
r using SBL scheme (Section II-B).

12: Set ẑ
(k)
r = z̄Tr +

(
B

(k)
r

)T
x̂
(k)
r & transmit to the FC.

13: if
∑
n∈RrE

(k+1)
rem (n)>0 then (Prediction step)

14: InitializeM(k+1|k)
r ←M(k)

r ; Calc. δ̂(k)r using (22).

15: if δ̂(k)r > δthr then M(k+1|k)
r ←M

(k)
r + 1.

16: else

17: for i = 1, . . . ,M
(k)
r − 1 do

18: Construct A(k|M(k)
r −i)

r ,A(k|M(k)
r −i)

r (eq. 5).

19: Set Θ
(k|M(k)

r −i)
r = A

(k|M(k)
r −i)

r B
(k)
r .

20: Obtain x̂
(k|M(k)

r −i)
r using SBL (Section II-B).

21: Calc. BCRB(k|M(k)
r −i)

r , ε̂
(k)
r using (16, 23).

22: if ε̂(k)r ≤εthr and BCRB(k|M(k)
r −i)

r ∈[α,β] then

23: M
(k+1|k)
r ←M

(k)
r − i.

24: else if BCRB(k|M(k)
r −i)

r /∈[α, β] then break.

25: end if

26: end for

27: end if

28: Stop clock & calc. t3; update energy using (32).

29: Tr =
{
Tr\ẑ(k−w+1)

r

}⋃{̂
z
(k)
r

}
(Update step).

30: Compute z̄Tr , Σ̂Tr ,B
(k+1)
r (Section II-B); calc. t1.

31: do

32: Start clock to measure t2. Call Alg. 1- MBS.

33: if
∑
n∈Rr Ã

(k+1)
r (n, n) == M

(k+1|k)
r then

34: Obtain A(k+1)
r ,A

(k+1)
r using (20), (5).

35: Calc.BCRB(k+1)
r usingA

(k+1)
r ,B

(k+1)
r in (16).

36: if BCRB(k+1)
r < α then

37: M
(k+1|k)
r ←max

{
M

(k+1|k)
r − 1, 1

}
.

38: else if BCRB(k+1)
r > β then

39: M
(k+1|k)
r ←min

{
M

(k+1|k)
r + 1, Nr

}
.

40: end if

41: else exitflag ← 1; break.

42: end if

43: while BCRB(k+1)
r /∈ [α, β].

44: Set M(k+1)
r ←M(k+1|k)

r . Stop clock; calc. t2.

45: else exitflag ← 1.

46: end if

47: Block 3: Run retraining logic; calc. t4.

48: Update remaining energy using (33). Set k←k + 1.

49: end while

E(k)
rem (CHr) = E(k−1)

rem (CHr)− E(k)
proc (t4) . (33)

Proposed retraining logic: As the measurement cycles progress, the recovery process of x̂
(k)
r

can become increasingly erroneous due to the usage of overcomplete dictionary Θ(k)
r which is

based on B
(k)
r . Since a few past instances of the estimated signal ẑ

(·)
r are used to estimate the

matrix B
(k)
r , the estimation error accumulates over cycles. This in turn affects sensor selection

and signal recovery accuracy, producing non-sparse estimate x̂
(k)
r of otherwise-unknown sparse

signal x
(k)
r . It calls for an error detection logic and retraining in the region r.

As the true signal vector x
(k)
r is unknown, the retraining logic is proposed based on the current

reconstructed signal vector x̂
(k)
r itself. The idea is to approximately find the number of non-sparse

components N̂C
(k)

r in the reconstructed signal x̂
(k)
r and compare it against a suitable threshold

value NCth
r . N̂C

(k)

r > NCth
r hints the need of retraining the region r. However, keeping in mind

the uncertainty that the logic is based on the reconstructed signal x̂
(k)
r , which usually has some

error, the threshold violation is checked for a few consecutive measurement cycles (3 cycles
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considered for simulation results in Section VI). If for all cycles N̂C
(·)
r > NCth

r , the network

is retrained. Note that a component x̂(k)
r (·) is considered as non-sparse if it constitutes more

than 0.1% of total energy of signal vector x̂
(k)
r , i.e.,

(
x̂
(k)
r (·)

)2
∑
n∈Rr

(
x̂
(k)
r (n)

)2 > 0.1
100

. The 0.1% energy

criteria ensures that no non-sparse component of x̂
(k)
r is wrongly considered as sparse. Also, the

knowledge of NCth
r can be roughly obtained from instances of the training signal. The logic

runs in parallel at all the R edge nodes during each cycle.

B. Variant 2 (Block 1)
This variant keeps the coverage regions fixed while changes the CHrs in every measurement

cycle. The SN in a region with the highest remaining energy is elected as the new CH. If

the region does not require retraining (retrain flag = 0), the remaining energies left after the

transmission of overheads are given by (29). Else (retrain flag = 1), the region requires retraining;

the energy is consumed in retraining overheads, and the remaining energy is given by (30).

C. Variant 3 (Block 1)
In this variant, the coverage regions and their CHs are re-formed (using the procedure outlined

in Section IV-B) when the remaining energy of any CH is exhausted, i.e. E(k)
rem (CHr) ≈ 0, 1 ≤

r ≤ R, and the entire network (all regions) is retrained (irrespective of retrain flag status).

Otherwise, the regions and their CHs remain fixed and region-wise retraining is carried out only

when respective retrain flag is set 1. In both cases, the updated remaining energy of SNs is given

by (30). When the regions are re-formed, their NCth
r , δthr are changed and M

(k+1|k)
r are also

updated such that BCRBr ∈ [α, β] , ∀r, for the (k + 1)th cycle.

D. Variant 4 (Block 1)
This variant re-forms the coverage regions and the CHs whenever any region requires retraining

(i.e., retrain flag = 1). The updated remaining energy is given by (30). Like variant 3, M (k+1|k)
r ,

NCth
r , and δthr are changed for all the R regions. However, if retrain flag = 0 for all the regions

and E
(k)
rem (CHr) ≈ 0 for any region r, then a SN from that region with the highest remaining

energy is elected as the new CH and the updated remaining energies are given by (29). Otherwise,

the regions continue their operations when E(k)
rem (CHr) > 0,∀r.

E. Complexity analysis
The CHs of R regions run the proposed framework and the complexity is computed as noted

in [15]. Let the complexity of the recovery scheme executed by the CHs be denoted by ORec.
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Complexity of block 1 and 3 are respectively ≈ O (1) and O (Nr). The overall complexity of the

prediction step of block 2 run by each CHr is ≈
(
O (Nr) +O

(
(M

(k)
r )3

)
+ORec

)
. The complexity

of update step in block 2 is given by ≈
(
O
((

M
(k+1|k)
r

)3
)

+
(
M

(k+1|k)
r

)
log2

(
1
∆

)
O
(
Ñrlog

(
1
ν

)))
,

where Ñr represents the number of variables after converting problem (21) to a standard form

by the CVX and ν is the precision accuracy (10−8 by default). Note that Ñr is a function of

Nr. The overall complexity of the proposed framework is ≈
(
O
(
max

(
Nr,

(
M

(k)
r

)3
))

+ ORec +

O
(

(M
(k+1|k)
r )3

)
+
(
M

(k+1|k)
r

)
log2

(
1
∆

)
O
(
Ñrlog

(
1
ν

)))
.

VI. SIMULATION RESULTS

Energy efficiency of the proposed adaptive decentralized sensing framework is studied over

the competitive decentralized approaches in [21], [18] and the centralized one in [15]. The results

show comparable sensing accuracy achieved due to adaptive sensor selection and retraining logic.

Consider N = 80 sensors equipped with non-rechargeable batteries and deployed in a 2-D

WSN field of size F ×F = 100× 100 m2, which is divided into d
√
Ne×d

√
Ne = 9× 9 square

areas of size ≈ 11 × 11 m2 each roughly containing one randomly deployed SN [34]. The FC

is located at a distance 110 m above the center of the field. Consider a total S = 1 pollution

source located at the origin of the field. The pollution signal at the source s, 1 ≤ s ≤ S, during

k = 1 cycle (f (k) (s)) is generated as an independent real Gaussian [23], [35] with zero mean and

variance σ2
f (s) = 1. Modeling the temporal correlation using an AR(1) process [15], the temporal

samples for (k > 1) are generated as f (k) (s) = φf (k−1) (s)+
√

1− φ2w(k) (s), where w(k) (s) ∼

N
(
0, σ2

f (s)
)

and φ is temporal correlation coefficient between two consecutive samples. Further,

the spatial correlation is modeled using power exponential model. During the kth cycle, the

pollution signal across SN n is obtained as z(k) (n) =
∑S

s=1 e
−dn-s
θ f (k) (s) [34], where dn-s is the

distance between SN n and the source s and θ is the spatial correlation parameter of the source.

Spatio-temporal dynamics of the pollution process are set as (θ, φ) = (100, 0.99). To guarantee

a reasonable sensing performance in severely ill-posed estimation scenarios
(
Nr/M

(k)
r � 2

)
, the

noise variance is fixed as σ2 = 10−5. Ktr = 5 cycles are used for training/retraining purpose.

The existing works [12], [21] generate the sparse signal x(k) with known sparsity and Gaussian

distributed matrix B(k) separately. In contrast, herein synthetic data, that considers the effect

of process dynamics, is used to generate the matrix B
(k)
r and obtain the sparse signal x

(k)
r

without assuming any prior knowledge of sparsity. Thus, the sensing framework evaluated on
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Fig. 3: Performance of network residual energy of the proposed variants of decentralized sensing framework.

this synthetic data is readily applicable to real spatio-temporal process, as illustrated in simulation

Section VI-G. The diagonal elements of Γ(k)
r are approximately set as the eigenvalues of Σ

(k)
Tr

[15]. The sparsification matrix B
(k)
r is set as eigen vectors of Σ

(k)
Tr . The initial energy of SNs is

set to 100 J
(

i.e. E(0)
rem (·) = 100

)
and the other energy parameters are: Eelec = 50 nJ/bit, η =

10−10 J/bit/m2 [32], b = 50, ν = 2, Vf = 0.8 V, If = 0.05 A, f = 60 MHz [36], and f̃ =

3.4 GHz as mentioned in Section IV-A. Using (28), the value of R is obtained as 4. Initial value of

the hyperparameter estimates and convergence accuracy of the SBL scheme are respectively set as(
γ

(k)
r (n)

)(0)

= 1,∀n,∀k and
∥∥∥∥(γ(k)

r

)(l+1)

−
(
γ

(k)
r

)(l)
∥∥∥∥ ≤ 10−7. Performance measures are, sensing

error (MSE) =
∥∥x(k) − x̂(k)

∥∥2
=
∥∥z(k) − ẑ(k)

∥∥2 and network residual energy =
∑N

n=1 E
(k)
rem (n).

SBL-based signal estimation is averaged over 300 Monte-Carlo iterations in each measurement

cycle. The objective functions BCRB(k)
r and SS(k)

r of (21) are normalized using their respective

smallest values as,
Tr
{(

1
σ2

(B(k)
r )

T
diag(ã(k)

r )B(k)
r +(Γ(k)

r )
−1
)−1

}
Tr
{(

1
σ2

(
B

(k)
r

)T
INrB

(k)
r +

(
Γ

(k)
r

)−1
)−1} and

{∑
n∈Rr

(E(k)
c (n)+Es)
E

(k)
rem(n)

ã(k)r (n)

}

min

{
(E(k)
c (n)+Es)
E

(k)
rem(n)

ã
(k)
r (n),n∈Rr

} . CVX [28]

is used to solve the decoupled sensing problem (21). The parameter ∆ in the MBS is set as 10−4

and the BCRB window is [α, β] = [10−5, 10−4]. To effectively capture the process dynamics,

the threshold εthr is set as 10−5 and δthr is the average of threshold value of signal variation

observed at SNs of that region, i.e. 1
Nr

∑
n∈Rr(e

−dn-s
θ × 0.11), where 0.11 is the threshold value

of signal variation. The default window size for B
(k)
r estimate is set as w= 6 as explained in

Section VI-B. Though the competitive approaches do not account for SN’s energy, for comparison

energy consumption of the SNs in these approaches are considered similar to the proposed one.

A. Performance of the proposed CH selection variants

Network residual energy of all the variants versus measurement cycles are plotted for two

different values of the sensing energy Es in Figs. 3(a)-(b). Variant 3 offer the highest network

lifetime. A higher network lifetime of variant 3 compared to variant 1 is attributed to the fact
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that it re-forms coverage regions and elects new CHs when the energy of the CH of any region

depletes. This ensures that the SNs always communicate with the CHs that require the least

energy, which is not the case with variant 1. Lesser network lifetime of the variant 2 is due to

the CH-to-CH transmission overheads incurred in each cycle.

TABLE II: Network lifetime (in cycles) and normalized average node lifetime of the proposed variants
Variant 1 2 3 4

Es = 0.48 J
Network lifetime 85 105 213 91

Node lifetime 0.7065 0.8725 0.6806 0.6506

Es = 0.0048 J
Network lifetime 71 95 438 159

Node lifetime 0.7375 0.9144 0.5739 0.6164

Table II shows the network lifetime (total number of measurement cycles executed (K)) and

normalized average node lifetime (normalized by K) in different CH selection variants. Note

that, the terms normalized average node lifetime and node lifetime are used interchangeably in

this work. It can be observed that, despite being less energy-efficient than the other variants,

variant 2 has a higher node lifetime which can help in preventing network coverage outage.

Remark 1. Variant 3 offers a higher network lifetime, variant 2 offers a higher node lifetime.

B. Choice of window size w

Using a higher number of instances w of the estimated signal ẑ
(·)
r increases the accuracy of B

(k)
r

computation. It decreases the overhead of frequent retraining, but increases the communication

overhead, as w instances of ẑ
(·)
r are transmitted from a CH to the chosen new CH. Thus, the

chosen w needs to balance between the retraining and CH-to-CH communication overheads.

Retraining overhead is calculated as the sum of sensing energy of all the SNs in all retraining

phases; CH-to-CH communication overhead is the sum of transmission and reception energy

consumed in sending w instances of ẑ
(·)
r from one CH to another. From Figs. 4(a)-(b) it is

observed that, with the considered network settings the total energy spent in the overheads is

minimum when w = 6 in both the variants 1 and 2. A similar behavior is seen for variant 4 as

well. In variant 3, there is only retraining overhead. However, for consistency in performance

comparison among all the variants in Section VI-A, w is set as 6.

Since the sensor selection and process estimation tasks are performed region-wise to monitor

the same spatio-temporal process, the parameter w is kept the same for all regions to maintain

the same computation accuracy of B
(·)
r ,∀r, across the regions. Different choices of w would be

desirable for multi-sensing scenario [37] where each region monitors a different process.
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Fig. 4: Variation of total overhead with window size. η = 10−7 J/bit/m2 and Es = 0.0048 J.

Note that w instances of the estimated signal ẑ
(·)
r are used in computing the matrix B

(·)
r in

every measurement cycle except for the one that follows the training/retraining phase. For the

cycle immediately after training/retraining, Ktr instances of the actual signal z
(·)
r are used. To

mitigate the effect of error due to the use of previously estimated signal vectors in the B
(·)
r

matrix computation, it is also ensured that w > Ktr.

Remark 2. The choice of w is required to limit the retraining overheads without significantly

increasing the CH-to-CH communication overheads.

C. Performance comparison with state-of-the-art
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Fig. 5: Comparison of (a) network residual energy, (b) number of SNs with 0 remaining energy, and (c) MSE

of the proposed framework with Hwang’s method [21]. Es = 0.0048 J, η = 10−7 J/bit/m2, and E(0)
rem (·) = 500 J.

The best performing variants are considered: variant 3 (maximum network life), variant 2 (maximum node life).

Performance of the competitive variants of the proposed decentralized sensing framework are

now compared with the closest decentralized approach developed by Hwang et al. [21] and

centralized framework [15] in Figs. 5 and 6 respectively. It can be observed from Figs. 5(a)-(c)

that the proposed variants with standout performance (variant 3 with maximum network lifetime,

variant 2 with maximum node lifetime) offer significant improvement in energy efficiency and

node lifetime (or lower outage of network coverage) without compromising the sensing quality.

Energy consumption per cycle in Hwang’s method and that with variants 2 and 3 are respectively

223.274, 42.12, and 33.909 J/cycle. Thus, the variants 2 and 3 are respectively 81.135% and

84.813% more energy efficient compared to the Hwang’s method. The gain in energy efficiency is
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Fig. 6: Comparison of (a) network lifetime versus power amplification parameter η and (b) MSE of the best

performing variants: variant 3 (maximum network lifetime), variant 2 (maximum node lifetime) of the proposed

decentralized framework and that of centralized framework [15]. Parameters values: Es=0.48 J and E(0)
rem(·)=100 J.

due to non-iterative information exchange by the SNs in a measurement cycle and the adaptation

mechanism in decentralized sensor selection. On the other hand, node-level energy saving is due

to the consideration of unequal energy consumption and remaining energy information in the

proposed framework. The discontinuities in Fig. 5(c) show that, whenever the sensing quality

of a region becomes poor, the proposed retraining logic detects it, and retraining is conducted

in that region. Due to space constraint, MSE plot of the estimated signal of only one region

is shown. Further, these discontinuities occur during different measurement cycles in different

regions; thus, plotting the MSE summed over all the regions is not possible at these points.

From Fig. 6(a) it can be observed that the proposed variants 2 and 3 outperform the centralized

approach in [15] when the power amplification component η ≥ 2.5 × 10−5. Compared to the

centralized approach, these variants have reduced energy consumed in direct SN-FC communi-

cation. For the case η < 2.5× 10−5, only the variant 3 performs better than the centralized one.

The reason for the variant 2 not performing better in this case is that, the energy consumed in

CH-to-CH communication overheads incurred in each cycle outweigh the energy gain achieved

via reduced SN-FC communication overhead. However, the component of energy consumed in

the SN-FC communication overhead in the proposed decentralized case are still lesser than that

in the centralized case [15]. Note that, loss in sensing accuracy in some measurement cycles in

Fig. 6(b) is addressed by the proposed retraining logic and is shown as discontinuities in the MSE

curve. It can also be observed that the frequency of retraining is high in the later cycles. Due to

low network residual energy in these cycles, there is a lesser flexibility in sensor selection from

all the SNs in Rr, as some of them may not participate owing to insufficient remaining energy.

Although the proposed framework may select more number of SNs to satisfy BCRBr ∈ [α, β],

the resulting sensing quality may still be poor which results in frequent retraining of the region.
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TABLE III: Performance gap: centralized versus decentralized BCRB (R = 4)

Centralized

M(k) 12 16 20 24 28 32 36 40

avg BCRB(k) (×10−5) 3.287 2.671 2.326 2.157 2.096 2.062 2.0370 2.012

avg MSE(k) (×10−4) 11.019 9.258 7.440 6.291 5.653 5.270 4.978 4.786

avg Econs
Etotal

(%) 46.277 48.105 50.234 52.654 55.355 58.362 61.656 65.243

Decentralized

avg
∑R
r=1BCRB(k)

r (×10−5) 15.961 12.424 10.223 8.977 8.233 7.572 7.177 6.834

avg
∑R
r=1MSE(k)

r (×10−4) 196 190 8.2 6.747 6.007 5.547 5.167 4.937

avg Econs
Etotal

(%) 46.177 47.392 48.405 49.205 49.856 50.576 51.352 52.181

An acceptable range of sensing quality (see [38]) achieved in the proposed framework validates

suitability of the used BCRB. The BCRB window [α, β] is set as per the minimum and maximum

BCRB values achieved in the respective comparative approaches. λ(1)
r ,∀r, in (21) are set such

that the minimum number of SNs are activated and the achieved BCRB(1)
r ∈ [α, β] ,∀r. The usage

of sparsification matrix, computed using w instances of previously estimated signal, in current

cycle’s signal estimation in the decentralized framework results in MSE variations (seen in Figs.

5(c) and 6(b)) owing to ensuing error which gets accumulated over cycles. These variations

are absent in the Hwang’s method and the centralized scheme because of the considered strong

assumption of known sparsification matrix and the use of matrix computed using all the estimated

signal instances available from the beginning of network operation respectively. To address the

degradation of sensing quality, a retraining logic is proposed. Further, these variations can also

be reduced by tightening the BCRB window at the expense of reduced network lifetime.

Remark 3. Thus, the proposed edge computing framework offers energy-efficient decentralized

sensing of a slowly varying process, thereby extending the network lifetime.

D. BCRB(k) versus
∑R

r=1BCRB(k)
r

Assuming all the SNs active, the BCRB is decoupled as BCRB(k) =
∑R

r=1BCRB(k)
r (16). For

the cases when only a few SNs are active, it is approximated as BCRB(k) <
∑R

r=1BCRB(k)
r .

The performance degradation caused by this approximation is tabulated in Table III. It can

be observed by comparing respective BCRBs and MSEs that the performance loss decreases

with increasing number of active SNs
(
i.e., M (k)

)
. Further, the energy consumption percentage

(Econs
Etotal

%) of the centralized approach increases at a faster pace compared to the decentralized

approach. Trade-off between the sensing quality and energy consumption can also be seen as the

number of active SNs changes. The weight λ(k) of centralized M (k) is used to set the weights of

decentralized problem as λ(k)
r = λ(k), ∀r. Further, it was observed that M (k) need not necessarily

be equal to
∑R

r=1M
(k)
r . The average BCRB values are computed after running centralized and
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decentralized problems for 80 different sets of remaining energy of the SNs in k = 1 cycle.

Table IV summarizes the effect of number of clusters (R) on centralized and decentralized

sensing performance, keeping M (k) same. It can be observed that as R increases (or cluster size

decreases), the MSE of the centralized approach (10) decreases (because of improved feature

selection) with no significant change in energy consumption. In the decentralized approach

(18),
∑R

r=1 BCRBr and
∑R

r=1 MSEr increase with increase in R. The gap between BCRB

of the centralized approach and
∑R

r=1 BCRBr of the decentralized approach decreases with

decreasing R. Similarly, the gap between MSE and
∑R

r=1 MSEr decreases. This is because

the approximation BCRB ≤
∑R

r=1 BCRBr becomes tight as R decreases. Further, though the

decentralized problem consumes lesser energy (Econs
Etotal

%) compared to the centralized approach,

the gap between two decreases with increasing R. This is because, the number of CHs increases

with increased R, which results in an increased number of CH-FC communication. These

communications consume significant energy due to long distances of the CHs from the FC.

TABLE IV: Impact of R on performance of centralized and decentralized selection

R
Centralized Decentralized

M(k) avg BCRB(k) avg MSE(k) avg Econs
Etotal

(%) avg
∑R
r=1BCRB(k)

r
∑R
r=1MSE(k)

r avg Econs
Etotal

(%)

2 12 3.203× 10−5 0.00586 46.2209 13.525× 10−5 0.0991 45.9833

4 12 3.287× 10−5 0.0011 46.2773 15.961× 10−5 0.0196 46.1773

6 12 3.820× 10−5 0.00066 46.9012 27.309× 10−5 0.0573 46.6825

E. Factors governing retraining in the network

Table V captures the number of times retraining occurs, using CH selection variant 4 for

different values of R and w. By comparing the case {R,w} = {4, 6} with the cases {2, 8}

and {6, 4} it is observed that the retraining count decreases with the increase in window size w

and/or decrease in the number of coverage regions R, and vice-versa. Further, by simultaneously

increasing R and w (e.g., {2, 4} to {6, 8}) or decreasing them (e.g., {6, 8} to {3, 5}) no significant

change in the retraining count is observed. The same trend is seen with the other variants.

Remark 4. In the proposed framework, retraining count decreases as the reconstruction accu-

racy/window size w increases and degree of decentralization of WSN decreases.

TABLE V: Retraining count for various {R,w} values in variant 4. E(0)
rem (·) = 500 J, Es = 4.8 J

{R,w} {4, 6} {2, 8} {6, 4} {2, 4} {6, 8} {3, 5}

Retraining count 15 1 41 7 8 10
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F. Impact of various parameters on WSN’s performance

An increase in value of β may increase network lifetime and decrease sensing quality because

the constraint BCRBr ∈ [α, β] will be satisfied with a lower number of active SNs (i.e., lower

Mr). This effect was demonstrated for the centralized sensor selection proposed in a prior study

[15, Figs. 2(c) and 3(c)]. Similar effect can be seen for α as well.

The parameters δth and εth quantify increase/decrease in the number of active SNs by ef-

fectively capturing the process variations. For a coverage region r, decreasing δthr may result

in frequent increase in the value of Mr which leads to decrease in sensing error and network

lifetime. Intuitively, a process with high temporal correlation (or slower variations) could be

effectively monitored using a lesser Mr. A higher value of δth(·) would be suitable for this. Further,

the parameter εth(·) aid in quantifying the extent up to which the number of active SNs can be

decreased for sensing in subsequent measurement cycle such that the resulting signal estimate

will not be much different from the prior available signal estimates. It also gives an approximate

idea of spatial correlation of the process as for high spatial correlation case, the heuristic δ(k)
r

(which is compared with δthr ) evaluates to lower values as mentioned in the work [15] as well

for centralized sensing case. Increasing εth(·) would allow larger decrease in value of Mr which

may result in increased network lifetime and MSE.

TABLE VI: Impact of number of coverage regions
R 2 3 4 5 6 7

Network Lifetime 173 188 194 192 179 175

Energy consumption per cycle (in J) 229.1995 218.7119 205.3688 208.0227 223.4185 228.1437

Retraining Count 4 13 15 24 27 38

On increasing the number of coverage regions (or the degree of decentralization), the sensing

quality deteriorates faster which invokes frequent retraining. This results in an increase in number

of retraining phases as illustrated in Table VI for variant- 2. However, as R increases, the

energy consumption per cycle (network lifetime) first decreases (increases) and then increases

(decreases). Due to this, a criterion is developed in Section IV-B to find appropriate R such

that minimum energy is consumed per cycle. It may be noted that comment on the MSE is

made based on retraining count because different regions undergo retraining during different

measurement cycles due to which computing overall MSE was not possible.

G. Performance study using real WSN data-set

This section presents comparative performance results of the proposed variants and Hwang’s

method [21] and DiSparSense [18] using humidity data collected by a WSN deployed in Intel
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TABLE VII: Performance comparison with state-of-the-art approaches
Hwang’s method: Gaussian random B (PCA-based B) Variant 2 Variant 3 DiSparSense Exhaustive

M 12 17 25 30 − − − 32

Average NMSE 1.8039 (2.7813× 10−4) 1.7697 0.3963 0.3695 2.4886× 10−4 2.0254× 10−4 0.5405 1.9295× 10−5

Econs 71.3274 (110.1692) 92.2521 164.2230 213.7741 87.7705 79.1789 315.7181 132.6000

Network lifetime 18 (13) 10 8 7 18 19 5 12

Node lifetime 10 (9) 10 8 7 12 9 4 11

Berkeley research lab [39]. Signals sensed by a set of 32 Mica2Dot sensors spanning over 25×32

m2 lab area are considered. The FC is considered to be located at 40 m above the center of the

considered field span. Parameters [α, β] , δthr , ε
th
r ∀r, R,w,Es, η, Eelec, and E(0)

rem (·) are respec-

tively set as [2.1628× 10−5, 0.0522] , [0.0709, 0.4892, 0.8305, 0.0532] , 0.5 ∀r, 4, 6, 4.8 J, 10−10

J/bit/m2, 140 nJ/bit, 50 J. Performance metric used in the simulation plots is NMSE =

∥∥∥z(k)r −ẑ
(k)
r

∥∥∥2∥∥∥z(k)r

∥∥∥2 .

It gauges the error’s energy against the signal energy. Note that it has not been directly used in the

framework, as the WSN signal z
(k)
r is unknown. It can be observed from Table VII that the vari-

ants 2 (3) of the proposed framework provide 58.9424% (62.9614%) and 72.1997% (74.9210%)

energy efficiency compared to Hwang’s method (Gaussian B,M = 30) and DiSparSense,

respectively. Sensing quality of the proposed variants is significantly better than the competitive

schemes. Practical significance of the data-driven PCA-based sparsification matrix B of the

proposed framework can be seen from the improvement achieved in the sensing quality when

this B is used in Hwang’s method instead of Gaussian B matrix. Further, it can be verified

that the variant 3 (respectively, 2) offers better network (respectively, node) lifetime. Unlike the

competitive schemes (Hwang’s and DiSparSense), a higher gain of decentralization (i.e., energy

efficiency) is achieved by paying lower price (i.e., sensing quality) when the proposed framework

is compared with the centralized exhaustive scheme (with all active SNs).

VII. CONCLUSION

In this paper, a novel edge computing framework for decentralized sensing of a spatio-temporal

process has been proposed. For this, a critical trade-off between the sensing quality and energy

efficiency has been distributedly optimized at the dynamically selected edge nodes. Residual

energy of the SNs has been incorporated in the formulation which was otherwise ignored in the

literature. The framework adapts the number of active SNs in a coverage region according to the

process dynamics and keeps the sensing error within a given limit. To limit the accumulation of

estimation error over the measurement cycles, a logic to detect the need for retraining the network



29

coverage regions has also been proposed. Extensive simulation results have demonstrated that,

compared to the closest competitive decentralized approach the proposed framework provides

up to 84% higher energy efficiency (network lifetime) and improves energy balance among the

SNs without impacting the sensing quality. The energy efficiency of the proposed decentralized

framework has been verified by executing it on a real WSN data-set as well.
APPENDIX A

SIGNAL SPARSIFICATION: A PCA-BASED APPROACH

At the onset, Ktr training instances of signal vector z(·), forming a learning set T =
{
z(k−Ktr+1),

. . . , z(k−1), z(k)
}

, are considered to compute the sample mean vector z̄T = 1
|T |
∑

z(·)∈T z(·) ∈

RN×1 and the sample covariance matrix Σ̂T = 1
|T |
∑

z(·)∈T
(
z(·) − z̄T

) (
z(·) − z̄T

)T ∈ RN×N . The

sparsification matrix B(k) ∈ RN×N is formed using orthogonal eigen vectors of the matrix Σ̂T ,

while its eigenvalues form the diagonal elements of a diagonal matrix Γ(k) ∈ RN×N (used later),

i.e., Σ̂T = B(k)Γ(k)
(
B(k)

)T . Owing to the correlation present in elements of the set T , pro-

jection of z(k) onto vector space R
(
B(k)

)
gives the corresponding sparse vector x(k) as x(k) =(

B(k)
)T (

z(k) − z̄T
)
. Substituting the sparse representation z(k) = z̄T + B(k)x(k) in (2) and

denoting y(k) = ỹ(k)−A(k)z̄T ∈ RMk×1, the system model becomes y(k) = A(k)B(k)x(k) + n(k).

Likewise, for the regional system model (4), compute z̄Tr and Σ̂Tr using the learning set

Tr = {z(k−Ktr+1)
r , . . . , z

(k−1)
r , z

(k)
r }. Note that Σ̂Tr is a full rank matrix irrespective of whether

Nr is greater than, less than, or equal to Ktr. The eigen vectors of Σ̂Tr give a unique regional

sparsification matrix B
(k)
r ; while the eigenvalues form the diagonal elements of the diagonal

matrix Γ
(k)
r ∈ RNr×Nr . Following the same procedure and denoting y

(k)
r = ỹ

(k)
r −A

(k)
r z̄Tr , the

sparse representation of the system model (4) is given by y
(k)
r = A

(k)
r B

(k)
r x

(k)
r + n

(k)
r ,∀r.

APPENDIX B
SBL APPROACH FOR SIGNAL RECOVERY

The SBL framework assumes a Gaussian likelihood model for the estimation of the underlying
monitored phenomenon [23]. During each cycle k, the SBL scheme assigns a parameterized
Gaussian prior to the unknown weight vector x

(k)
r as

p
(
x(k)
r ;γ(k)

r

)
=

N∏
n=1

(
2πγ(k)

r (n)
)−1/2

e
− (x(k)r (n))

2

2γ
(k)
r (n) . (34)

The component γ(k)
r (n) of the hyperparameter vector γ(k)

r =
[
γ

(k)
r (1) , . . . , γ

(k)
r (Nr)

]T
∈ RNr×1

corresponds to the variance of component x(k)
r (·) of the weight vector. Due to the intractability

of the maximum likelihood estimate of γ
(k)
r , i.e. γ̂kr = arg max

γ
(k)
r �0

log p
(
y

(k)
r ;γ

(k)
r

)
[23],

an iterative expectation maximization (EM) algorithm is employed to estimate γ
(k)
r consid-

ering x
(k)
r as a hidden variable. Let the estimate of the hyperparameter vector γ

(k)
r in the
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lth EM iteration be denoted as
(
γ̂(k)
r

)(l)

. The E-step in the lth iteration evaluates the likeli-

hood as L
(
γ

(k)
r |

(
γ

(k)
r

)(l)
)

= E
x
(k)
r |y(k)

r ;
(
γ

(k)
r

)(l) { log p
(
y

(k)
r ,x

(k)
r ;γ

(k)
r

)}
. The posterior distribution

of x
(k)
r is p

(
x

(k)
r |y(k)

r ;
(
γ

(k)
r

)(l))
∼ N

(
µ

(l)

x
(k)
r

,Σ
(l)

x
(k)
r

)
with µ

(l)

x
(k)
r

= σ−2Σ
(l)

x
(k)
r

(
Θ(k)
r

)T
y

(k)
r ∈ RNr×1,Σ

(l)

x
(k)
r

=

(
σ−2

(
Θ

(k)
r

)T
Θ

(k)
r +

((
Γ̂

(k)

r

)(l))−1
)−1

∈ RNr×Nr ,
(
Γ̂

(k)

r

)(l)
= diag

((
γ̂
(k)
r (1)

)(l)
, · · · ,

(
γ̂
(k)
r (Nr)

)(l))
. A less

complex expression of Σ
(l)

x
(k)
r

is obtained using the matrix inversion lemma [26] as Σ
(l)

x
(k)
r

=(
Γ̂

(k)

r

)(l)
−
(
Γ̂

(k)

r

)(l) (
Θ

(k)
r

)T (
Σ

(l)

y
(k)
r

)−1

Θ
(k)
r

(
Γ̂

(k)

r

)(l)
with Σ

(l)

y
(k)
r

=

(
σ2I

M
(k)
r

+ Θ
(k)
r

(
Γ̂

(k)

r

)(l) (
Θ

(k)
r

)T) ∈ RMr×Mr .

Thereafter, the M-step estimates
(
γ̂(k)
r

)(l+1)

as:(̂
γ(k)
r (n)

)(l+1)

= arg max
γ

(k)
r (n)

E
x
(k)
r |y(k)

r ;
(
γ

(k)
r

)(l)

{
log p

(
y(k)
r ,x(k)

r ;γ(k)
r

)}
= Σ

(l)

x
(k)
r

(n, n) +
(
µ

(l)

x
(k)
r

(n)
)2

. (35)

After repeating the E and M-step for LEM iterations, the final sparse estimate is obtained as

x̂
(k)
r = µ

(LEM )

x
(k)
r

. Without prior knowledge of sparsity, the SBL-EM scheme provides a maximally

sparse solution
((

γ̂
(k)
r (n)

)(l)
→ 0 ⇒

(
x̂
(k)
r (n)

)(l)
→ 0

)
. The estimate ẑ

(k)
r is given by z̄Tr + B

(k)
r x̂

(k)
r .

APPENDIX C
BAYESIAN CRAMÉR-RAO BOUND (BCRB)

BCRB characterizes the MSE in the estimate of the unknown vector x(k) in the signal model
(6). BCRB(k) = Tr

{
J−1
B

}
, with the Bayesian Fisher information matrix JB ∈ RN×N given below

[15]: JB = −E(y(k),x(k))

∂
2L
(
y(k)|x(k);Γ(k)

)
∂x(k) (∂x(k))

T

︸ ︷︷ ︸
JD

−E(x(k))

∂
2L
(
x(k);Γ(k)

)
∂x(k) (∂x(k))

T

︸ ︷︷ ︸
JP

.The terms L
(
y(k)|x(k); Γ(k)

)
,L
(
x(k); Γ(k)

)
,

and JD,JP ∈ RN×N respectively denote the log-likelihood functions of vectors y(k), x(k) param-
eterized by Γ(k), and FIMs with respect to y(k),x(k). The prior distribution of x(k) (34) is used
to compute the log-likelihood function as: L

(
x(k); Γ(k)

)
=

(
k̃ − 1

2

(
x(k)

)T (
Γ(k)

)−1

x(k)

)
, where k̃

is a parametric constant. Further, its second order derivative with respect to x(k) evaluates to
∂2L(x(k))

∂x(k)(∂x(k))
T =

(
Γ(k)

)−1

. Thus, JP =
(
Γ(k)

)−1

. Similarly, after ignoring the constant terms, the

log-likelihood function L
(
y(k); x(k)

)
is obtained as: L

(
y(k)|x(k); Γ(k)

)
= 1

2σ2

∥∥y(k) −A(k)B(k)x(k)
∥∥2.

Thus, JD = 1
σ2

(
B(k)

)T (
A(k)

)T
A(k)B(k). The BCRB is expressed as:

BCRB(k) = Tr

{(
1

σ2

(
B(k)

)T(
A(k)

)T
A(k)B(k)+

(
Γ(k)

)−1
)−1
}
. (36)

For colored noise case, BCRB evaluates to: BCRB(k) = Tr

{((
B(k)

)T
(Σn)

1
2 diag

(̃
a(k)
)
(Σn)

1
2 B(k)+

(
Γ(k)

)−1
)−1
}
.
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[20] F. Altenbach, S. Corroy, G. Böcherer, and R. Mathar, “Strategies for distributed sensor selection using convex optimization,”

in Proc. IEEE Global Commun. Conf. (GLOBECOM). Anaheim, CA, USA, Dec. 2012, pp. 2367–2372.

[21] S. Hwang, R. Ran, J. Yang, and D. K. Kim, “Multivariated Bayesian compressive sensing in wireless sensor networks,”

IEEE Sensors J., vol. 16, no. 7, pp. 2196–2206, Apr. 2015.

[22] R. Masiero, G. Quer, D. Munaretto, M. Rossi, J. Widmer, and M. Zorzi, “Data acquisition through joint compressive



32

sensing and principal component analysis,” in Proc. IEEE Global Telecommun. Conf. Honolulu, HI, USA, Nov. 2009,

pp. 1–6.

[23] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selection,” IEEE Trans. Signal Process., vol. 52, no. 8, pp.

2153–2164, Aug. 2004.

[24] A. Mishra, V. Gupta, S. Dwivedi, A. K. Jagannatham, and P. K. Varshney, “Sparse bayesian learning-based target imaging

and parameter estimation for monostatic MIMO radar systems,” IEEE Access, vol. 6, pp. 68 545–68 559, 2018.

[25] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge univ. press, 2004.

[26] K. B. Petersen, M. S. Pedersen et al., “The matrix cookbook,” Tech. Univ. Denmark, vol. 7, p. 15, Nov. 2008.

[27] Z. Fei, B. Li, S. Yang, C. Xing, H. Chen, and L. Hanzo, “A survey of multi-objective optimization in wireless sensor

networks: metrics, algorithms, and Open Problems,” IEEE Commun. Surveys Tut., vol. 19, no. 1, pp. 550–586, 1st Quart.

2017.

[28] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx,

Mar. 2014.

[29] A. D. Marbini and L. E. Sacks, “Adaptive sampling mechanisms in sensor networks,” in Proc. London Commun. Symp.,

vol. 174. London, UK, Sep. 2003.

[30] M. A. Razzaque and S. Dobson, “Energy-efficient sensing in wireless sensor networks using compressed sensing,” Sensors,

vol. 14, no. 2, pp. 2822–2859, 2014.

[31] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: a first step towards software power minimization,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 2, no. 4, pp. 437–445, Dec. 1994.

[32] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture for wireless

microsensor networks,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 660–670, Oct. 2002.

[33] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids clustering,” Expert syst. appl., vol. 36, no. 2, pp.

3336–3341, 2009.

[34] M. Leinonen, M. Codreanu, and M. Juntti, “Sequential compressed sensing with progressive signal reconstruction in

wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1622–1635, Mar. 2015.

[35] J. V. Zidek, W. Sun, and N. D. Le, “Designing and integrating composite networks for monitoring multivariate Gaussian

pollution fields,” J. Royal Statist. Soc.: Series C (Appl. Statist.), vol. 49, no. 1, pp. 63–79, 2000.

[36] A. Sinha and A. P. Chandrakasan, “JouleTrack: a web based tool for software energy profiling,” in Proc. Des. Autom.

Conf. ACM, Jun. 2001, pp. 220–225.

[37] V. Gupta and S. De, “Collaborative Multi-sensing in Energy Harvesting Wireless Sensor Networks,” IEEE Trans. Signal

Inform. Process. over Netw., vol. 6, pp. 426–441, May 2020.

[38] D. Hooper, J. Coughlan, and M. Mullen, “Structural equation modelling: Guidelines for determining model fit,” The

Electron. J. Bus. Res. Methods, vol. 6, pp. 53–60, Jan. 2008.

[39] P. Bodik, W. Hong, C. Guestrin, S. Madden, M. Paskin, and R. Thibaux, “Intel lab data,” Online dataset, Feb. 2004.


