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Real-time Transmission Control for Multichannel
NOMA Random Access Systems
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Abstract—To improve the throughput per channel in multi-
channel non-orthogonal multiple access (NOMA) random access
(RA) system, users (re)transmit their packet to one of channels
using transmit power control such that the receive power of the
packets at the base station (BS) can be one of the predefined levels
called target receive power (TRP). The BS decodes the received
packets in the descending order of the TRPs at each slot using
successive interference cancellation (SIC). This work proposes
real-time transmission algorithm for users to (re)transmit their
packet for maximization of the system throughput. To do this, the
BS estimates the number of backlogged users in real-time and
adjusts and broadcasts the throughput-optimal (re)transmission
probability in the algorithm. We analyze the average RA delay
performance of the proposed algorithm and demonstrate its
performance even with time-varying traffic.

Index Terms—Non-orthogonal multiple access, online control,
random access procedure.

I. INTRODUCTION

A. Motivations

Internet-of-Things (IoTs) is a network of physical devices
that can be embedded in objects such as vehicles, buildings and
even livestocks. It enables us to sense and control objects re-
motely across existing network infrastructure. As applications
of IoT have expanded over a wide range of industries such
as intelligent transportation, health care, manufacturing, retail,
and energy industries, the required quality-of-service (QoS)
of the applications becomes more stringent, even in real-time.
However, increasing number of IoT devices and unexpected
massive accesses due to rapid growth of IoT applications could
be an impending obstacle for stringent QoS and even can clog
up the entire wireless access systems.

In order to protect radio access networks from latent long-
lasting congestions and to keep strict access delay requirement,
more channels over the frequency band can be employed for
random access (RA) channel. Moreover, in order to improve
RA capacity over the frequency channel and/or slot, power
domain non-orthogonal multiple access (NOMA) has been
recently examined for a RA scheme [1]–[12]. It allows users
to (re)transmit their packet to the same slot and frequency
channel, but requires users to control their transmit power
such that their receive power at the base station (BS) can
be one of the predefined target receive power (TRP) levels.
The BS decodes the received packets from the highest TRP
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to the lowest one with successive interference cancellation
(SIC). More than one packets can be decoded as long as
some signal-to-interference ratio (SINR) condition is satisfied,
which brings a higher throughput in RA channel. However, the
packets with the same TRP cannot be separated with SIC. It
is thus expected that the more the employed TRP levels, the
higher the achievable throughput, i.e., the number of packets
successfully decoded per slot, albeit at the expense of decoding
complexity.

In deploying uplink NOMA RA systems with multichannel
for IoT devices and users, the following research questions can
be raised: The first important question is how many channels
and TRPs are needed at minimum in order to support a finite
RA delay if a certain mean packet arrival rate of IoT devices is
applied to the system. This question is not separable from what
retransmission probability IoT devices or users use since a low
retransmission probability can randomize the accesses over a
wide span of time but it also increases RA delay. Accordingly,
we may ask how the system should control retransmission
probability in order to keep a bound of the average RA delay
when a given mean packet arrival rate is applied. Subsequently,
if the number of TRP levels is raised, it is essential to see
a relation between the average power consumption and RA
delay. We can also explore another question such as how the
system can cope with time-varying traffic to stabilize itself, or
how the maximum system throughput can be achieved if the
mean of packet arrival rate varies over time. These questions
are the key motivations of this work.

B. Related Work

As prior work for power-domain NOMA RA systems, in
[1] Liang et al. implicitly made use of uplink NOMA for
message 3 transmission during the four-step RA procedure
of Long-Term Evolution (LTE). Particularly, the TRP levels
are chosen based on the distance between the user and the
BS. Uniform and beta distributions of packet arrivals are
taken into account. In [2] Choi examined a lower bound of
throughput of multichannel NOMA RA systems with various
TRP levels. Furthermore, a much more improved lower bound
has been derived and compared in [3]. It can be seen in
[2], [3] that analytical complexity to obtain the throughput
of uplink NOMA RA systems increased prohibitively as the
number of TRP levels was raised. For the systems with two
and three TRP levels, Jin and Lee in [4] obtained an upper
and lower bound of the throughput, as well. Compared to [1]–
[4], the focus of our work is on the RA delay rather than the
throughput. For a single-channel uplink NOMA RA system,
using a discrete-time Markov chain, [5] examined throughput,
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energy efficiency and RA delay by taking into account path-
loss, Rayleigh fading, and users’ spatial distribution in a
cell. For unmanned aerial vehicle (UAV) assisted wireless
access system, an optimal backoff algorithm for users to
employ was investigated in [6]. In contrast with single-channel
NOMA systems [5], [6], we analyze multichannel NOMA
system using a continuous-time Markov chain, i.e., M/M/1,
as an approximation. In Section IV we shall present that the
simulation results verify the correctness of our considered
M/M/1 approximation.

On the other hand, Abbas et al. considered the throughput
of uplink NOMA with SIC and joint-decoding scheme in [7]
when users are distributed in a cell according to a Poisson
point process (PPP). In [8] Tegos et al. considered uplink
NOMA RA with SIC and joint-decoding for wireless powered
sensor networks and examined the throughput with Rayleigh-
and Nakagami-fading. While this work focuses on NOMA
with SIC, the framework we present might be valid for any
variant of uplink NOMA RA systems.

In light of applications of machine-learning algorithm to
optimize transmission control, Jang et al. considered a deep-
learning based transmit power control in order to maximize
the expectation of the minimum rate of uplink NOMA in [9].
Using the uplink NOMA RA model proposed by Liang et al.
in [1], Wang et al. derived access barring scheme based on
particle swarm optimization (PSO) [10], in which the mean
RA delay is obtained based on simulations only. Moreover,
Silver et al. in [11] considered an access algorithm based on
Q-learning for uplink NOMA RA system, whereas Zhang et
al. in [12] also considered an access algorithm using deep re-
inforcement learning (RL). It is worth noting that in [11], [12]
the actions for users to take are a pair of a channel (frequency,
or slot) and transmit power. The use of access algorithms
based on Q-learning or RL can have some drawbacks for
practical use. First, they assume that a fixed number of users
are saturated; that is, they have always a packet to send. Then,
they interact until the algorithm converges, i.e., all the users
finally find their best action. However, in practice, an arbitrary
number of users join and leave the system dynamically over
time. In other words, it is highly likely that users who have
completed their packet transmission may not retransmit any
more. Second, the convergence time of the learning algorithms
can be considered as a processing delay. If the required RA
delay can be shorter than the convergence time, the algorithms
fail to provide QoS. Note that Q-learning and RL can be in fact
regarded as solution methods for partially observable Markov
decision process (POMDP).

Compared to [10]–[12], our proposed algorithm can be
considered as a solution method to POMDP as well, where the
observation that the system gets is the number of idle channels
at each slot; that is, the number of channels, to which no users
(re)transmit their packet at each slot. This is readily available
at the BS. From the observation, the underlying principle of
our algorithm is to estimate the state of the hidden Markov
process and allocate the best action for the backlogged users
in real-time. In particular, we demonstrate the performance of
our proposed algorithm even with time-varying traffic, which
has not been reported in the previous work.

C. Contributions and Organization

In this work we consider multichannel uplink NOMA RA
systems, where users (re)transmit their packet according to the
proposed algorithm. Our contributions can be summarized as
follows:
• When the users use a fixed retransmission probability, this

work shows that multichannel uplink NOMA RA system
with Poisson packet arrivals (with any mean) is always
unstable no matter how many channels the system can
have.

• In order to stabilize the system and maximize the system
throughput, this work proposes real-time transmission
control algorithm for uplink NOMA RA system, where
users are allowed to (re)transmit only when their signal-
to-noise ratio (SNR) is high enough to be above some
predefined threshold. We show that the performance of
the system, e.g., the mean RA delay and throughput, is
invariant to the threshold.

• For Poisson distributed arrival of traffic with constant
mean, the average RA delay of the proposed algorithm
is analyzed with an M/M/1 approximation so that it is
predictable given the number of channels.

• We test the proposed algorithm with time-varying traffic
scenarios and show the robustness of the proposed algo-
rithm under such network dynamics, e.g., Poisson packet
arrivals with a time-varying mean.

This work is organized as follows: Section II introduces
multichannel uplink NOMA RA system and the RA procedure.
The (in)stability of this system is proved in Section III-A,
whereas the proposed algorithm is derived and presented in
Section III-B. Numerical results are discussed in Section IV.
Finally, concluding remarks are given in Section V.

II. SYSTEM MODEL

A. Selection of TRP Levels and SIC

Suppose a time-division duplex (TDD) system, whose time
axis is divided into slots of a fixed length. Each slot is divided
into two parts such as one down- and one uplink (sub)slot.
We assume that a BS has N independent channels and serves
users.

We assume that a user with a packet to send, i.e., backlogged
user, arrive at the system according to a Poisson process with
mean rate λ (packets/slot), and the users can hold only one
packet, i.e., no queueing for the incoming packets. Thus, a
packet and a user are indistinguishable. This model is often
called infinite population model [14] where the system has an
infinite set of users.

Let us assume that user i chooses a channel at random.
Let hi denote the downlink channel gain of the channel that
user i has chosen, and N0 be the power spectral density
of additive white noise. We assume that the channel fading
gain hi obeys an independently and identically distributed
(i.i.d.) Rayleigh distribution. In other words, hi is complex
Gaussian random variable with zero mean and unit variance
for all i, i.e., hi ∼ CN (0, 1). Moreover, let us assume block-
fading channels, where hi remains unchanged within a slot
interval and varies randomly and independently slot by slot.
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In addition, the instantaneous signal-to-noise ratio (SNR) is
defined as γi = |hi|2

N0
, which is estimated by user i through

observing the pilot signals transmitted by the BS.
Let Pk for k ∈ {1, 2, . . . , L} be the k-th level of TRP at the

BS and PL < PL−1 < · · · < P1, where L is the number of
simultaneous packet transmissions that the BS can successfully
decode with power-domain NOMA technique. Owing to the
channel reciprocity in TDD, user i determines his transmit
power P(γi) based on γi as follows:

P(γi) =


Pk
γi
, for τk ≤ γi ≤ τk−1, k ∈ {1, . . . , L}

0, for γi ≤ τL,
(1)

where τk is an SNR threshold for potentially selecting TRP Pk
and τ0 =∞. Therefore, only when user i’s instantaneous SNR
falls into an interval [τk, τk−1], he considers to select TRP Pk
in order to save his transmit power. In addition, (1) is often
called channel inversion. Over the downlink, the BS sends a
broadcast message that specifies the information about TRP
levels such as the values of Pk and τk for k = 1, 2, ..., L
in the system initialization procedure. Then, based on this
information, each user can adjust the transmit power according
to his instantaneous SNR and (1) at each slot.

Returning to (1), let us consider the probability that user
i’s channel is up. Owing to the assumption of i.i.d. Rayleigh
distribution on hi, γi follows an exponential distribution with
unit mean, i.e., Pr[γi ≤ x] = 1− e−x, we have

φ = Pr[γi ≥ τL] = e−τL . (2)

Note that user i would not transmit with probability 1− e−τL
which is the probability that its SNR is below τL.

Suppose that j users (re)transmit at the same uplink slot. In
power-domain NOMA system, the BS decodes a packet with
the highest TRP first by treating other packets as interference.
It then tries to decode the second highest one by subtracting the
packet with the highest TRP from the received packets using
SIC. Let us assume that the TRP levels that j users choose
are all different. Then, user i’s packet for i ∈ {1, . . . , j} and
j ∈ {1, . . . , L} can be successfully decoded if its signal-to-
noise interference ratio (SINR) satisfies

Pi∑j
k=i+1 Pk +N0

≥ γ, (3)

where γ denotes the decoding threshold. Note that in (3), the
packets with TRP Pk for k ∈ {1, . . . , i− 1} are subtracted by
SIC.

In this system, the BS can successfully decode the received
packets if the following three conditions hold: First, the packet
with Pi can be successfully decoded if P`’s for ` < i are all
successfully decoded. Second, it is the only packet with Pi. If
more than one packets with the same Pi are transmitted, all
of them can not be decoded, which is called power collision.
Along with the first condition, when a power collision occurs
for the packets with Pi, the BS can not decode all the packets
with P` for ` > i. Third, regarding the packets with P` for
` > i (if they are transmitted) as interference, the BS decodes
the packet with Pi if (3) holds.

For analytical simplicity, let us assume N0 = 1 in (3). Let us
further calculate each Pi for i ∈ {1, 2, . . . , L} when L packets
are simultaneously transmitted with different TRP levels. If the
equality holds in (3), we can iteratively obtain Pi from L to
1 as

Pi = γ(1 + γ)L−i, for i ∈ {1, 2, ..., L}. (4)

Then, it can be checked that the above Pi’s are the minimum
values when L packets are transmitted with different TRP
levels.

B. Average Power Consumption and Access Opportunities

Let us denote by uk the probability that the SNR of user i
falls into the interval between τk and τk−1. It can be obtained
as

uk = Pr[τk ≤ γi ≤ τk−1] = e−τk − e−τk−1 (5)

and τ0 =∞.
For two levels of TRP, i.e., L = 2, let us denote p and q

the (conditional) probability that user i chooses TRP P1 or P2

given that γi ≥ τ2. Using (5), we obtain can these probabilities
as

p = u1/φ and q = u2/φ. (6)

If u1 = u2 in (6), using (5) we should have e−τ2 − e−τ1 =
e−τ1 , which yields τ1 = τ2 + ln 2. It is notable that the reason
for assuming u1 = u2 is because the access opportunities with
TRP levels P1 and P2 are made fair (or equal) with respect
to SNR.

Let PL denote the average transmit power consumption
for L TRP level. Regardless of TRP levels, if the users have
equal access opportunities, the average power consumption per
(re)transmission for L = 2 can be expressed as

P 2 =

L∑
i=1

Pi

∫ τi−1

τi

1

x
e−xdx · ui

= P1E1(τ1)u1 + P2(E1(τ2)− E1(τ1))u2

= γu1 (γE1(τ1) + E1(τ2)) , (7)

where E1(z) =
∫∞
z

e−t

t dt, we have used (4) and u1 = u2.
Let us consider the system with three levels of TRP: Similar

to (6), with slight abuse of notation, for L = 3 we denote by
p, q and y the (conditional) probabilities that user i chooses
TRP P1, P2, or P3, respectively, given that γi ≥ τ3. We can
get them as

p = u1/φ, q = u2/φ, and y = u3/φ. (8)

If u1 = u2 = u3, i.e., equal access opportunities for TRP
P1, P2, and P3, we should have e−τ2 − e−τ1 = e−τ1 and
e−τ3 − e−τ2 = e−τ2 − e−τ1 . We get τ2 = τ3 + ln 1.5 and τ1 =
τ3+ln 3. The average power consumption per (re)transmission
for L = 3 is also obtained as

P 3 =P1E1(τ1)u1 + P2(E1(τ2)− E1(τ1))u2

+ P3(E1(τ3)− E1(τ2))u3

=γu1 ((1 + γ)γE1(τ1) + γE(τ2) + E1(τ3)) . (9)
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C. RA Procedure

Let us introduce the RA procedure of this NOMA system as
follows: The BS broadcasts a (re)transmission probability rt at
downlink subslot of slot t. If a user has a packet to send, he is
called backlogged user. When backlogged user i (re)transmits
his packet, first he chooses one out of N channels randomly
and gets his SNR γi of the channel. If γi > τL, he adjusts his
transmit power according to (1) and (re)transmits his packet
with (re)transmission probability rt based on Bernoulli trial.
Accordingly, his packet (re)transmission probability is rφ if
rt = r. The BS decodes the received packets according to the
decoding rules that we have introduced. We assume that the
BS gives the channel outcome, i.e., (re)transmission success, to
the backlogged users over the downlink right after the uplink
transmission without an error. When the users cannot find their
success, they will repeat this procedure at the next slot.

Let us consider an example. In (3), if three users (re)transmit
their packet with TRP levels P1, P2, and P3, the user’s packet
with TRP P1 can be successfully received if

P1

P2 + P3 +N0
≥ γ, (10)

in which two packets with P2 and P3 are treated as noise.
The packet with P1 is subtracted from the entire received

packet, and then the packet with TRP P2 is decoded by treating
P3 as noise:

P2

P3 +N0
≥ γ and

P3

N0
≥ γ, (11)

where user 2’s is subtracted from the received packets when
user 2’s packet is decoded. Notice that in (10) and (11), we
have P1 = γ(1 + γ)2, P2 = γ(1 + γ), and P3 = γ.

If SIC is imperfect, some residual power (interference) is
left after TRP Pi is cancelled. Let εi be the maximum of
residual power for TRP Pi which is assumed to be available
at the BS who utilizes this information to determine TRP levels
in the system initialization procedure. We then rewrite (11) as

P2

ε1+P3+N0
and P3

ε1+ε2+N0
, respectively. Assuming N0 = 1, we

also rewrite (4) as P3 ≥ γ
(
1 +

∑2
i=1 εi

)
and P2 ≥ γ

(
1 +

γ +
∑2
i=1 εi + ε1

)
. If εi is the maximum of residual power,

we should set the TRP higher than (4) by taking into account
these εi’s. For imperfect SIC, while more transmit power is
used, medium access control (MAC) layer performance might
remain the same.

III. ANALYSIS AND ONLINE CONTROL ALGORITHM

A. Stability Analysis

First we show that if rt = r for t = 0, 1, . . . , i.e., a
fixed retransmission probability r used over time, the system
with Poisson arrivals with mean rate λ (packets/slot) always
becomes unstable no matter how many channels and TRP
levels are used.

To begin with, let Xt be the number of backlogged users at
the beginning of slot t, whereas St and At denote the number
of users making a successful RA and that of users newly

joining the backlog between slot t and t + 1. In the course
of time, Xt develops according to

Xt+1 = Xt − St +At. (12)

In (12), it can be seen that Xt is a Markov process.
Let us denote by πm the (steady) state probability that the

system has m backlogged users, i.e., Xt = m as t → ∞;
that is, πm = Pr[Xt = m]. To find this, let us denote by Rt
the number of backlogged users that (re)transmit their packet
with a TRP to a channel at slot t. Let pn,m denote the state
transition probability of Xt from slot t to the next slot, i.e.,
pn,m = Pr[Xt+1 = m|Xt = n]. If an denotes the probability
that n packets (or users) arrives to the system, i.e., n users
become backlogged, we can write p0,n as

p0,n = an. (13)

For n ≥ 1 and 0 ≤ ` ≤ m, pn,n−` can be expressed as

pn,n−` =

n∑
k=`

min(k,m)∑
i=`

Pr[St = i|Rt = k] Pr[Rt = k|Xt = n]

× Pr[At = i− `], (14)

where m = NL denotes the maximum number of packets that
are successfully decoded at the same time. Furthermore, for
` ≥ 1 we can write p,n+` as

pn,n+` =

n∑
k=0

min(k,m)∑
i=0

Pr[St = i|Rt = k] Pr[Rt = k|Xt = n]

× Pr[At = i+ `]. (15)

Let P = [pn,m] and π = [πm] denote the state transition prob-
ability matrix that takes pn,m as its element, and the (steady)
state probability row vector with element πm, respectively.
Then, π can be obtained as

πP = π and
∞∑
m=0

πm = 1. (16)

In order to show whether πm exists or not, we need to
show that Markov process Xt should be positive recurrent. To
this end, we apply Foster-Lyapunov theorem [14], [15]: For
an irreducible Markov process Xt with a state space S, it is
positive recurrent, i.e., stable in terms of returning to any state
while starting from it within a finite time interval, if and only
if there exists a function L : S → R+ such that L(i) ≥ 0
for all i ∈ S, and for a finite set B ⊆ S, the following two
conditions are met:
1) For any m ∈ Bc, the drift ∆Lm is less than or equal to
−ε, where ε > 0, i.e.,

∆Lm = E[L(Xt)− L(Xt−1)|Xt−1 = m] ≤ −ε, (17)

2) For any n ∈ B, the drift is less than or equal to a constant
c <∞, i.e.,

∆Lm = E[L(Xt)− L(Xt−1)|Xt−1 = m] ≤ c. (18)
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In applying Foster-Lyapunov theorem, suppose that L(x) = x
is used in (17) and Xt−1 = m ≥ 1. We can write (17) as

E[Xt −Xt−1|Xt−1 = m] (19)
= E[Xt−1 − St +At −Xt−1|Xt−1 = m]

= E[−St +At|Xt−1 = m]

= −E[St|Xt−1 = m] + E[At|Xt−1 = m] < 0.

The term Dm = −E[St|Xt−1 = m] + E[At|Xt−1 = m] is
often called drift; it is notable that if L(x) = x in (17), Foster-
Lyapunov theorem corresponds to Pakes’ lemma, known as
stability lemma on p. 264 in [14]. The converse to Pakes’
lemma is known as Kaplan’s or instability lemma [16].

If At is independent of Xt−1 for all t’s owing to Poisson
arrival assumption, we have

E[At] < E[St|Xt−1 = m]. (20)

It can be seen that (18) is satisfied if the packet arrivals are
Poisson process with mean rate λ (packets/slot), i.e., E[At] =
λ < ∞. To find the the right-hand side (RHS) in (20), let us
denote by Φk(m) the probability that k users (re)transmit their
packet to one out of N channels at random if there are a total
of m backlogged users. This also presumes that SNR of the
channel chosen is greater than or equal to τL and k users pass
Bernoulli trial with probability r. In addition, Ŝt denotes the
number of packets successfully (re)transmitted to a channel at
time t, whereas Jt denotes the number of packets transmitted
to the channel. Then, the RHS of (20) can be expressed as

µ(L)
m ,E[St|Xt−1 = m] (21)

=N

m∑
k=0

k∑
`=0

`Pr[Ŝt = `|Jt = k]Φk(m),

where Φk(m) can be expressed as

Φk(m) =

m∑
u=k

u∑
n=k

(
n

k

)
rk (1− r)n−k (22)

×
(
u

n

)
φn(1− φ)u−n

(
m

u

)(
1

N

)u(
1− 1

N

)m−u
.

This can read that while u out of m users choose one of N
channels at random. Due to i.i.d. assumption on γi in (2), the
channel of n among u users is up (i.e. γi > τL) with probabil-
ity φ, whereas k out of n users makes a (re)transmission with
probability r. Note that Φ1(m) denotes the probability that
only one user makes a (re)transmission to one of N channel
at random.

To write (21) in a concise form as m grows, we need the
following lemma.

Lemma 1: As m becomes large, Φk(m) in (22) can be
approximated as a Poisson distribution with mean rφm/N
(packets/slot), i.e.,

Φk(m) ≈ Λk(m) ,
( rφmN )k

k!
e−

rφm
N . (23)

Proof: For k = 0, let us look at Φ0(m):

Φ0(m) =

m∑
u=0

u∑
n=0

(1− r)n
(
u

n

)
φn(1− φ)u−n

×
(
m

u

)(
1

N

)u(
1− 1

N

)m−u
=

m∑
u=0

(1− rφ)
u

(
m

u

)(
1

N

)u(
1− 1

N

)m−u
=

(
1− rφ

N

)m
≈ e−

rφm
N , (24)

where the binomial theorem is used, i.e.,
∑n
i=0

(
n
i

)
aibn−i =

(a + b)n and we also used (1 − x)n ≈ e−xn for some small
x. It can read that u backlogged users choose a channel with
probability 1

N . Among them, n users’ channel is up, but none
of them (re)transmit.

We can also find Φ1(m) in (25) given at the top of the
next page, where we assume that m becomes large, as well.
Similarly, Φ2(m) can be expressed as

Φ2(m) =
m(m− 1)

2

(
φr

N

)2(
1− rφ

N

)m−2
≈1

2

(
rφm

N

)2

e−
rφm
N , (26)

where we have assumed that m(m− 1) ≈ m2 as m becomes
large. This completes the proof.

Let ∆
(L)
k denote the expected number of packets success-

fully decoded in a slot when k packets are (re)transmitted at
the same slot in the system with L levels of TRP.

∆
(L)
k =

k∑
`=0

`Pr[Ŝt = `|Jt = k]. (27)

Then, µ(L)
m can be expressed as

µ(L)
m = N

m∑
k=1

∆
(L)
k Φk(m) ≈ N

m∑
k=1

∆
(L)
k Λk(m)

= Ne−
rφm
N

m∑
k=1

∆
(L)
k

(
rφm
N

)k
k!

, (28)

where we have used Lemma 1.
Let us now find ∆

(L)
k . For L = 2, we assume that a user

chooses P1 (or P2) with probability p (or q). Then, we can
get ∆

(2)
1 = 1 and ∆

(2)
2 as

∆
(2)
2 = 2

(
2

1

)
pq. (29)

It is not difficult to see ∆
(2)
k = 0 for k > 2 due to (3).

If L = 3, let us recall p, q, and y in (8), i.e., the probability
that a user chooses P1, P2 and P3, respectively. One can get
∆

(3)
1 = 1. When two users (re)transmit, ∆

(3)
2 is obtained as

∆
(3)
2 = 2

[(
2

1

)
pq +

(
2

1

)
py +

(
2

1

)
qy

]
. (30)
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Φ1(m) =

m∑
u=1

u∑
n=1

(
n

1

)
r (1− r)n−1

(
u

n

)
φn(1− φ)u−n

(
m

u

)(
1

N

)u(
1− 1

N

)m−u
=

m∑
u=1

u∑
n=1

nr

1− r

(
u

n

)
((1− r)φ)

n
(1− φ)u−n

(
m

u

)(
1

N

)u(
1− 1

N

)m−u
=

m∑
u=1

u∑
n=1

rφ · u · (u− 1)!

(n− 1)!(u− 1− (n− 1))!
((1− r)φ)

n−1
(1− φ)u−1−(n−1)

(
m

u

)(
1

N

)u(
1− 1

N

)m−u
=

m∑
u=1

rφ (1− rφ)
u−1

u

(
m

u

)(
1

N

)u(
1− 1

N

)m−u
=
rφm

N

(
1− rφ

N

)m−1
≈ rφm

N
e−

rφm
N . (25)

1 20 40 60 80 100 120 140

0

0.5

1

1.5

2

2.5

Fig. 1. Mean drift of the system with L = 3.

In case of three (re)transmitting users, ∆
(3)
3 can be expressed

as

∆
(3)
3 =

[
3

3!

1!1!1!
pqy +

3!

1!0!2!
pq0y2

]
, (31)

where the first term explains the successful (re)transmission of
three users, each of whom chooses different TRP levels. The
second term shows one successful transmission of one user
with TRP P1 while two users (re)transmit with TRP P3.

Especially for L = 3, one user with TRP P1 can make a
successful (re)transmission, even if three users (re)transmit at
the same slot with P3; that is, γ(1+γ)

2

3γ+N0
≥ γ with N0 = 1 and

γ ≥ 1 in (3). We then get ∆
(3)
4 as

∆
(3)
4 =

4!

1!0!3!
py3. (32)

In addition, we have ∆
(3)
k = 0 for k > 4. Notice that the

number of terms in ∆
(L)
k is at least

(
L
k

)
. As L is raised, more

terms get involved as long as (3) holds such that the analysis
becomes intractable. We shall see later that such an analytical
complexity arises when an optimal (re)transmission probability
is derived for L > 2.

Now, let us discuss the stability or positive recurrence of
Xt. In Fig. 1, we depict (28) for r = 0.1 and 0.2, respectively
when φ = 1 and L = 3. The horizontal straight line represents
the mean of packet arrival rate E[At] = λ. If we set Bc =

{m|m ≥ m∗0.2 (or m∗0.1)}, it can be observed that λ > µ
(3)
m so

Algorithm 1 NOMA Real-time transmission algorithm

Initialize X̃0 = 10, λ̃0 = 1, and α = 0.99. Repeat the
following steps at the beginning of each RA slot.
1: λ̃t = αλ̃t−1 + (1− α)St
2: if L = 2 then
3: X̃t = X̃t−1 + 0.4543N − 1.8685I− St + λ̃t
4: Broadcast rt = min

(
1,
√
2N

X̃tφ

)
5: else if L = 3 then
6: X̃t = X̃t−1 + 0.36N − 2.1442I− St + λ̃t
7: Broadcast rt = min

(
1, 1.7841N

X̃tφ

)
8: end if

that (17) or (20) can be violated for m > m∗0.2. As long as a
fixed retransmission probability r is used, this always happens
since µ(L)

m → 0 as m → ∞. As shown in (14) and (15), a
state m > m∗0.2 in Markov chain for Xt is reachable from
any state belonging to set B. Therefore, the system becomes
unstable eventually however small λ is. The next subsection
shows how to stabilize the system by controlling rt over time.

B. Online Control Algorithm

The objective of NOMA based real-time transmission in
Algorithm 1 is to stabilize the system over time, while
maximizing the throughput. First, we introduce how Algorithm
1 works. In Algorithm 1, λ̃t and X̃t denote the (estimated)
average of new packet arrivals and of backlogged users at slot
t. In line 1, the BS updates λ̃t based on an autoregressive
(AR) model by assuming that the average packet arrivals to
the system would be equal to the average number of packets
served by the system in the past. Although such λ̃t may
not accurately predict future arrivals, especially when sudden
change in the packet arrivals happens to the system, this
information is still helpful in estimating X̃t.

Let I denote the number of idle channels (observed); that is,
the number of channels, where no packet is (re)transmitted at
all at slot t. After observing I, the BS updates X̃t as in lines 3
and 6 for L = 2 and L = 3, respectively. Lines 3 and 6 indicate
that the larger the I, the smaller number of backlogged users
in the system. Finally, it broadcasts retransmission probability
rt at the downlink subslot of slot t. Then, backlogged users
(re)transmit their packet with probability rt.
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Let us derive the update equations in lines 3 and 6 in
Algorithm 1. First, we find r to maximize µ(L)

m in (28). This
is used in lines 4 and 7 in Algorithm 1.

Proposition 1: When the maximizer of µ(L)
m is denoted by

r∗m, it can be obtained as

r∗m = min

(
1,
θN

mφ

)
, (33)

where φ is given in (2), and θ depends on L. It is found as

θ =

{√
2, L = 2,

1.7841, L = 3.
(34)

Proof: We make use of dµ(L)
m

dr = 0 to find r∗m. For L = 2,
one gets

dµ
(2)
m

dr
= φme−

rφm
N

(
∆

(2)
1

(
1− rφm

N

)
+ ∆

(2)
2

(
1− rφm

2N

)
rφm

N

)
. (35)

If p = q = 1
2 , (35) becomes

dµ
(2)
m

dr
= φme−

rφm
N

(
1− 1

2

(
φm

N

)2

r2

)
. (36)

From dµ(2)
m

dr = 0 for r ∈ (0, 1), we can see that r =√
2N/(mφ) is the maximizer of µ(2)

m .
Let us find r∗m for µ(3)

m for L = 3. The derivative of (28)
with respect to r becomes

dµ
(3)
m

dr
=φme−

rφm
N

[
∆

(3)
1

(
1− rφm

N

)
+ ∆

(3)
2

(
1− 1

2

rφm

N

)(
rφm

N

)
+

∆
(3)
3

2

(
1− 1

3

rφm

N

)(
rφm

N

)2

+
∆

(3)
4

6

(
1− 1

4

rφm

N

)(
rφm

N

)3 ]
. (37)

If p = q = y = 1
3 , (37) becomes

dµ
(3)
m

dr
= φme−

rφm
N f(r), (38)

where f(r) is expressed as

f(r) =− 1

486

(
φm

N

)4

r4 − 59

486

(
φm

N

)3

r3

− 5

18

(
φm

N

)2

r2 +
1

3

φm

N
r + 1. (39)

To find the roots of dµ(3)
m

dr = 0, we need to solve f(r) = 0.
We assume a factored form of f(r) = 0 as

(ar + 1)(br3 + cr2 + dr + 1) = 0. (40)

Its expanded form can be expressed as

abr4 + (b+ ac)r2 + (ad+ c)r2 + (a+ d)r + 1 = 0. (41)

Then, a, b, c, and d in (41) are related to the coefficients of
(39) as

ab = − 1

486

(
φm

N

)4

, ac+ b = − 59

486

(
φm

N

)3

,

ad+ c = − 5

18

(
φm

N

)2

, a+ d =
1

3

φm

N
. (42)

According to (42), we assume that

a = x1
φm

N
, b = x2

(
φm

N

)3

, (43)

c = x3

(
φm

N

)2

, and d = x4
φm

N
. (44)

Using (43) and (44), we can conceal the terms (mL )i for i =
1, 2, 3, and 4 in (42) so that (42) can be rewritten in terms of
x1, x2, x3 and x4 as

x1x2 = − 1

486
, x2 + x1x3 = − 59

486
(45)

x1x4 + x3 = − 5

18
, x1 + x4 =

1

3
. (46)

Combining two equations in (45) with respect to x2, we have

x21x3 +
59

486
x1 =

1

486
. (47)

Again combining two equations in (46) with respect to x4,
we have

−x21 +
1

3
x1 + x3 = − 5

18
. (48)

Using (48) we can write (47) as a function of x1:

x41 −
1

3
x31 −

5

18
x21 +

59

486
x1 −

1

486
= 0. (49)

By getting rid of symbols, φ, m and N in (39), we have (49).
Now, (49) can be solved numerically: The roots of (49) are
−0.5605, 0.0177, 0.4381 ± 0.1256j for j =

√
−1. One real

root, i.e., x1 = −0.5605 gives a positive r from ar + 1 = 0
in (40); that is, r = N/(0.5605mφ) = 1.7841N/(mφ).

In (33), the constant θ = 1.7841 for L = 3 becomes
larger than θ =

√
2 for L = 2. It means that more users

are encouraged to (re)transmit as the number of TRP levels
increases. If the threshold for (re)transmission τL in (2)
is raised, φ becomes small. In other words, a higher τL
suppresses access opportunity, while saving transmit power.
Such a suppressed access opportunity is compensated in (33),
since r∗m is increased due to smaller φ.

If we can realize rt = r∗m over time for Xt = m, the
following proposition shows that Algorithm 1 can stabilize
the system under a certain condition.

Proposition 2: The system is stabilized, i.e., Xt is positive
recurrent, if the mean packet arrival rate satisfies the following
inequality:

λ < µ∗m = ζN, (50)

where ζ can be expressed as

ζ =

{
0.5896, L = 2,

0.7832, L = 3.
(51)
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Proof: Substituting (33) into (28), we can get µ∗m for all
m’s as

µ∗m = E[St|Xt = m] =

{
0.5896N, L = 2,

0.7832N, L = 3.
(52)

Thus, if λ < µ∗m, (20) holds, which completes the proof.
Let us consider the update equations given in lines 3 and

6, respectively. To realize Proposition 1, the BS should know
Xt = m every slot t and broadcast r∗m accordingly. However,
it is not possible for the BS to know the exact value of Xt

every slot t. Therefore, the BS estimates E[Xt] instead of Xt.
To this end, we make use of the algorithm proposed in [13].
Let us remind that I is the number of channels not used at slot
t. Let us denote E[Xt] for t = 1, 2, . . . , by β. The underlying
concept of the algorithm in [13] is to estimate E[Xt] based
on I. Let us denote by PR(k, `) = Pr[I = k,Xt = `] the
probability that the system has ` backlogged users at a slot,
say slot t, when k channels are idle. We use the same notation
given (12) in [13] as a reference. The main difference between
(12) in [13] and ours is to take into account the probability
φ that a backlogged user’s channel is up. The conditional
expectation of Xt given I = k is then expressed as

E[Xt|I = k] =

∑∞
`=0 `PR(k, `)∑∞
`=0 PR(k, `)

. (53)

The numerator and denominator of (53) are obtained in (54)
and (55), respectively, which are given on the top of the next
page. It is important to note that the number of backlogged
users is assumed to follow a Poisson distribution with mean
β (users/slot) in (54) and (55):

Pr[Xt−1 = `] =
β`

`!
e−β , (56)

which plays a role of the a priori probability distribution, i.e.,
belief on the state.

Furthermore, PI(k|m) in (54) and (55) denotes the proba-
bility that k channels are not used at all among a total of N
channels, when m backlogged users (re)transmit. In [13] it is
given by

PI(k|m) =

N−k∑
i=0

(
N

k

)
(−1)i

(
N − k
i

)(
1− k + i

N

)m
.

(57)

Now, it can read in (54) that when n out of ` backlogged
users’ SNR is good enough to (re)transmit, only m out of
them (re)transmit, but k channels are not used.

Substituting (54) and (55) into (53), we get the conditional
expectation of β given an observation I = k as

E[Xt|I = k] = β

[
1− φr + φr

(
1− k

N

)(
1− e−

φrβ
N

)−1]
.

(58)

Starting from the mean β of the a priori distribution in (56),
it is updated by (58) based on the observation on I. Indeed, it
is the mean of the a posteriori distribution.

If r takes a form of θN/β as in (33) and is substituted into
(58), we can write (58) as

E[Xt|I = k] = β +
θe−θN − θk

1− e−θ
. (59)

When we use θ =
√

2 for L = 2 and 1.7841 for L = 3 in
(34), (59) can be expressed as

E[Xt|I = k] =

{
β + (0.4543N − 1.8685k), L = 2,

β + (0.36N − 2.1442k), L = 3.
(60)

When β and k in (60) are replaced with X̃t and I, (60) can
be found in lines 3 and 6, respectively.

C. Delay Analysis

Let us examine the (approximate) average delay of the users
with the proposed algorithm when the system has Poisson
arrivals with mean rate λ (packets/slot). To do this, instead
of capturing the Markov process Xt in (12) with a discrete-
time Markov chain, we approximate it as a continuous-time
Markov chain, i.e., a simple M/M/1 queueing system. Without
loss of generality, when the packet arrival process follows a
Poisson process with mean rate λm at state m, the flow balance
equation for πm can be written as

λmπm = µ
(L)
m+1πm+1 ⇒ πm+1 =

λm

µ
(L)
m+1

πm, (61)

where the mean input rate to the system and the mean output
rate are considered. If the packet arrival process follows a
Poisson process with mean rate λ regardless of m, we have
λm = λ. For n ∈ Z+, in terms of π0, we can rearrange (61)
as

πn = π0

n−1∏
m=0

λm

µ
(L)
m+1

. (62)

Using
∑∞
n=0 πn = 1, we get π0 as

π0 =

(
1 +

∞∑
n=1

n−1∏
m=0

λm

µ
(L)
m+1

)−1
. (63)

Then, the system throughput can be obtained as

τ =

∞∑
m=0

µ(L)
m πm, (64)

where µ(L)
0 = 0. Based on (50), it can be seen that µ(L)

m =
µ∗m = ζN regardless of m. Therefore, we have τ = ζN .

Proposition 3: In the system with Poisson traffic with mean
rate λ (users/slot), the average RA delay with Algorithm 1 is
expressed as

d =
1

ζN − λ
+ 0.5, (65)

where 0.5 is added to account for the slot synchronization
delay of Poisson arrivals and ζ is given in (51).
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PR(k) =

∞∑
`=0

PR(k, `) =

∞∑
`=0

∑̀
n=0

n∑
m=0

PI(k|m)

(
n

m

)
rm(1− r)n−m

(
`

n

)
φn(1− φ)`−n Pr[Xt−1 = `]

=

∞∑
`=0

∑̀
n=0

n∑
m=0

N−k∑
i=0

[(
N

k

)
(−1)i

(
N − k
i

)(
1− k + i

N

)m](
n

m

)
rm(1− r)n−m

(
`

n

)
φn(1− φ)`−n

β`

`!
e−β

=

∞∑
`=0

N−k∑
i=0

∑̀
n=0

(
N

k

)
(−1)i

(
N − k
i

) n∑
m=0

(
n

m

)[(
1− k + i

N

)
r

]m
(1− r)n−m

(
`

n

)
φn(1− φ)`−n

β`

`!
e−β

=

∞∑
`=0

N−k∑
i=0

(
N

k

)
(−1)i

(
N − k
i

)∑̀
n=0

[
1− (k + i)r

N

]n(
`

n

)
φn(1− φ)`−n

β`

`!
e−β

=

∞∑
`=0

N−k∑
i=0

(
N

k

)
(−1)i

(
N − k
i

)[
1− (k + i)rφ

N

]`
β`

`!
e−β

=

N−k∑
i=0

(
N

k

)
(−1)i

(
N − k
i

)
e−

(k+i)φrβ
N =

(
N

k

)
e−

kφrβ
N

N−k∑
i=0

(
N − k
i

)(
−e−

φrβ
N

)i
=

(
N

k

)(
e−

φrβ
N

)k (
1− e−

φrβ
N

)N−k
. (54)

∞∑
`=0

`PR(k, `) =

∞∑
`=0

`
∑̀
n=0

n∑
m=0

N−k∑
i=0

[(
N

k

)
(−1)i

(
N − k
i

)(
1− k + i

N

)m](
n

m

)
rm(1− r)n−m

(
`

n

)
φn(1− φ)`−n

β`

`!
e−β

=

∞∑
`=0

`

N−k∑
i=0

∑̀
n=0

(
N

k

)
(−1)i

(
N − k
i

) n∑
m=0

(
n

m

)[(
1− k + i

N

)
r

]m
(1− r)n−m

(
`

n

)
φn(1− φ)`−n

β`

`!
e−β

=

∞∑
`=0

`

N−k∑
i=0

(
N

k

)
(−1)i

(
N − k
i

)∑̀
n=0

[
1− (k + i)r

N

]n(
`

n

)
φn(1− φ)`−n

β`

`!
e−β

=

N−k∑
i=0

(
N

k

)
(−1)i

(
N − k
i

)(
β − (k + i)φrβ

N

) ∞∑
`=0

[(
1− (k+i)φr

N

)
β
]`−1

(`− 1)!
e−β

=

(
N

k

)
e−

kφrβ
N

N−k∑
i=0

(
N − k
i

)(
−e−

φrβ
N

)i [ (N − kφr)β
N

− iφrβ

N

]

=

(
N

k

)
e−

kφrβ
N β

[
(N − kφr)

N

N−k∑
i=0

(
N − k
i

)(
−e−

φrβ
N

)i
−
N−k∑
i=0

(
N − k
i

)(
−e−

φrβ
N

)i iφr
N

]

=

(
N

k

)
e−

kφrβ
N

(
1− e−

φrβ
N

)N−k
β

[
(N − kφr)

N
+
φr

N
(N − k)

(
1− e−

φrβ
N

)−1
e−

φrβ
N

]
=

(
N

k

)
e−

kφrβ
N

(
1− e−

φrβ
N

)N−k
β

[
1− φr + φr

(
1− k

N

)(
1− e−

φrβ
N

)−1]
. (55)

Proof: Let us recall that when r∗m in (33) is used, we
have µm = µ∗m given in (50). When λm = λ, we can write
the system utilization ρ as

ρ =
λm
µm+1

=
λ

ζL
. (66)

For a stable system we should have ρ < 1, which means
λ < ζL. Under this condition, from (62) we get πn as

πn = (1− ρ)ρn. (67)

Let n and d denote the average number of backlogged UEs
and the mean access delay. Using (62), (63), and (66), we can
find n as

n =
ρ

1− ρ
=

λ

ζL− λ
. (68)

Using Little’s result, i.e., λd = n, we get (65).
It is important to note that the stability condition in (50),

the update equation in (60), and the average RA delay in (65)
are invariant of φ. It depends on only N and L.
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Fig. 2. Average RA delay of the system with L = 2.
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Fig. 3. Average power consumption per (re)transmission.

IV. NUMERICAL RESULTS

A simulation program is made with Matlab. The simulation
run length is set to 106 (slots) and we obtain the time-averaged
results. Let us recall that the channel fading dependant re-
ceived SNR variation is considered in each transmission slot
by taking the channel gain hi ∼ CN (0, 1) for each user.

Fig. 2 presents the average RA delay of the system with
φ = 0.6065 and two TRP levels, i.e., L = 2 by increasing the
number of independent channels N = 2 to 3. The solid and
dashed lines depict the analytical results for N = 2 and 3 in
(65), respectively, whereas symbols show the simulation re-
sults obtained with the proposed Algorithm. Good agreements
between the analytical and simulation results can be observed.
As proven in Proposition 2, it can be observed that the system
admits 0.5896 times as large the mean packet arrival rate by
employing each additional channel. It is also stable as long as
λ < µ∗m.

In Fig. 3 we compare the average power consumptions PL
for L = 2 and 3 for γ = 1, whereas the probability of no
transmission φ in (2) due to γi < τL is depicted as well.
On the horizontal axis, we apply the same threshold for no
transmission in (1) either L = 2 or 3. Thus, the probability
of no transmission remains the same for two and three TRP

0.6 0.8 1 1.2 1.4 1.6

0

20

40

60

80

100

EB EB

Fig. 4. Average RA delay of the system with N = 2.
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Fig. 5. The effect of α on the average RA delay with N = 2 and L = 3.

levels. It increases as the threshold gets higher, which lowers
the average transmission power. On the other hand, as far
as small-scale fading is concerned in (1), an increase in the
number of TRP levels reduces PL. In other words, coarse
granularity in TRP levels, say L = 2, can increase the average
power consumption compared to L = 3.

Fig.4 depicts the average RA delay as L increases. It can
be seen that RA delay is significantly improved by taking one
more TRP level, whereas PL is reduced in Fig. 3. Together
with the result in Fig. 4, we come to the conclusion that the
system with more TRP levels provides a shorter average delay
in a power-efficient way. In addition, the proposed algorithm
is compared with an exponential backoff (EB) algorithm that
is denoted by EB in Fig. 4. It works as follows: When a
user has a packet to send, he picks up a random integer in
an interval between 1 and Wmin and counts it down by one
every slot; Wmin is the minimum window size. If the counter
hits zero, he chooses one out of N channels at random and
sees whether the channel is up. If so, he transmits the packet.
Otherwise, he keeps doing this until transmitting the packet;
that is, at the next slot, he selects one channel at random
and looks for whether it is up. If his transmission fails, he
chooses an integer randomly between 1 and min(WR,Wmax),
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Fig. 6. Backlog tracking in the system with L = 3 and N = 2.

where R is the number of retransmissions, W is an increasing
factor, and Wmax is the maximum window size, respectively.
He adds it to Wmin and counts it down every slot for the next
retransmission. If this counter becomes zero again, he picks up
a channel at random and see whether it is up as before. In this
EB algorithm, the window size increases exponentially every
retransmission. We set Wmin = 4, W = 2, and Wmax = 1024,
i.e., binary EB (BEB) algorithm. It can be seen that the
RA delay of BEB algorithm is much larger than that of the
proposed algorithm, while the BS does not need to control. It
may be expected that W , Wmin, and Wmax might be optimized
given L, N , and λ to reduce the RA delay, which is beyond
our scope.

In Fig. 5, the effect of smoothing parameter α in line 1 of
Algorithm 1 is examined. We set N = 2, and L = 3. It is
notable that as α gets closer to 1, the system assumes that λt
vary slowly. It can be seen that the result with α = 0.99 is
better than others, which is the reason that we choose α =
0.99.

In practice, the traffic (particularly its mean) may change
hourly and daily in a periodic pattern [17]. To see whether the
proposed algorithm can adapt to such a time-varying traffic,
Fig. 6 presents how the proposed algorithm can keep track
of the actual number of backlogged users Xt in terms of X̃t.
We consider a Poisson process with time-varying mean λt
(packets/slot) in the simulation: λt = 0.3 cos(0.001t) + 1.25
in Fig. 6(a), which might be able to emulate the traffic
presented in [17]. The mean input rate of this time-varying
Poisson process varies from 0.95 (packets/slot) to 1.55. We
add an additional fast-varying component in Fig. 6(b); that
is, λt = 0.2 cos(0.001t) + 0.3 cos(0.05t) + 1.25. Note that
these two traffic models may capture some periodicity of some
IoT traffics. Even though time-varying Poisson processes are
applied, the proposed algorithm can keep track of the actual
number of backlogged users well. Although not shown here,
we have studied via simulations the effect of the frequency
in the cosine term, i.e., a · cos(2πft), to see how fast the
proposed Bayesian algorithm can track the actual backlog size.
We found out that the proposed algorithm could not work any
more when f ≥ 1. This is because, as the value of a becomes

high, λt fluctuates widely. However, the value of f influences
the algorithm more significantly.

V. CONCLUSION

This work has examined the stability of multichannel uplink
NOMA RA systems. It has been proven that without control-
ling (re)transmissions from the backlogged users, the system
always becomes unstable. In order to stabilize the system,
we have proposed online retransmission control algorithm
for the systems with two and three TRP levels, respectively,
and analyzed the mean RA delay of the proposed algorithm.
According to the proposed algorithm, the backlogged users
will not retransmit if their SNR is too low to be above some
threshold. Our analysis has provided an accurate performance
measurement on the mean RA delay as the number of channels
and that of TRP levels are raised and showed the invariance
of the performance with respect to the threshold of SNR. We
have demonstrated that the power consumption and RA delay
can be reduced by introducing finer granularity in TRP levels.

As future work, we are interested in characterizing the con-
vergence speed of the proposed algorithm explicitly. Further, it
would be interesting to study how the proposed retransmission
algorithm with channel inversion works under severe path
loss so that the impact of users’ location dependence can be
captured. It is also worthwhile to incorporate the proposed
algorithm into more advanced joint decoding techniques at
the physical layer.
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