
1

Networked Energy Cooperation in Dual Powered
Green Cellular Networks

Ashutosh Balakrishnan, Swades De, and Li-Chun Wang

Abstract—Designing solar-enabled and power grid connected,
‘dual-powered’, cellular networks is challenging due to the
double stochasticity arising from energy harvest and user traffic,
resulting in spatio-temporally varying traffic-energy imbalances.
Improper strategy to optimize the power grid connectivity results
in generation of significant carbon footprint. In this paper, we
present an analytical framework to mathematically capture the
traffic-energy imbalances in such a dual-powered network and
propose to improve the temporal network energy utilization
by exploiting these imbalances through a cooperative energy
sharing mechanism among the base stations (BSs), via the grid
infrastructure itself. The cooperative communication system is
designed and optimized independently from two perspectives,
namely, grid energy procurement and carbon emission mini-
mization (in carbon free ‘energy producer’ mode) and operator
revenue maximization (in ‘energy prosumer’ mode). The energy
producer mode involves the BSs, without the flexibility to procure
energy and acting as distributed energy source to the power
grid. The energy prosumer mode provides additional flexibility
of grid energy procurement to the BSs in addition to energy
sharing and selling. For a given capital expenditure (CAPEX),
both the optimization problems are reformulated into convex
quadratic problems and closed form expressions for the optimal
quanta of energies to be shared/procured through/from the grid
are obtained. The optimal CAPEX for the proposed modes of
network operation are obtained via linear revenue maximization
problem formulation. The results demonstrate that the proposed
cooperative energy framework significantly improves the tempo-
ral network energy utilization, thereby reducing the grid energy
procurement and providing significant revenue gains compared
to the state-of-art.

Index Terms—Dual powered base stations, traffic energy
imbalance, cooperative energy sharing, green communication,
carbon footprint, operator revenue

I. INTRODUCTION

THE Information and Communication Technology (ICT)
sector has witnessed rapid strides in the last few decades.

The advent of 5G and beyond communications (B5G) powered
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by the rise of the Internet of Things (IoT) is expected to in-
crease the quality of service (QoS) demands of the networked
user equipments (UEs) [2]. Wireless cellular networks are
equipped with energy intensive base stations (BSs) in order to
cater to the demands of the associated UEs. Conventionally
these BSs are powered through non-renewable energy sources
(such as, coal, diesel), which generate significant amounts
of carbon footprint. For instance, a standalone Marco BS is
estimated to consume about 1500 liters of diesel per month
[3], [4], which is equivalent to over 4 tonnes of carbon dioxide
(CO2) [5]. The US Energy Information Administration [5]
states that the CO2 emissions resulting from power generation
with coal as fuel is 1.002 tonnes per Wh. The surge on user
QoS due to B5G communications and IoT is expected to result
in a significant increase in BS deployment [6], leading to an
increased network energy consumption.

Powering the BSs through purely renewable energy sources
(such as, solar, wind, RF) [7]–[10] is an effective solution for
reducing the carbon footprint. However, these systems need
to be over-provisioned with capital expenditure (CAPEX) as
they are prone to be influenced by climate and are not cost
effective from the operator’s perspective [11]. In recent years,
there has been a major thrust on designing scalable networks,
to expand telcommunication to the farther rural areas. Accord-
ingly, revenue and cost incurred to the network operator have
become essential network parameters in addition to energy
efficiency. There is an urgent need for cost optimal and energy
efficient solutions, in order to ensure a global rollout of
the upcoming B5G communications. To this end, developing
renewable energy powered and power grid connected, ‘dual-
powered’ networks [12] have been of interest.

Designing dual-powered systems face double stochasticity
arising due to spatio-temporally varying energy harvest and
user traffic, leading to traffic-energy imbalances across the
network. These imbalances result in under-utilization of the
temporal network energy and degradation of network perfor-
mance in terms of user-service and operator revenue [13].
Furthermore, while dual-powered networks reduce operator
expenses due to the flexibility of grid energy procurement,
they generate significant amounts of carbon footprint. In a
recent paper [13], a cooperative coverage adjustment strategy
has been proposed to mitigate the effects of traffic-energy
imbalances. As a complementary contribution, in this work,
we present a cooperative energy sharing framework via the
grid infrastructure itself to exploit the imbalances without
the flexibility of BS coverage adjustment, to improve the
temporal network energy utilization. The system is designed
to achieve the significant benefit of cooperative networked
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operation on grid energy procurement and operator revenue. In
the upcoming subsections, we will discuss the related works,
contributions, and the organization of the paper.

A. Related works

Traditional strategies to reduce the network power con-
sumption have been optimal resource allocation [14], cell
zooming [15], and dynamic BS switching techniques [16].
Recently, the authors of [8] introduced an off-grid purely
solar-enabled BS framework for efficient energy allocation
to the BSs. In order to improve the profitability of off-grid
solar powered systems, dual-powered network frameworks
have been presented in [17]–[23].

The authors of [17] have presented a dual battery architec-
ture for profit driven user association, while the framework
in [18] has studied an energy model for green networks to
provide ancillary services to the grid. The authors of [19]
developed an energy efficiency optimization framework in
a two-tier network with hybrid powered BSs. The authors
of [20] considered a dual-powered framework without the
flexibility of inter-BS energy transfer; instead, it proposed to
procure energy in case the BS become energy deficient.

Energy sharing among dual-powered BSs has been explored
in [21]–[23]. In [21], the authors explored an online energy
cooperation framework based on Markov decision process
(MDP) to minimize the grid energy acquisition. Energy trans-
fer among the BSs was proposed using a mesh framework
of separate power lines between the BSs. The framework
presented in [22] improved from the framework in [21]
to estimate the optimum mesh connectivity of power lines
between individual BSs to facilitate energy exchange between
them. Recently, the authors of [23] have also studied energy
cooperation among hybrid powered BSs using the Lyapunov
optimization framework. The proposed energy sharing frame-
work in [23] is similar to [21], i.e., through a separate mesh
network of power lines.

The above studies [21]–[23] did not examine the effect
of Spatio-temporal traffic-energy imbalances on grid energy
procurement or operator revenues. We believe that it is crucial
to investigate and understand the effects of these imbalances
in a dual-powered cellular network to manifest useful en-
gineering insights. The frameworks in [21]–[23] have not
evaluated closed form expressions for the optimal amounts of
grid-energy procurement and the energy transferable to a BS.
Additionally, they did not focus on the specific cost aspects
of the network, for instance, these frameworks did not discuss
the optimal CAPEX required to design their network. We an-
ticipate that using separate power line infrastructure for energy
transfer (in addition to the existing power grid infrastructure)
will lead to practical challenges like distance dependent power
losses [24], and added CAPEX to the operator in laying and
maintenance of the power lines. The framework in [22] also
considers energy selling among the BSs as well as energy
selling between the BSs and the grid.

In contrast, we consider the BSs as a single entity, enabling
energy transfer among them via the grid infrastructure itself.
It is proposed that the price associated with such an energy
transfer be much lower than the prices of energy procure-

ment or selling and is to be borne by the operator for grid
maintenance. While the frameworks in [21]–[23] propose to
minimize the grid energy consumption, their frameworks still
rely on the power grid to ensure seamless operation. We argue
that as a carbon-aware alternative, the network can be designed
and operated in a carbon free ‘energy producer’ mode wherein
the BSs act as distributed energy producers to the power grid
and may not need to procure grid energy, thus leading to self-
sustainable green networks.

In [1], we explored the effect of traffic-energy imbalances
on operator revenue and grid consumption in a two-BS
scenario. In this paper, we extend the idea to a multi-BS dual-
powered scenario and present the following contributions.

B. Contributions

Key features and contributions of this work are as follows:
1) We present an analytical framework to mathematically

capture the traffic-energy imbalances in a dual-powered
cellular wireless network. Next, we apply this frame-
work to leverage its effects through cooperative energy
sharing, to improve the temporal network energy uti-
lization without compromising the quality of service.

2) We first analyze the optimal solar provisioning required
for the BSs in a non-networked, off-grid scenario. It
is obtained statistically using the Parzen-window kernel
density estimation technique, in accordance with the
energy harvest and traffic profile.

3) A networked energy sharing framework is designed and
optimized independently from two perspectives, namely,
carbon emission-centric and operator revenue-centric.
Carbon footprint reduction viewpoint aims at eliminat-
ing the need of grid energy procurement; the surplus
energy is sold to the power grid as ‘energy producer’.
The operator revenue (‘energy prosumer’) maximization
viewpoint involves the flexibility of energy procurement
from the power grid in addition to energy selling and
cooperative energy sharing.

4) Both the perspectives are mathematically formulated
as a convex optimization problem for a given CAPEX
and are independently optimized to estimate the optimal
values. Optimal CAPEX and operator net revenue are
calculated using a linear optimization framework for the
two proposed modes of network operation.

5) As demonstrated via simulations, the proposed coop-
erative energy framework significantly improves the
utilization of temporal network energy and reduces the
grid energy procurement, thereby providing significant
revenue gains compared to the state-of-art energy man-
agement frameworks.

C. Organization

The organization of this paper is as follows. Section II
introduces the system model of the framework. In Section III,
we compute the optimal CAPEX in a non-networked off-grid
scenario. In Section IV we invoke power grid connectivity and
propose the networked energy cooperation based framework.
Section V presents the results and inferences. Section VI
concludes the paper.
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(a) Proposed dual-powered multi BS system model
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Figure 1: Illustration of the proposed system model and net traffic profile.

II. SYSTEM MODEL

In this paper, we analyze the downlink of a dual-powered
wireless communication network, subjected to skewed user
traffic. Each BS is assumed to be equipped with a set of photo-
voltaic (PV) panels and battery storage of finite capacity.
It is assumed that each dual-powered BS is connected with
the power grid through an Operations and Energy Manage-
ment Center (OEMC), which is implemented by the network
operator at the core network as shown in Fig. 1(a). The
OEMC communicates with the BSs using high capacity wired
backhaul links. We consider a localized closed area A, having
U users following a homogeneous binomial point process of
density λu, such that the users can displace within the area
and not move out of it. Let the considered closed area A
be covered by B dual-powered BSs, having coverage radius
Rb ∀ b ∈ B. K-means clustering is used to compute the
optimal BS coordinates in the area A using the user location
coordinates. The downlink transmit power level of each BS
is constrained to be between 0 ≤ Pb(t) ≤ Pm ∀ b ∈ B. In
the upcoming subsections we will discuss the traffic profile,
energy harvest profile, and resource allocation in the system.

A. Traffic profile

Let the hourly varying net traffic intensity over the area
A under consideration be represented as ρ(t). This net traffic
profile shown in Fig. 1(b) has been taken from [25]. Further,
the BSs are considered to be subjected to skewed user traffic,
such that at any given hour of the day, any one BS is subjected
to user traffic of greater intensity than the others. Hence,
skewness in traffic refers to the degree of traffic inhomogeneity
subjected upon a BS relative to other BSs [13], [26], [27].
Let the user traffic experienced at each BS be represented as
ρb(t) ∀ b ∈ B, such that

∑B
b=1 ρb(t) = ρ(t). The skewed

traffic profile is mathematically modelled as,

ψb(t) =
eζb∑B
b=1 e

ζb
, s.t.,

B∑
b=1

ψb(t) =

B∑
b=1

eζb∑B
b=1 e

ζb
= 1.

(1)

Here, ζ represents the traffic-skewness intensity factor. Fur-
ther, the traffic experienced at each BS is computed as ρb(t) =
ψb(t)× ρ(t), with the number of active users associated with
the BS being Ub(t) = U × ρb(t). We illustrate the effect
of skewness factor ζ on the traffic experienced by the BSs
in Fig. 2(a). For simulation purposes, we consider that a
cluster of seven BSs covers the area under observation. In
Fig. 2(a) we vary ζ between [0, 3] and illustrate the variation
of skewed traffic experienced at each BS of the network. It
is notable that ζ = 0 corresponds to the homogeneous traffic
scenario wherein all the BSs experience equal average traffic.
Increasing ζ relates to increasing the traffic inhomogeneity in
the network. For instance, at an increased ζ = 3, we observe
that one BS experiences up to 95% of the net traffic at that
instant while the other BSs experience negligible traffic.

The concept of spatio-temporally varying traffic imbalances
is illustrated in Figs. 2(b) and 2(c). Fig. 2(b) depicts the
variation of skewed traffic upon the BSs at ζ = 0.3, while Fig.
2(c) showcases the variation of skewed traffic upon the BSs at
ζ = 1.2. In this paper, for numerical results and comparison
purposes, we consider the area A to be covered by seven
dual-powered BSs. The values of ζ considered along with the
corresponding fraction of traffic intensity experienced by the
BSs at any random hour are shown in Table I. To ensure that
all the BSs experience skewed traffic, we include all possible
permutations of these skewness levels in our analysis.

B. Energy harvesting profile

Each dual-powered BS is assumed to be equipped with
NPV PV panels and ηB batteries each having a capacity Bc,
for energy storage. Let, Hb(t) be the solar energy harvested
at BS b through the equipped PV panels. We have obtained
the annual hourly energy harvest data by a unit rated PV
panel from National Renewable Energy Laboratory [28]. This
energy is stored in the battery having a maximum storage
capacity βm = ηBBc. The battery also has a critical level
below which it will not discharge, which is represented as
βc = δηBBc. Here, δ represents the depth of discharge chosen
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Figure 2: (a) Variation of BS traffic intensity at any hour, (b) Spatio-temporal variation of skewness ζ = 0.3, (c) Spatio-temporal variation of skewness
ζ = 1.2.

Table I: Traffic skewness variation in BSs at any hour
ζ BS7(%) BS6(%) BS5(%) BS4(%) BS3(%) BS2(%) BS1(%)
0 14.28 14.28 14.28 14.28 14.28 14.28 14.28
0.3 29.53 21.88 16.20 12.00 08.89 06.59 04.88
0.7 50.71 25.18 12.50 06.21 03.08 01.53 0.76
0.9 59.45 24.17 09.82 03.99 01.62 0.66 0.26
1.2 69.89 21.05 06.34 01.90 0.57 0.17 0.05
1.5 77.68 17.33 03.86 0.86 0.19 0.04 9.5× 10−3

2.0 86.46 11.70 1.58 0.21 0.029 3.92× 10−3 5.31× 10−4

3.0 95.02 4.73 0.23 0.011 5.83× 10−4 2.96× 10−5 1.44× 10−6

0

βb′(t)

βc

βm

PV

Hb′(t) Eb′(t)

BSb′

Power

Battery storage

ES
b′(t)

Sb(t)

Gb(t)

Set of energy-sufficient
BSs

An energy-deficient
BS

BSb

panels

grid

Figure 3: Energy flow in proposed model.

by the mobile network operator. Depending on the hourly BS
energy consumption Eb(t) and the hourly BS solar harvest
Hb(t), the battery level at each BS b is computed as

β′b(t) = βb(t− 1) +Hb(t)− Eb(t)
βb(t) = min {max {β′b, βc} , βm} .

(2)

This energy flow in a dual-powered network is represented
in Fig. 3. Depending on the hourly battery level, a BS is
classified as energy deficient, or energy sufficient (indexed
by b′). A BS will be energy deficient if β′b(t) < βc. In this
case, the amount of deficient energy required at BS b to avoid
energy outage will be Db(t) := (βc − β′b(t)). In case a BS
is energy sufficient, i.e., β′b′(t) > βc, the amount of sharable
energy by BS b′ is then defined as ESb′(t) := (β′b′(t)− βc).

C. Resource allocation and power profile

It is assumed that all the BSs in the network get access
to the frequency spectrum depending on the fraction of

users associated with them. Let the total frequency resource
available be BW . Depending on the traffic load at each BS
ρb(t), frequency resource allocated to each BS b will be
BWb(t) = BW ×ρb(t). It is further assumed that each active
user u ∈ Ub associated with a BS b is allocated an equal
share of separate frequency resource, BWub(t) = BWb(t)/
Ub(t) ∀ b ∈ B. Thus, the data rate achievable by a BS b
to an associated active user u present at a distance dub will
be rub = BWub(t) log2 (1 + SNRub(t)). SNRub(t) represents
the signal-to-noise-ratio at user u when associated with BS b,
and is given as

SNRub(t) =
Pub(t)gub(t)

(BWub σ2) d2ub
. (3)

Here Pub(t) refers to the dynamic power allocated to user
u, gub(t) refers to the corresponding channel gain, and σ2

refers to the power spectral density (PSD) of the additive white
gaussian noise (AWGN).

Assuming that all the active users have the same quality of
service (QoS) mandates from their corresponding BS, the user
QoS requirements can be expressed as P (rub(t) ≥ r0) ≥ p0.
Here, r0 represents the user QoS rate guarantee and (1− p0)
represents the outage probability. Considering the channel to
be Rayleigh distributed and the corresponding channel gain
exponential distributed with unit mean, the power profile of a
BS b can be computed as

P

(
gub ≥

[
e(r0 ln 2/BWub) − 1

]
d2ub
(
BWub σ

2
)

Pub(t)

)
≥ p0

or, exp

(
−
[
e(r0 ln 2/BWub) − 1

]
d2ub
(
BWub σ

2
)

Pub(t)

)
≥ p0

(4)

which yields, Pub(t) ≥
[
e(r0 ln 2/BWub) − 1

]
d2ub
(
BWub σ

2
)

ln(1/p0)
.

(5)
Expression (5) represents the power required for a user u
as a function of its distance dub from the BS b. Since the
users are distributed following a binomial point process, the
user locations with the BS at the center follow exponential
distribution. The corresponding probability density function
(PDF) is given as fY (y) = 2πλuy e

−λuπy
2

[14]. Thus, the
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hourly average BS transmit power level is computed as

Pb =
∫ Rb

0

Pub(y)fY (y)dy

=

[
1− e(r0 ln 2 Ub/BWb)

]
σ2e−λuπR

2
bBWb

ln(p0) Ub

(
R2
b +

1

πλu

)
.

(6)

Proof. Please refer to Appendix A.

Depending on the computed dynamic hourly transmit power
level Pb(t), the net energy consumed by a BS b is computed
as

Eb(t) = NTRX(P0 + θPb(t)). (7)

Here, NTRX represents the number of transceivers in the BS,
P0 represents the static power consumed by the BS hardware,
and θ represents the slope of dynamic power consumption
[29]. The upcoming section presents the CAPEX computation
in a non-networked, off-grid scenario.

III. OPTIMAL CAPEX IN AN OFF-GRID
NON-NETWORKED SCENARIO

As a benchmark case, we compute the optimal number of
PV panels and storage batteries needed per BS, to make the
system sustainable and free from energy outages in a non-
networked scenario, where it is assumed that the BSs are
not connected to the power grid. In the subsequent sections,
we invoke the power grid connectivity when we discuss our
proposed cooperative energy sharing framework.

A. Probability density estimation

CAPEX refers to the cost borne by the mobile operator to
install the dual-powered network. It includes the cost involved
in equipping the BSs with PV panels and battery storage
capacity. In the current off-grid non-networked scenario, we
mathematically model the system using the traffic and energy
harvest profile. Since both traffic load and energy harvest
are random in nature, we first compute the difference energy
between the energy harvested and energy required to serve the
BS traffic load at each BS b ∈ B. This can be represented as

Db(t) = Hb(t)− Eb(t). (8)

This difference energy Db(t) represents a random variable
capturing the stochasticity of both energy harvest and traffic
load. The set of difference energies are stored in D =
{Db(t)} ∀ b ∈ B & ∀ t. The corresponding histogram plot of
D is captured and its PDF for various skewed traffic scenarios
is shown in Fig. 4. We observe that the PDF takes positive as
well as negative values of difference energy, Db(t). Clearly,
there is a finite probability of Db(t) to be positive (indicating
thatHb(t) ≥ Eb(t)), and likewise, Db(t) can also take negative
values (indicating that Eb(t) > Hb(t)).

To ensure a sustainable off-grid system without any energy
outage, the BS should be equipped with sufficient battery
storage such that, when Db(t) is negative, the BS gets the
corresponding supply from its battery storage and does not
go into outage.

We use kernel density estimation strategy with Gaussian
kernel to estimate the underlying data distribution. This tech-
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Figure 4: Variation of PDF with ζ.

nique is also called as Parzen-Rosenblatt window technique
[30]. The PDF estimate using Gaussian kernel Parzen window
is represented as a sum of Gaussians and is shown below.

f̂D(d0) =

∑|D|
j=1 F(d0 − dj , w)

|D|

=
1

|D|

|D|∑
j=1

1

(2πw2)
1/2

e−(d0−dj)
2/2w2

.

(9)

Here, |D| refers to the cardinality of set D, F refers to the
weighting function or kernel function used in the estimation
of density points, and w refers to the smoothing parameter or
bandwidth of the kernel, which is used to control the window
of observation samples for estimating the probability density
at a new point.

We use mean square error (MSE) to measure the perfor-
mance of the kernel based density estimation and to further
compute the optimal Gaussian kernel bandwidth w. It is
computed as shown below.

MSE(w) = E
[(
f̂D(d0)− fD(d)

)2]
. (10)

Here, fD(d) represents the true density function, while f̂D(d0)
represents the estimated density function. The optimal kernel
bandwidth is chosen by finding the argument that minimizes
the above defined MSE function. This is shown as

w∗ = argmin
w

MSE(w)

s.t. w ≥ 0.
(11)

B. Optimal CAPEX computation

To compute the optimal CAPEX in such an off-grid non-
networked scenario, we use the analytical expression of PDF
of the difference energy, obtained in the previous subsection.
It may be noted that the PDF represented in (9) accounts for
the daily fluctuations in solar energy harvest as well as the
load demand (shown in Fig. 4). The PDF effectively captures
the temporal stochasticity of difference energy arising due to
randomness in harvest energy and load demand profile. The
minimum number of solar panels to be provisioned with a BS
should satisfy E[Db(t)] ≥ 0, or E[Hb(t)] ≥ E[Eb(t)] in a long
run. For a system having PV panels of rating R kW and a
lifetime of LPV , the minimum number of PV panels to be
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provisioned with each BS for a duration of Y years will be

NO
PV ≥

E[D]
B×R

(
Y
LPV

)
. (12)

It is notable that, since we are statistically estimating the solar
provisioning based on the annual hourly solar irradiance data
obtained from [28], the number of PV panels is estimated such
that energy neutrality is maintained. Hence, the expectation of
the difference energy should remain positive.

Further, we observe that the difference energy can be both
positive as well as negative. While dimensioning the storage
capacity of a BS, it should be ensured that when the energy
harvest at any hour is less than the BS load (i.e., difference
energy is negative), the BS storage should ensure smooth
operation of the BS without energy outage. Thus, the battery
storage capacity C is defined as

C ≥
∫ 0

−∞
d0f̂D(d0)d(d0). (13)

Taking the battery depth of discharge δ into consideration,
the optimal number of storage batteries ηOB of capacity Bc,
having a lifetime LB to be equipped with each BS is computed
as

ηOB ≥
C

(1− δ)× Bc ×B

(
Y
LB

)
. (14)

The corresponding CAPEX incurred to the operator is com-
puted as

CAPEXO =
(
cPVNO

PV + cBη
O
B

)
B, (15)

where cPV and cB represent the cost of a unit rated PV panel
and battery respectively. The life expectancy of PV panels
is generally constant [31], whereas the life expectancy of a
battery is dependent on the number of charging-discharging
cycles and the depth of discharge set by the operator. Battery
lifetime LB is computed using the framework in [32], which
accounts for the number of charging-discharging cycles, op-
erating temperature Tc (in Celsius), and depth of discharge δ.
The dependence of battery cycles C, on Tc and δ is given as

C(δ, Tc) = C(δ)× (37.38× T−1.101c − 0.3897). (16)

Further, the battery lifetime LB is computed as

LB =
1∑C(δ)

k=1
1

C(δ,Tc)

. (17)

In the upcoming section we invoke the power grid connectivity
and observe the effect of networked operation on grid energy
procurement and operator revenue.

IV. GRID CONNECTED NETWORKED ENERGY
COOPERATION BASED FRAMEWORK

This section proposes analytical approaches to study power
grid connected energy cooperation in dual-powered networks.
It is assumed that the solar-enabled BSs have the flexibility
to procure or sell energy to the power grid, in addition to
cooperative transfer of energy among the networked BSs via
the grid infrastructure itself.

A. Grid energy procurement minimization

We begin the analysis of a networked dual-powered net-
work by formulating a grid energy procurement minimization
problem. For a given CAPEX, the OEMC classifies the BSs
at each hour into two disjoint sets as energy deficient or
energy sufficient, as discussed in Section II-B. Let I out of B
BSs be energy deficient at a given hour, and the remaining
J = (B − I) BSs be energy sufficient. For the I energy
deficient BSs, the net hourly deficit energy is

D(t) =
I∑
b=1

Db(t) =
I∑
b=1

(βc − β′b(t)) . (18)

For the remaining J energy sufficient BSs, the hourly net
sharable energy available in the network is

ES(t) =
J∑

b′=1

ESb′(t) =
J∑

b′=1

(βb′(t)− βc) . (19)

In the proposed energy sharing framework, an energy defi-
cient BS can meet its deficit energy requirement in two ways.
The energy deficient BS either receives the deficit energy
by cooperative energy transfer through the energy sufficient
BSs or by energy procurement through the power grid. We
define Sb(t) as the portion of deficit energy coming from
the J energy sufficient BSs to an energy deficient BS b and
Gb(t) = (Db(t)− Sb(t)) as the remaining portion of deficit
energy being procured from the power grid by the deficient
BS b.

We aim to minimize the grid procurement Gb(t) ≥ 0 at each
BS, i.e., min Gb(t). Since, Gb(t) = (Db(t)− Sb(t)), hence
min Gb(t) ≡ max Sb(t). Ideally for minimizing the grid
energy procurement, i.e., for achieving Gb(t) = 0, Sb(t) =
Db(t). Hence, from the network perspective,

I∑
b=1

Sb(t) = min

{
J∑

b′=1

ESb′(t),
I∑
b=1

Db(t)

}
(20)

and

0 ≤
I∑
b=1

Sb(t) ≤
I∑
b=1

Db(t). (21)

The corresponding grid energy minimization problem for-
mulation is defined as

P1 : max
Sb

I∑
b=1

Sb(t)

s.t. 0 ≤
I∑
b=1

Sb(t) ≤
I∑
b=1

Db(t)

I∑
b=1

Sb(t) = min

{
J∑

b′=1

ESb′(t),
I∑
b=1

Db(t)

}
.

(22)

The problem P1 is observed to be a single variable linear
optimization problem with affine and concave constraints.
However, it can be observed that the decision variable Sb(t)
vanishes on differentiation. Since we aim to find the optimal
amount of energies which can be shared (or procured) to (or
by) an energy deficit BS, i.e., we need to find the optimum
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value of Sb(t), P1 is reformulated as a quadratic convex
problem P2, shown below, in order to derive closed-form
results and make the problem mathematically tractable.

P2 :max
Sb

I∑
b=1

(Sb(t))2

s.t. C1 :

I∑
b=1

Sb(t) ≤
I∑
b=1

Db(t)

C2 :

I∑
b=1

Sb(t) = min

{
J∑

b′=1

ESb′(t),
I∑
b=1

Db(t)

}

C3 :

I∑
b=1

Sb(t) ≥ 0.

(23)

We observe that P2 is a purely convex optimization problem.
This is because the objective function is convex in nature,
constraints C1 and C3 are affine, while constraint C2 is
concave in nature.

Lemma 1. For a dual-powered network consisting of B BSs,
the minimum power grid energy procurement required by an
energy deficient BS b is

Gb(t) =


0, if

∑I
b=1Db(t) ≤

∑J
b′=1 ESb′(t)

Db(t)
(∑I

b=1Db(t)−
∑J

b′=1
ES
b′ (t)∑I

b=1Db(t)

)
,

if
∑J
b′=1 ESb′(t) <

∑I
b=1Db(t).

(24)

and the maximum energy that can be shared to a energy
deficient BS is given as

Sb(t) =


Db(t), if

∑I
b=1Db(t) ≤

∑J
b′=1 ESb′(t)(

Db(t)
∑J
b′=1 ESb′(t)

)
/
∑I
b=1Db(t),

if
∑J
b′=1 ESb′(t) <

∑I
b=1Db(t).

(25)

Proof. Please refer to Appendix B.

Expression (25) is the optimal solution of P2. From (24)
and (25) it can be inferred that there is no temporal grid energy
procurement, i.e., Gb(t) = 0, if

∑I
b=1Db(t) ≤

∑J
b′=1 ESb′(t).

Also in this case the net energy shared to an energy-deficit
BS equals the temporal deficit energy, i.e., Sb(t) = Db(t).
Further, for the scenario when

∑J
b′=1 ESb′(t) <

∑I
b=1Db(t),

it is inferred that the deficit BSs get proportional share of
energy as

∑J
b′=1 ESb′(t)/

∑I
b=1Db(t).

B. Operator revenue maximization

In this subsection, we carry forward our analysis of net-
worked dual-powered cellular BSs and formulate an analytical
framework to maximize the operator revenue. Before delin-
eating the analytical framework, we discuss the cost metrics
associated with the system design. These metrics are listed
below.

1) CAPEX: CAPEX involves the cost to be borne by
the mobile network operator in solar provisioning the
BSs. This is computed by taking into account the life
expectancy of the PV panels and storage batteries.
Considering a PV panel having a life expectancy LPV

and a storage battery having a life expectancy LB ,
CAPEX for Y years is computed as

CAPEX = B

(
cPVNPV
LPV

+
cBηB
LB

)
Y. (26)

2) Operational expenditure (OPEX): In a networked oper-
ation scenario, OPEX relates to the cost incurred by the
operator in procuring energy from the power grid and
in cooperatively sharing energy amongst the BSs using
the power grid infrastructure. They are defined below.

a) Energy sharing cost (Cshare): This cost can also
be perceived as a grid maintenance cost borne by
the operator. We use the optimum energy to be
shared by an energy sufficient BS (25) to compute
Cshare as defined below.

Cshare =
24∑
t=1

Csh ×
I∑
b=1

Sb(t). (27)

Here, Csh refers to the cost of sharing unit energy
by the sufficient BSs to deficit BSs, using the
power grid infrastructure. This expenditure is pro-
posed to be borne by the deficit BSs towards power
grid maintenance. It is proposed that Csh be less
than the cost of unit grid energy procurement and
the cost of selling unit energy back to the power
grid, in order to incentivize the power grid operator
for energy sharing rather than selling energy.

b) Grid energy procurement cost (Cbuy): It refers
to the cost incurred by the network operator in
procuring energy from the power grid. It is com-
puted as

Cbuy =

24∑
t=1

Cb ×
I∑
b=1

Gb(t). (28)

Here, Cb refers to the cost of procuring unit
energy from the power grid. Further, the net OPEX
incurred to the operator is given as

OPEX = Cbuy + Cshare. (29)

3) Revenue earned by selling energy (Rsell): This is de-
fined as the revenue earned by mobile operator through
selling energy back to the power grid. The amount of
energy that the operator can sell and earn revenue is
given as

J∑
b′=1

ERb′ (t) =
J∑

b′=1

ESb′ −
I∑
b=1

Db(t),

iff
J∑

b′=1

ESb′(t) >
I∑
b=1

Db(t).

(30)

Also we observe that,
I∑
b=1

Sb(t) = min

{
J∑

b′=1

ESb′(t),
I∑
b=1

Db(t)

}
.

Thus, for
∑J
b′=1 ESb′(t) >

∑I
b=1Db(t), the amount of
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energy to be sold can be expressed as,
J∑

b′=1

ERb′ (t) =
J∑

b′=1

ESb′(t)−
I∑
b=1

Sb(t). (31)

Hence, Rsell is mathematically computed as

Rsell =
24∑
t=1

Cse ×
J∑

b′=1

ERb′ (t)

=

24∑
t=1

Cse

(
J∑

b′=1

ESb′(t)−
I∑
b=1

Sb(t)

)
,

(32)

with Cse referring to the cost of selling unit energy back
to the power grid.

4) Revenue earned by serving users (Rserv): It refers
to the revenue earned by the mobile operator through
serving users. It is computed as

Rserv =
B∑
b=1

24∑
t=1

Cr × Ub(t). (33)

Here, Cr [33] refers to the per-day revenue earned by
the mobile operator by serving a user.

In accordance with the cost metrics discussed above, the
annual net revenue Ro earned by the mobile operator in a
dual-powered framework is computed as shown below.

Ro = Rserv +Rsell − Cshare − Cbuy − CAPEX. (34)

With Rserv being constant for a given skewness factor,
the revenue maximization problem at a given CAPEX can
be formulated as,

P3 : max
ER
b′ ,Sb,Gb

(
Cse

J∑
b′=1

ERb′ (t)− Csh
I∑
b=1

Sb(t)− Cb
I∑
b=1

Gb(t)

)

s.t. C1 :
I∑
b=1

Sb(t) ≤
I∑
b=1

Db(t)

C2 :
I∑
b=1

Sb(t) < min

{
J∑

b′=1

ESb′(t),
I∑
b=1

Db(t)

}

C3 :
I∑
b=1

Sb(t) ≥ 0

C4 :
I∑
b=1

Gb(t) =
I∑
b=1

Db(t)−
I∑
b=1

Sb(t)

C5 :
J∑

b′=1

ERb′ (t) =
J∑

b′=1

ESb′(t)−
I∑
b=1

Sb(t)

C6 :
J∑

b′=1

CseERb′ (t) ≥ 0.

(35)
We observe that the problem P3 has three decision variables,
ERb′ ,Sb,Gb. Also, we observe that constraint C1 ⊂ C2, thus
eliminating C1.

For
∑J
b=1 ESb (t) >

∑I
b=1Db(t), the amount of energy

which can be sold back to the grid can be expressed in terms of
Sb(t) through C5. Similarly, the network grid energy procure-
ment

∑I
b=1 Gb(t) can be expressed in terms of

∑I
b=1 Sb(t)

through C4. Therefore, we convert a three variable problem
P3 into a single variable problem P4 as

P4 : max
Sb

(
Cse

(
J∑
b=1

ESb −
I∑
b=1

Sb(t)

)
− Csh

I∑
b=1

Sb(t)

−Cb

(
I∑
b=1

Db(t)−
I∑
b=1

Sb(t)

))

= max
Sb

(
(Cb − Cse − Csh)

I∑
b=1

Sb(t) + Cse

J∑
b=1

ESb − Cb
I∑
b=1

Db(t)

)
.

(36)
Again, in order to derive closed form expressions and to

make the problem mathematically tractable, we revise the
problem formulated in (36) by squaring the terms. Also, since
this formulation is at a given hour t, we remove t from the
formulation. The revised convex problem formulation P5 is
shown below.

P5 :max
Sb

(Cb − Cse − Csh)2
I∑
b=1

(Sb)2 + C2
se

J∑
b=1

(
ESb
)2 − C2

b︸ ︷︷ ︸
constant, κ


s.t. C1 :

I∑
b=1

Sb < min

{
J∑
b=1

ESb ,
I∑
b=1

Db

}

C2 :

I∑
b=1

Sb ≥ 0.

(37)
P5 is a convex problem as the objective function is convex,

constraint C1 is concave, and constraint C2 is affine. The
second and third terms of the above objective function are
constant and independent of the decision variable Sb in an
hour t and hence are expressed as a constant κ.

Theorem 1. For a given CAPEX, the OPEX incurred in the
grid energy procurement minimization problem is identical
to the operator revenue maximization problem. That is, the
solution of P5 is

Sb(t) =


Db(t), if

∑I
b=1Db(t) ≤

∑J
b′=1 ESb′(t)(

Db(t)
∑J
b′=1 ESb′(t)

)
/
∑I
b=1Db(t),

if
∑J
b′=1 ESb′(t) <

∑I
b=1Db(t).

(38)

Proof. Please refer to Appendix C.

Thus, we show that for a given CAPEX, the OPEX involved
in the grid energy minimization and the operator revenue
maximization are identical, i.e., minimizing the grid energy
procurement is influenced by maximizing the energy sharing
among the networked BSs, thus reducing the operational
expenditure and hence maximizing the operator revenue.

In the upcoming subsection, we present a framework to
compute the optimal CAPEX along with the corresponding
operator revenue and propose two innovative strategies for
network operation.

C. Optimal CAPEX in networked scenario

We present a linear optimization based framework to com-
pute the optimal CAPEX and further the maximum revenue
achievable to a mobile network operator. The problem of
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computing the optimal CAPEX is decoupled into two sub-
problems, first computing the optimal OPEX (and hence the
corresponding operator revenue) for a given CAPEX (as per-
formed in Section IV-B), then computing the optimal CAPEX
based on the mode of network operation.

We first describe the two proposed modes of network
operation. These strategies have been devised from the en-
vironmental perspective of reducing the carbon footprint (en-
ergy producer mode) and from the operator’s perspective of
maximizing revenue (energy prosumer mode).

1) Energy producer mode

The proposed carbon free energy producer mode of network
operation involves the operator running the network such that
the networked BSs act as a distributed energy producer to the
power grid. In this mode of network operation, it is assumed
that the BSs, without the flexibility to procure energy from
the grid, can cooperatively share energy amongst each other
and/or sell energy back to the power grid. Thus, in this mode
while the BSs are connected to the power grid, they are
powered only through green solar energy harvested in their
battery storage.

2) Energy prosumer mode

The energy prosumer mode relates to the scenario wherein
the networked BSs being dual-powered act as both, energy
producers to the grid (i.e., sell energy to the grid) as well as
energy consumers (i.e., procure energy from the grid). In this
mode of network operation, the BSs in addition to energy
procurement and selling, also have the flexibility to share
energy amongst each other cooperatively.

Optimal CAPEX varies for both the proposed modes of
network operation. For the energy producer mode, optimal
CAPEX refers to the CAPEX at which the cellular network
can operate without any grid energy procurement. For the
energy prosumer mode, optimal CAPEX refers to the CAPEX
at which the operator can earn maximum revenue.

We observe that Rserv is constant for a given traffic
skewness and that energy selling (Rsell) and operational
expenditure costs (Cshare and Cbuy) are influenced by the
CAPEX, i.e., they depend on the battery storage and energy
harvesting capacity of the BS. In the previous subsections we
computed the optimal revenue Ro for a given CAPEX. The
problem now reduces to finding the optimal CAPEX at which
the operator will earn maximum revenue Ro. This problem
evolves as a linear optimization problem as shown below,

P6 : max Ro

s.t. C1 : CAPEX = B

(
cPVNPV
LPV

+
cBηB
LB

)
Y

C2 : NPV ≥ 0

C3 : ηB ≥ 0

C4 : CAPEX ≤ CAPEXO.

(39)

Thus, an exhaustive search based linear optimization is per-
formed in order to compute the optimal CAPEX depending
on the operator’s mode of operation. It may be noted that the
optimal CAPEX expression derived in Section III, denoted as

Table II: Parameter values used in simulations along with description
A 1 km2 Area under observation
B 7 Number of BSs considered
λu 3000 User density
Pm 40 W [29] Maximum BS downlink

transmit power level
Bc 2460 Wh [32] Battery capacity
δ 0.3 [32] Depth of discharge
BW 20 MHz [35] System bandwidth consid-

ered
σ2 −150 dBm/Hz

[37]
PSD of AWGN

r0 300×103 bps [35] User QoS
p0 0.9 [39] Non-outage probability
cPV 1300 USD [34] Cost of unit PV panel
cB 216 USD [36] Cost of unit storage battery
Csh 0.015 USD Price of sharing unit energy
Cb 0.079 USD [38] Price of purchasing unit en-

ergy from power grid
Cse 0.057 USD [40] Price of selling unit energy

CAPEXO, represents the upper limit of CAPEX which can
be provisioned at a BS. Hence, P6 is constrained by C4, thus
reducing the search space of the linear optimization problem.
The variation of operator revenue when the network operates
at the proposed modes will be discussed in Section V-C.

V. RESULTS

In this section we discuss the beneficial effects of cooper-
ative networked operation in dual-powered cellular networks.
We will discuss and compare the optimal CAPEX required to
design the system, the reduction in grid energy procurement,
and the operator revenue gains achieved through the proposed
modes of network operation, with the state of art. The simula-
tions have been performed in MATLAB 2020a. The parameter
values considered in the simulations is shown in Table II.

A. Optimal CAPEX

In this subsection we illustrate the computation of optimal
CAPEX in an off-grid non-networked scenario, and compare it
with the CAPEX incurred in the proposed networked modes of
operation. Through Fig. 5(a) we illustrate the Parzen window
density estimation technique employed to compute the optimal
CAPEX in an off-grid non networked scenario. Fig. 5(a)
shows the true and estimated cumulative probability function
(CDF) of the difference energy at ζ = 1.5. It can be observed
that the estimated CDF follows the true CDF very closely
and results in an RMSE of 1.0956×10−4 shown in Table III.
The values of optimal kernel bandwidth and the corresponding
RMSE values between the estimated and true CDF for various
skewed traffic scenarios are shown in Table III.

Through Fig. 5(b) we illustrate the variation of optimal
CAPEX with an increase in traffic inhomogeneity for various
modes of network operation. For the off-grid scenario, we
observe that the CAPEX increases with an increase in traffic
skewness up to ζ = 0.7, peaking at $83424. The CAPEX then
reduces and saturates at around $76072 with further increase
in traffic inhomogeneity. In contrast to the off-grid scenario,
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Table III: Variation of CAPEX estimation parameters with skewness
ζ 0 0.3 0.7 0.9 1.2 1.5
RMSE 1.2895× 10−4 1.2844× 10−4 1.2192× 10−4 1.661× 10−4 1.1408× 10−4 1.0956× 10−4

w∗ 7.0774 7.0916 7.1647 7.2036 7.2588 7.3037
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Figure 5: (a) Estimated and the true CDF, ζ = 1.5, (b) Variation of optimal CAPEX with ζ, (c) CAPEX saving in prosumer mode.

we observe that the proposed energy producer and energy
prosumer modes result in significant CAPEX saving to the
network operator. It is observed that, in the homogeneous
traffic condition (i.e., with ζ = 0) all the three modes of
network operation have equal CAPEX. Further, it is observed
from Fig. 5(c) that the prosumer mode results in a CAPEX
saving of about 60% over the off-grid mode of operation, and
a saving of about 50% over the energy producer mode.

The optimal CAPEX considered in the dual-powered with-
out energy sharing (WES) framework of [20] is constant.
It can be inferred from Fig. 5(c) that for the balanced
homogeneous traffic scenario, the prosumer mode achieves
negative CAPEX gain over [20]. But with increasing traffic
inhomogeneity, the prosumer mode offers significant CAPEX
saving, achieving up to 100% gain. The reduced CAPEX with
the networked modes of operation can be attributed to the
improvement in the utilization of temporal network energy
through the proposed cooperative energy sharing strategy
among the BSs. Specifically, the energy prosumer mode is
observed to incur lesser CAPEX to the operator than the
energy producer mode. This is due to the fact that the energy
producer mode being a carbon free mode of network operation
incurs extra CAPEX as discussed later in Section V-C.

Remark 1. Cooperative networked energy transfer among the
BSs significantly reduces the CAPEX incurred by the operator
over an off-grid non-networked scenario. The gain in CAPEX
saving with the prosumer mode, significantly increases with
increase in traffic heterogeneity.

Remark 2. The proposed energy prosumer mode results in
lower CAPEX over the proposed energy producer mode of
network operation.

B. Reduction in grid procurement

In this subsection we illustrate the reduction in grid energy
procurement achieved through the proposed prosumer mode of
cooperative energy sharing framework. It may be noted that

the proposed producer mode is already a carbon free mode
and hence has not been shown.

In Fig. 6(a), as a baseline comparison, we have compared
the grid energy procurement in the proposed prosumer mode
with a dual-powered WES based framework considered in
[20]. Additionally, to show the magnitude of reduction in car-
bon emissions, we also illustrate the grid energy procurement
in a fully grid-powered system [14]. It can be observed that the
prosumer mode of network operation results in a significantly
lower grid energy procurement as compared to [20] and [14].

Fig. 6(b) shows the average reduction in grid energy pro-
curement with increasing traffic inhomogeneity over [20]. We
observe that the homogeneous traffic condition (ζ = 0) does
not involve any reduction in grid energy. This is essentially
due to balanced loads on all the BSs in the network and
same energy harvest assumed on all the BSs. Further it is
observed that with increasing traffic skewness, the system is
able to reduce up to 62.07% of its grid energy procurement
(at ζ = 1.2). The average grid energy procurement reduction
is observed to decrease marginally after ζ = 1.2, saturating at
around 56%.

Remark 3. Cooperative energy transfer results in significant
reduction of grid energy procurement over a dual-powered
WES based framework.

Through Fig. 6(c), we illustrate the variation in grid energy
procurement with increasing CAPEX for various skewed
traffic scenarios. It may be noted that CAPEXO represents
the optimal CAPEX required in the off-grid non-networked
scenario, as discussed in Section III-B. We observe that when
the system is subjected to homogeneous traffic, then the
system is able to be carbon free only at full CAPEX (i.e.,
at CAPEXO). The reduction in grid energy procurement at
ζ = 0 is attributed to increasing CAPEXO, which eventually
results in lowering the grid energy procurement. On the
contrary, the proposed cooperative energy sharing framework
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Figure 6: (a) Comparison of grid energy procurement in various modes of network operation, (b) Average reduction in grid procurement with ζ over [20], (c)
Variation of grid reduction with CAPEX.

is advantageous with increasing traffic inhomogeneity. We
observe that subjecting the system to skewed traffic (ζ > 0)
results in achieving self sustainable networks at a significantly
lower CAPEX.

Remark 4. The proposed energy producer mode is expected to
achieve towards development of self sustainable dual-powered
cellular networks, at much lower CAPEX.

C. User QoS support and Operator revenue

In this subsection, we discuss the user QoS guarantee and
revenue aspects of the proposed energy sharing framework.
We compare the revenue results from the proposed framework
with those presented in [20] and [22]. We have used the dual-
powered WES framework considered in [20] as a baseline
to show the gain in revenue through intelligent cooperative
energy sharing among the BSs. It may be recalled that the
CAPEX incurred with the strategy in [20] has been computed
in Section V-A. Also, since the framework in [22] does not
discuss the CAPEX provisioning and has not computed the
optimal CAPEX required to design the dual-powered network,
for a fair comparison, we have used the optimal CAPEX
required in our framework to compare the optimal operator
revenue in our approach as well as in [22]. The cost incurred
to the operator in installation and maintenance of power lines
(for a typical 69 kV overhead transmission line) has been
taken from [41].

Fig. 7(a) represents the variation in user service revenue
earned by the mobile network operator with increasing traffic
inhomogeneity, through both the proposed energy producer
and energy prosumer mode. It has been computed using the
without coverage adjustment algorithm proposed in [13]. It
may be noted that the user service revenue is similar for
both the proposed modes of network operation and varies only
with traffic skewness. Through Fig. 7(a) we also illustrate the
variation of user service revenue with net user density in the
considered area A.

It can be observed that maximum user service revenue is
earned when the network is subjected to homogeneous traffic
and it decreases with increasing traffic inhomogeneity. User
QoS guarantee in the network is measured in terms of the
percent users unserved in the network. It can be observed

from Fig. 7(a) that for both λu = 2000 and λu = 3000, the
user QoS is satisfied only at ζ = 0, i.e., when the traffic
is homogeneous. We observe that user QoS decreases with
increase in traffic skewness and touches about 24% at λ =
2000 and 30% at λu = 3000.

Remark 5. The user QoS in the network decreases with
increasing traffic inhomogeneity and results in decreasing the
operator revenue earned from user service.

Through Fig. 7(b), we illustrate the gain in sellable energy
back to the power grid with varying levels of traffic inhomo-
geneity. It is observed that the proposed producer mode and
prosumer mode perform similarly at lower levels of skewed
traffic, with the proposed prosumer mode even bettering the
producer mode at moderate skewed traffic (−1.07% gain at
ζ = 0.3). At higher skewness levels, the producer mode
achieves significant gains over the producer mode, achieving
up to 88% gain at extreme skewness levels.

It is notable that the WES framework presented in [20]
does not deal with energy selling back to the grid. The
gain in energy sold back to the grid through the proposed
prosumer mode and producer mode of network operation
over the framework presented in [22] is shown in Fig. 7(b).
It can also be observed that while the proposed producer
mode consistently attains a higher gain in energy selling, the
gain in prosumer mode decreases sharply with the increase
in traffic inhomogeneity. This is because, at lower traffic
skewness the prosumer mode resorts to a higher energy selling
to maximize profit. With an increase in traffic skewness, as the
optimal CAPEX of the prosumer mode decreases, it resorts
to an increased energy sharing, so as to maintain the operator
revenue. The producer mode, on the other hand, consistently
sells a higher fraction of energy as it is provisioned with a
higher CAPEX.

The variation of net operator revenue and grid energy
procurement for ζ = 1.2 with increasing CAPEX is shown
in Fig. 7(c). We see that while the optimum operator revenue
is obtained at 0.6 CAPEXO, the system becomes carbon
free only at 0.8 CAPEXO. Thus some additional CAPEX
required must be provisioned with the BSs to make the system
carbon free and self sustainable. The optimum revenue that the
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Table IV: Revenue gain in the prosumer mode over the existing state of the art
ζ 0 0.3 0.7 1.2 1.5 2.5 3.0
Gain in prosumer over [20] 0.12% 32.26% 118.22% 100.72% 108.08% 42.03% 43.98%
Gain in prosumer over [22] 7.40% 8.92% 14.60% 5.28% 8.28% 7.38% 7.97%
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Figure 7: (a) User service revenue and QoS guarantee, (b) Gain in sellable energy, (c) Revenue and grid procurement variation at ζ = 1.2, (d) Optimum
operator revenue variation with ζ.

operator can earn in the dual-powered framework is termed
the prosumer mode of network operation. On the other hand,
the optimal CAPEX at which the system tends to be carbon
free is called the energy producer mode of network operation.

Remark 6. The energy producer mode incurs additional
CAPEX in order to make the system carbon free as compared
to the energy prosumer mode of network operation.

Finally through Fig. 7(d), we illustrate the optimum revenue
earned by the network operator through the proposed energy
cooperative modes of network operation, the WES framework
in [20], and an energy sharing framework in [22]. The
operator revenue earned in the WES framework is observed
to decrease with increasing traffic skewness. We observe that
the energy prosumer mode significantly outperforms all the
other frameworks, as shown in Table IV. It can be seen
that the energy prosumer mode performs similar to the WES
framework considered in [20] when subjected to homogeneous
traffic. The prosumer mode obtains significantly higher gains
with increasing traffic inhomogeneity and attains a gain up to
118.22% over [20] at ζ = 0.7.

Similarly, it can be observed that the proposed energy
prosumer mode consistently outperforms the energy sharing
based framework in [22]. The prosumer mode is observed to

attain a maximum gain of 14.6% at ζ = 0.7. The framework
in [22] is observed to perform poorly as compared to the pro-
posed energy producer mode of operation up to ζ = 1.2, but
it outperforms the energy producer mode at higher skewness
mainly due to the added CAPEX in the energy producer mode.

Remark 7. The energy prosumer mode of network operation
is able to efficiently exploit the traffic-energy imbalances in a
dual-powered network, resulting in significant revenue gains
with increase in traffic inhomogeneity.

Remark 8. The results demonstrate that in a dual-powered
cellular scenario, moderate traffic inhomogeneity can lead to
significant operator revenue gains compared to the homoge-
neous traffic case, but extreme traffic inhomogeneity results in
degrading the system’s performance.

VI. CONCLUSION

An analytical framework has been presented in this paper
to mathematically capture the traffic-energy imbalances in a
dual-powered cellular network. The framework has demon-
strated the benefits of exploiting these imbalances through a
cooperative energy sharing based mechanism. The proposed
networked energy sharing among the BSs has been facilitated
via the power grid infrastructure itself. The significant ben-
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efits of cooperative energy transfer have been demonstrated
by designing the dual-powered communication system from
two differentiating perspectives, namely, carbon emission or
grid energy procurement minimization and operator revenue
maximization. From the carbon emission perspective, a carbon
free energy producer mode of operation has been proposed,
wherein the BSs act as distributed energy source to the
power grid. From the operator revenue perspective, an energy
prosumer mode of operation has been proposed that involves
an additional flexibility of grid energy procurement.

Both these perspectives have been independently formu-
lated and optimized as convex problems. It has been observed
that for a given CAPEX, the OPEX incurred in both these
problems are identical. Optimal CAPEX and optimal revenue
earned by the operator from both the perspectives have
been computed using a linear optimization framework. The
results demonstrate that cooperative energy transfer among
the BSs is highly effective in reducing the CAPEX incurred
to the operator as compared to the benchmark off-grid non-
networked case. Further, the proposed energy prosumer mode
has been observed to provide significant revenue gains over the
other dual-powered frameworks. It is inferred that significant
revenue gains can be achieved at moderate skewness in
traffic, whereas extreme load skewness results in stretching the
limits of traffic-energy balancing, thus degrading the system
performance. It is expected that the proposed strategies will
be highly beneficial to the mobile network operator and
help in achieving green communication and lead towards the
development of self-sustainable cellular networks.

APPENDIX

A. Derivation of BS downlink transmit power

Proof.

Pb =
∫ Rb

0

Pub(y)fY (y)dy.

=

[
e(r0 ln 2 Ub/BWb) − 1

] (
BWb σ

2
)
2πλu

ln(1/p0) Ub

∫ Rb

0

(
y3e−λuπy

2
)
dy

(A1)

(a)
=

[
e(r0 ln 2 Ub/BWb) − 1

] (
BWb σ

2
)

ln(1/p0) Ub

[
−e−λuπt

(
t+

1

πλu

)]R2
b

0

=

[
1− e(r0 ln 2 Ub/BWb)

] (
BWb σ

2
)
e−λuπR

2
b

ln(p0) Ub

(
R2
b +

1

πλu

)
(A2)

where, in step (a) we use the substitution y2 = t.

B. Proof of Lemma 1

Proof. To solve problem P2, we define the Lagrangian of the
primal problem P2 as follows:

L(Sb, λ, µ, γ) =
I∑
b=1

(Sb(t))2 + λ

(
I∑
b=1

(Sb(t)−Db(t))

)

+ µ

(
I∑
b=1

Sb(t)−min

{
J∑

b′=1

ESb′(t),
I∑
b=1

Db(t)

})
− γ

(
I∑
b=1

Sb(t)

)
.

(B1)

Solving for ∂L(Sb, λ, µ, γ)/∂Sb = 0, we get

S∗b (t) =
(γ − λ− µ)

2
. (B2)

S∗b (t) represents the primal solution of problem P2. To
solve for the lagrange multipliers, we substitute the value of
S∗b (t) in L(Sb, λ, µ, γ), to obtain the dual function g(λ, µ, γ).
The dual function obtained after substituting the primal solu-
tion in the lagrangian is given below.

g(γ, λ, µ) =
(γ − λ− µ)2I

4
+
λ(γ − λ− µ)I

2
− λ

I∑
b=1

Db(t)

+
µ(γ − λ− µ)I

2
− µmin

{
J∑

b′=1

ESb′(t),
I∑
b=1

Db(t)

}

− γ(γ − λ− µ)I
2

=
−(γ − λ− µ)2I

4
− λ

I∑
b=1

Db(t)

− µmin

{
J∑

b′=1

ESb′(t),
I∑
b=1

Db(t)

}
.

(B3)
Solving the dual function for λ, i.e., ∂g(γ, λ, µ)/∂λ = 0,

we get

(γ − λ− µ)∗ =
2
∑I
b=1Db(t)
I

. (B4)

Substituting the derived dual solution, (γ − λ− µ)∗ in the
primal solution (B2) gives

S∗b (t) =
I∑
b=1

Db(t)/I. (B5)

Now, solving the dual function for γ, i.e., ∂g(γ, λ, µ)/∂γ =
0, we have

(γ − λ− µ)∗ = 0. (B6)

On substituting (B6) in (B2), we get S∗b (t) = 0.
Finally, solving the dual function for µ, i.e., ∂g(γ, λ, µ)/

∂µ = 0, we get

(γ − λ− µ) =
2min

{∑J
b′=1 ESb′(t),

∑I
b=1Db(t)

}
I

(B7)

which on substituting in (B2) gives

S∗b (t) =
min

{∑J
b′=1 ESb′(t),

∑I
b=1Db(t)

}
I

. (B8)

We observe that (B5) ⊂ (B8). Hence (B8) is the optimum
solution of the primal problem, P2. (B8) can also be expressed
as

S∗b (t) =

{∑I
b=1Db(t)/I, if

∑I
b=1Db(t) ≤

∑J
b′=1 ESb′(t)∑J

b′=1 ESb′(t)/I, if
∑I
b=1Db(t) >

∑J
b′=1 ESb′(t)

(B9)
From (B9) we observe that S∗b (t) =

∑I
b=1Db(t)/

I if
∑I
b=1Db(t) ≤

∑J
b′=1 ESb′(t). Intuitively, since we

wish to reduce the grid-energy procurement, S∗b (t) =

Db(t) if
∑I
b=1Db(t) ≤

∑J
b′=1 ESb′(t). Thus, we see that
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Sb(t) = Db(t) =
∑I
b=1Db(t)/I . Hence, for

∑I
b=1Db(t) >∑J

b′=1 ESb′(t), Sb(t) can be expressed as

Sb(t) =
Db(t)

∑J
b′=1 ESb′(t)∑I

b=1Db(t)
. (B10)

Thus, (B9) can be rewritten as

S∗b (t) =


Db(t), if

∑I
b=1Db(t) ≤

∑J
b′=1 ESb′(t)

Db(t)
∑J
b′=1 ESb′(t)/

∑I
b=1Db(t),

if
∑I
b=1Db(t) >

∑J
b′=1 ESb′(t)

(B11)

or,

S∗b (t) =
Db(t)min

{∑J
b′=1 ESb′(t),

∑I
b=1Db(t)

}
∑I
b=1Db(t)

. (B12)

The above equation (B12) represents the hourly optimal
value of energy to be shared from energy-sufficient BSs to a
deficient BS.

Since Gb(t) = Db(t)− Sb(t), from (B12) we get

G∗b (t) =


0, if

∑I
b=1Db(t) ≤

∑J
b′=1 ESb′(t)

Db(t)
(∑I

b=1Db(t)−
∑J

b′=1
ES
b′ (t)∑I

b=1Db(t)

)
,

if
∑J
b′=1 ESb′(t) <

∑I
b=1Db(t).

(B13)

C. Proof of Theorem 1

Proof. The Lagrangian corresponding to the above primal
problem is shown below.

L (Sb(t), γ, µ) =(Cb − Cse − Csh)2
I∑
b=1

(Sb)2 + κ− γ
I∑
b=1

Sb

+ µ

(
I∑
b=1

Sb −min

{
J∑

b′=1

ESb′ ,
I∑
b=1

Db

})
.

(C1)

Solving for ∂L (Sb(t), γ, µ) /∂Sb = 0 yields

S∗b =
(γ − µ)

2× (Cb − Cse − Csh)2
. (C2)

S∗b represents the primal solution of P5. We use the primal
solution in (C2) to obtain the dual, which is given as

g(γ, µ) =
I(γ − µ)2

4(Cb − Cse − Csh)2
+ κ+

(µγ − µ2)I

2(Cb − Cse − Csh)2

+
(µγ − γ2)I

2(Cb − Cse − Csh)2
− µmin

{
J∑

b′=1

ESb′ ,
I∑
b=1

Db

}
.

(C3)

Solving for ∂g(γ, µ)/∂γ = 0, we get

−I(γ − µ)
2(Cb − Cse − Csh)2

= 0. (C4)

This results in (γ − µ) = 0, or further S∗b = 0. Solving for

∂g(γ, µ)/∂µ = 0, we get

(γ − µ)I
2(Cb − Cse − Csh)2

−min

{
J∑

b′=1

ESb′ ,
I∑
b=1

Db

}
= 0

or, (γ − µ) =
min

{∑J
b′=1 ESb′ ,

∑I
b=1Db

}
× 2(Cb − Cse − Csh)2

I
(C5)

The expression (C5) represents the dual solution of P5.
Substituting (C5) in the primal solution (C2), we get

S∗b =
min

{∑J
b′=1 ESb′(t),

∑I
b=1Db(t)

}
I

or, S∗b (t) =


Db(t), if

∑I
b=1Db(t) ≤

∑J
b′=1 ESb′(t)(

Db(t)
∑J
b′=1 ESb′(t)

)
/
∑I
b=1Db(t),

if
∑J
b′=1 ESb′(t) <

∑I
b=1Db(t).

(C6)
From (25) and (C6), it can be observed that the optimal

energy shared (and the corresponding grid energy procure-
ment) to an energy-deficient BS in grid energy procurement
minimization strategy is the same as that in operator revenue
maximization strategy. Hence we prove that for a given
CAPEX, the OPEX incurred in both optimization problems
are identical.

REFERENCES

[1] A. Balakrishnan, S. De, and L.-C. Wang, “Energy Sharing based
Cooperative Dual-powered Green Cellular Networks,” in Proc. IEEE
GLOBECOM, Madrid, Spain, Dec. 2021, pp. 1–6.

[2] D. Wang, et al., “From IoT to 5G I-IoT: The Next Generation IoT-Based
Intelligent Algorithms and 5G Technologies,” IEEE Communications
Magazine, vol. 56, no. 10, pp. 114–120, 2018.

[3] M. A. Marsan, et al., “Towards Zero Grid Electricity Networking:
Powering BSs with Renewable Energy Sources,” in Proc. IEEE ICC
Wksp., Budapest, Hungary, June 2013.

[4] E. Oh, B. Krishnamachari, X. Liu, and Z. Niu, “Toward Dynamic
Energy-efficient Operation of Cellular Network Infrastructure,” IEEE
Commun. Mag., vol. 49, no. 6, pp. 56–61, 2011.

[5] “US Energy Information Administration (EIA), Car-
bon Dioxide Emission Coefficients.” [Online]. Available:
https://www.eia.gov/environment/

[6] J. G. Andrews, et al., “What Will 5G Be?” IEEE J. Sel. Areas Commun.,
vol. 32, no. 6, pp. 1065–1082, 2014.

[7] Y. Chen, et al., “Fundamental Trade-offs on Green Wireless Networks,”
IEEE Commun. Mag., vol. 49, no. 6, pp. 30–37, 2011.

[8] V. Chamola, et al., “Green Energy and Delay Aware Downlink Power
Control and User Association for Off-Grid Solar-Powered Base Sta-
tions,” IEEE Syst. J., vol. 12, no. 3, pp. 2622–2633, 2018.

[9] F. Zhou, et al., “Computation Rate Maximization in UAV-Enabled
Wireless-Powered Mobile-Edge Computing Systems,” IEEE J. Sel.
Areas Commun., vol. 36, no. 9, pp. 1927–1941, 2018.

[10] F. Zhou, et al., “Artificial Noise Aided Secure Cognitive Beamforming
for Cooperative MISO-NOMA using SWIPT,” IEEE J. Sel. Areas
Commun., vol. 36, no. 4, pp. 918–931, 2018.

[11] M. Meo, et al., “Dimensioning the power supply of a LTE macro BS
connected to a PV panel and the power grid,” in Proc. IEEE ICC, 2015,
pp. 178–184.

[12] D. Liu, et al., “Two-Dimensional Optimization on User Association and
Green Energy Allocation for HetNets with Hybrid Energy Sources,”
IEEE Trans. Commun., vol. 63, no. 11, pp. 4111–4124, 2015.

[13] A. Balakrishnan, S. De, and L.-C. Wang, “Network Operator Revenue
Maximization in Dual Powered Green Cellular Networks,” IEEE Trans.
Green Commun. Netw., vol. 5, no. 4, pp. 1791–1805, 2021.

[14] H. Jo, et al., “Heterogeneous Cellular Networks with Flexible Cell
Association: A Comprehensive Downlink SINR Analysis,” IEEE Trans.
Wireless Commun., vol. 11, no. 10, pp. 3484–3495, 2012.

[15] Z. Niu, et al., “Cell zooming for cost-efficient green cellular networks,”
IEEE Commun. Mag., vol. 48, no. 11, pp. 74–79, 2010.



15

[16] E. Oh, K. Son, and B. Krishnamachari, “Dynamic Base Station
Switching-On/Off Strategies for Green Cellular Networks,” IEEE Trans.
Wireless Commun., vol. 12, no. 5, pp. 2126–2136, 2013.

[17] X. Liu and N. Ansari, “Profit-Driven User Association and Smart Grid
Energy Transfer in Green Cellular Networks,” IEEE Trans. Veh. Tech.,
vol. 68, no. 10, pp. 10 111–10 120, 2019.

[18] H. Al Haj Hassan, et al., “A Novel Energy Model for Renewable Energy-
Enabled Cellular Networks Providing Ancillary Services to the Smart
Grid,” IEEE Trans. Green Commun. Netw., vol. 3, pp. 381–396, 2019.

[19] R. Ramamonjison and V. K. Bhargava, “Energy Allocation and Coop-
eration for Energy-Efficient Wireless Two-Tier Networks,” IEEE Trans.
Wireless Commun., vol. 15, no. 9, pp. 6434–6448, 2016.

[20] V. Chamola, et al., “Delay Aware Resource Management for Grid
Energy Savings in Green Cellular Base Stations with Hybrid Power
Supplies,” IEEE Trans. Commun., vol. 65, no. 3, pp. 1092–1104, 2017.

[21] Y. Chia, S. Sun, and R. Zhang, “Energy Cooperation in Cellular Net-
works with Renewable Powered Base Stations,” IEEE Trans. Wireless
Commun., vol. 13, no. 12, pp. 6996–7010, 2014.

[22] M. J. Farooq, et al., “A Hybrid Energy Sharing Framework for Green
Cellular Networks,” IEEE Trans. Commun., vol. 65, no. 2, pp. 918–934,
2017.

[23] H.-S. Lee and J.-W. Lee, “Adaptive Traffic Management and Energy
Cooperation in Renewable-Energy-Powered Cellular Networks,” IEEE
Sys. J., vol. 14, no. 1, pp. 132–143, 2020.

[24] A. Paudel, et al., “Peer-to-Peer Energy Trading in Smart Grid Consider-
ing Power Losses and Network Fees,” IEEE Trans. Smart Grid, vol. 11,
no. 6, pp. 4727–4737, 2020.

[25] Y. Zhang, et al., “An overview of Energy-efficient Base Station Man-
agement Techniques,” in Proc. IEEE TIWDC, 2013, pp. 1–6.

[26] A. Balakrishnan, S. De, and L.-C. Wang, “Traffic Skewness-aware
Performance Analysis of Dual-powered Green Cellular Networks,” in
Proc. IEEE GLOBECOM, Taipei, Taiwan, Dec. 2020, pp. 1–6.

[27] Y. Zhong, T. Q. S. Quek, and X. Ge, “Heterogeneous Cellular Networks
with Spatio-Temporal Traffic: Delay Analysis and Scheduling,” IEEE
J. Sel. Areas Commun., vol. 35, no. 6, pp. 1373–1386, 2017.

[28] System Advisor Model: National Renewable Energy Laboratory.
[Online]. Available: https://www.sam.nrel.gov

[29] G. Auer, et al., “How much energy is needed to run a Wireless
Network?” IEEE Wireless Commun., vol. 18, no. 5, pp. 40–49, 2011.

[30] N. Kwak and C.-H. Choi, “Input Feature Selection by Mutual Informa-
tion based on Parzen Window,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, no. 12, pp. 1667–1671, 2002.

[31] What will happen to solar panels after their useful lives are over?
[Online]. Available: https://www.greenbiz.com

[32] S. Suman and S. De, “Low Complexity Dimensioning of Sustainable
Solar-Enabled Systems: A Case of Base Station,” IEEE Trans. Sustain.
Comput., vol. 5, no. 3, pp. 438–454, 2020.

[33] Antennae Location Methodology for a Telecomm Operator in
India, IIM-B, Working paper no. 454. [Online]. Available:
https://www.iimb.ac.in

[34] Economic Times-Solar Panel Cost: Price range of different types of solar
panels and how much govt. subsidy you can avail for installing one.
May 2014. [Online]. Available: https://economictimes.indiatimes.com

[35] 3GPP: A Global Initiative. [Online]. Available:
https://www.3gpp.org/specifications

[36] Batteries for solar systems-Renewable Energy Batteries. [Online].
Available: https://www.thesolarbiz.com/batteries.html

[37] Technical Specification Group, Radio Access Network Meeting 99427.
[Online]. Available: https://www.3gpp.org/ftp

[38] True Cost of Providing Energy to Telecomm Towers in India. [Online].
Available: https://www.gsma.com

[39] A. Goldsmith, Wireless communications. Cambridge university press,
2005.

[40] Economic Times-Falling solar power cost lead to pricing disputes.
Nov. 2009. [Online]. Available: https://economictimes.indiatimes.com

[41] Power Grid International: Underground vs. Overhead, Power Line
Installation-Cost Comparison and Mitigation. [Online]. Available:
https://www.power-grid.com/

Ashutosh Balakrishnan (Graduate Student Mem-
ber, IEEE) received the Bachelor of Technology
(B. Tech.) degree with honors in electronics and
telecommunication engineering from National Insti-
tute of Technology Raipur, India, in 2019. He is
currently pursuing the Ph. D. degree from the Indian
Institute of Technology Delhi, New Delhi, India,
under IIT Delhi – NYCU Taiwan Joint Doctoral
Program. He is a current recipient of the presti-
gious Prime Minister’s Research Fellowship, Govt.
of India. His research interests include wireless

communication networks, energy harvesting, machine learning, optimization,
green communication, and cross-layer design.

Swades De (Senior Member, IEEE) received the
B.Tech. degree in Radiophysics and Electronics
from the University of Calcutta in 1993, the M.Tech.
degree in Optoelectronics and Optical Communica-
tion from IIT Delhi in 1998, and the Ph.D. degree
in Electrical Engineering from the State University
of New York at Buffalo in 2004.

Dr. De is currently a Professor with the Depart-
ment of Electrical Engineering, IIT Delhi. Before
moving to IIT Delhi in 2007, he was a Tenure-Track
Assistant Professor with the Department of ECE,

New Jersey Institute of Technology, Newark, NJ, USA, from 2004–2007.
He worked as an ERCIM Post-doctoral Researcher at ISTI-CNR, Pisa,
Italy (2004), and has nearly five years of industry experience in India on
telecom hardware and software development, from 1993–1997, 1999. His
research interests are broadly in communication networks, with emphasis
on performance modeling and analysis. Current directions include energy
harvesting wireless networks, broadband wireless access and routing, net-
work coexistence, smart grid networks, and IoT communications. Dr. De
currently serves as an Area Editor of IEEE COMMUNICATIONS LETTERS
and Elsevier Computer Communications, and an Associate Editor of IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY and IEEE WIRE-
LESS COMMUNICATIONS LETTERS.

Li-Chun Wang (Fellow, IEEE) received Ph. D.
degree from the Georgia Institute of Technology,
Atlanta, in 1996. From 1996 to 2000, he worked at
AT&T Laboratories, where he was a Senior Techni-
cal Staff Member in the Wireless Communications
Research Department. Since August 2000, he has
joined the Department of Electrical and Computer
Engineering at National Yang Ming Chiao Tung
University in Taiwan. He is now a Chair Professor
and is jointly appointed by the Department of Com-
puter Science and Information Engineering from the

same university.
Dr. Wang was elected to an IEEE Fellow in 2011 for his contributions

to cellular architecture and radio resource management in wireless networks.
He has won two Distinguished Research Awards from Taiwan’s Ministry of
Science and Technology (2012, 2017). He was the co-recipients of IEEE
Communications Society Asia-Pacific Board Best Award (2015), Y. Z. Hsu
Scientific Paper Award (2013), and IEEE Jack Neubauer Best Paper Award
(1997).

His recent research interests are in the areas of cross-layer optimization for
wireless systems, data-driven radio resource management, software-defined
heterogeneous mobile networks, big data analysis for industrial Internet of
things, and AI-enabled unmanned aerial vehicular (UAV) networks. He holds
26 US patents, and has published over 300 journal and conference papers, and
co-edited the book, “Key Technologies for 5G Wireless Systems,” (Cambridge
University Press 2017).


