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Local Reference Free In-Field Calibration of Low
Cost Air Pollution Monitoring Sensors
Sushmita Ghosh, Payali Das, Swades De, Shouri Chatterjee, and Marius Portmann

Abstract—The real-life deployments of air pollution monitoring
systems are sparse, due to large size, high cost, and high-
power consumption. Such sparsely deployed sensing stations are
unable to provide a fine granular pollution mapping of a given
geographical area. By deploying low cost, low power, miniature
air pollution monitoring sensor nodes, the air pollution map of
the whole area can be accurately measured. However, accuracy of
the sensed data of the low cost miniature sensing nodes (MSNs)
needs to be addressed. This paper presents an autocalibration
method of low cost MSNs, with the help of sparsely deployed
high cost sensing stations (HCSSs). The datasets from the HCSSs
are collected and used to calibrate the MSN using a suitable
learning-based regressor model at the nearby edge node. To this
end, this paper proposes a cross-correlation based method of
determining the optimum time to re-calibrate the low cost sensors
in a multi-sensing node. This method eliminates the requirement
of taking the MSNs offline to calibrate/re-calibrate them. To apply
the proposed autocalibration method, this paper additionally
presents the design of a low cost, low power particulate matter
(PM) sensor. To validate the performance of the low cost PM
sensor, the calibrated PM data are compared with the data
collected from a colocated commercially available PM sensor,
which is considered as reference. The low cost PM sensor is
91% more cost efficient and 57% more energy efficient compared
to the commercial high cost PM sensor, while maintaining the
sensing error within a given threshold.

Index Terms—Autocalibration, automatic recalibration, energy
efficiency, learning-based regressor model, low cost PM sensor

I. INTRODUCTION

The air pollution in cities, as well as villages, are increasing
day by day due to many reasons, such as increasing vehicles,
heavy industries, chemical factories, etc. [1]. To monitor the
air quality globally, a large number of air pollution monitoring
devices (APMDs) need to be deployed. Conventional good
quality sensors are costly, energy consuming, and bulky [2].
The pollution monitoring stations consist of multiple such
sensors to monitor multiple air pollutants in the environment.
Thus, massive deployment of such monitoring stations is
expensive which makes it difficult to scale up the deployment.
Large scale field deployed wireless miniature multi-sensing
nodes (MSNs) are expected to have limited energy availability
[3]. Since powering these field nodes using wired connectivity
is not always feasible, these nodes are primarily powered by
batteries. Hence, increasing the battery lifetime for uninter-
rupted sensing operation is very important [4], [5]. High power
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consuming sensors reduce the battery lifetime [6]. Therefore,
design of low cost, energy efficient, and portable pollution
monitoring sensors is necessary to deploy them massively for
fine-grained pollution localization and mapping [7].

An environmental pollution monitoring board consists of
multiple sensors to monitor the environmental parameters,
namely, PM1, PM2.5, PM10, CO, O3, NO2, SO2, temperature,
and humidity [8], [9]. Monitoring such parameters using low
cost miniature sensors reduces their sensing accuracy. There-
fore, the low cost MSN needs to be occasionally calibrated
with respect to some accurate reference sensors [10], [11].
However, due to the dynamics of pollution environment and
the ambient condition of the sensing module, the accuracy of
calibration models decreases with time. Moreover, the low cost
sensors may require recalibration more frequently compared to
the high cost sensors. Bringing them to the lab for recalibration
is expensive and difficult in practice. Deploying a reference
sensing node near to the MSN is even more expensive. Thus,
local reference free calibration models need to be developed
for effectively utilizing the low cost MSNs.

A. Related Works
Although scalable deployment of MSNs is feasible, their

sensing quality remains a major issue. To improve the sensing
quality, various calibration techniques are proposed in litera-
ture. The low cost sensors need to be calibrated with respect to
some highly accurate sensor that provides the reference data
and validates the calibration model.

Calibration of low cost temperature, humidity, CO, and
PM sensor was studied in [12], where four different types of
machine learning models, such as, multivariate linear regres-
sor, K-nearest neighbors, random forest, and support vector
regressor were used to calibrate the data collected from the
sensors. An accurate reference sensor was colocated with the
low cost sensor node to collect the true data and develop
the calibration model. The calibration model was used to
predict the actual data from the uncalibrated low cost sensor
data. The work in [13], developed a low cost sensor node
with LoRa-based connectivity to monitor CO, NO2, and PM
levels in the air. To increase the accuracy of these sensors,
a polynomial regressor-based calibration technique was also
used. It has been observed that the non-linear methods provide
better accuracy than the linear methods. The works in [14]–
[16] proposed sparse Bayesian learning and deep learning
models to calibrate the low cost sensors in a densely deployed
wireless sensor network.

The above studies are mainly based on the calibration of
low cost sensors. However, a few works have been dedicated
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to the design and implementation of low cost air pollution
monitoring sensors. The design of an indoor air quality mon-
itoring node was proposed in [17] that comprises of multiple
communication interfaces such as MODBUS, LoRa, Wi-fi, and
NB-IoT, to compare the performance of the communication
protocols in terms of packet loss and time delay. The IoT
node is able to sense temperature, humidity, dust, CO2, and
formaldehyde periodically. Similarly, a LoRa-based air pol-
lution monitoring system was proposed in [18] to monitor
CO, NO2, and SO2, where Raspberry Pi was used as a data
processor. The work in [19] proposed a portable air quality
monitoring system powered by a solar cell to monitor PM
levels and concentration of CO in the air. The work in [20]
proposed the design of a low power air quality monitoring
wearable sensor node to monitor temperature, humidity, CO,
NO2, O3, etc. All these works focused on the prototype
development of pollution monitoring sensors, however, they
did not focus on the calibration of these sensors.

B. Research Gap and Motivation

As discussed in Section I-A, the calibration methods pro-
posed in [12], [13] consider an accurate costly reference node
colocated with the low cost sensor node. In such methods,
reference sensors need to be deployed to collect actual data
at the time of calibration and recalibration to retrain the
models and validate the sensing accuracy. The studies in
[14]–[16] developed calibration models for densely deployed
wireless sensor networks, where all the sensors are low cost.
In such cases one sensor can be recalibrated from the other
spatially distributed sensors. Although the calibration methods
are reference free, the sensors need to be replaced when the
calibration errors of all the sensors exceed the threshold.

The work in [13] focused on the design of a low cost sensor
node. However, in case of field deployment, energy consump-
tion is one of the major concerns for uninterrupted sensing
operation, which was not focused. Hence, the above design
is not suitable for field deployment. The works presented in
[17]–[19], [21], have not focused on the calibration of low
cost sensors. The aim of deploying low cost sensor nodes is
to replace the need for high cost reference nodes and make the
deployment more cost effective without compromising on the
sensing quality. Though, a reference sensor can be used at the
initial deployment stage, in the long run the sensors accuracy
reduces due to aging, temperature, etc., and they need to be
re-calibrated after an undetermined period of calibration [10].
The existing works did not address recalibration of the sensors,
which is one of the most concerning factors in the deployment
scenario.

The conventional recalibration methods involve lab-based
calibration and field calibration. In lab-based calibration
method, the sensors are brought back to the lab to recompute
the calibration coefficients using an elaborate calibration setup
and then again deployed the sensors in the field [22]. In the
existing field calibration method [12], a reference sensor node
is colocated with the low cost sensor node in the field for
a certain duration to collect accurate data to retrain the cali-
bration model. The lab calibration method is highly expensive,

whereas, field calibration method requires a reference sensor to
be colocated manually at the time of recalibration. Thus, local
reference free calibration of the low cost miniature sensors and
automatic decision on recalibration are of interest. To this end,
an autocalibration method of MSNs with the help of sparsely
deployed high cost sensing stations (HCSSs) is presented in
this paper. Since recalibration of the MSNs are performed
automatically, without colocating any reference sensor, this
method is named as reference free autocalibration method. A
low cost and low power PM sensor is also developed to collect
uncalibrated data and apply the proposed calibration method.

It has been observed that the sensing parameters exhibit
cross-correlation at the intra-node level and also exhibit spa-
tial correlation at the inter-node level. Considering this as
the key point, this paper presents a method to detect the
dynamically varying optimum recalibration instants of the
low cost miniature sensors. The recalibration interval of the
sensors depends on the environmental conditions, sensing
quality, aging, etc., which is dynamic. Thus, instead of a
fixed period, re-calibrating the sensors dynamically based on
the requirement can provide more reliable data and also may
reduces the recalibration overhead.

C. Contributions

The key features and contributions of this paper are as
follows:

1) An autocalibration method of a low cost MSN is pro-
posed in this paper, where the sensors are calibrated us-
ing the data collected from the HCSSs that are deployed
in the region. The actual data of the MSN deployed
location are estimated from the HCSSs data at the base
station.

2) To enable automatic in-field recalibration, cross-
correlation among the multiple sensed parameter values
in the MSN is exploited in estimating the recalibration
timing of the multi-sensing node.

3) Various learning-based regression models are explored
to find an optimum regressor to calibrate the MSN. Next,
a Gaussian process regressor (GPR) based calibration
model is also proposed to calibrate the MSNs data, as
GPR outperforms the existing calibration models.

4) A low cost, low power PM sensor is developed to col-
lect real-time uncalibrated data and apply the proposed
autocalibration method. The developed PM sensor is
91% more cost efficient and 57% more energy efficient
compared to the commercially available high cost PM
sensor.

5) The accuracy of the calibrated PM data is validated by
comparing the calibrated MSNs data with the commer-
cial PM sensor, which shows that the sensing error lies
within the acceptable range.

Organization: Section II introduces the system model. Sec-
tion III explains the proposed autocalibration method, followed
by experimental setup for data collection in Section IV. The
results are discussed in Section V, followed by concluding
remarks in VI.
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Fig. 1: System model

II. SYSTEM MODEL

Consider a sparsely deployed sensor network consisting of
high cost and highly accurate air pollution monitoring sensor
nodes, as shown in Fig. 1. N1, N2, and N3 are the HCSSs de-
ployed at positions P1, P2, and P3, respectively. The distances
between the HCSSs are on the order of kilometers, using
which pollution localization and accurate pollution mapping
of the whole geographical area are not possible. Deployment
of such high cost pollution monitoring stations in a dense
manner is difficult to implement in practice. For fine granular
pollution mapping and pollution localization low cost MSNs
are developed. Such a low cost MSN N0 consisting of multiple
sensors is deployed at P0 in between the HCSSs. P1, P2, and
P3 are at a distance of h1, h2, and h3 from each other. P0 is at
a distance of d1, d2, and d3 from P1, P2, and P3, respectively.
All the nodes in the network are connected to a base station
to transmit the sensed parameter values. Since, the low cost
sensors of the MSNs are less accurate than the HCSSs, the
sensing parameters of MSN need to be calibrated/re-calibrated
at the edge node on-demand using the data collected from the
nearby HCSSs to obtain the accurate values.

III. PROPOSED LOCAL REFERENCE FREE RECALIBRATION

This section describes the proposed local reference free
autocalibration method of a MSN deployed in a sparse network
of HCSSs, as depicted in the system model in Fig. 1.

A. Local Reference Free Calibration Method

The traditional calibration methods consider that a reference
sensor is colocated with the MSN. In such cases the reference
sensor node is sufficient to calibrate the MSN. However, in
practice, MSNs are deployed to replace the HCSSs. If the
MSN is not collinear with the nearby HCSSs, minimum three
HCSSs are required to estimated the sensing parameter values
at the MSN deployed location. The deviation of the estimated
data from the actual data which can be called as estimation
error, increases with the increase in distances between the
MSN and HCSSs. However, as the pollution generated from
a source spread with time, the estimation error in the long
term averaged data should be comparatively low. Thus, the
estimated long term average data should be similar to the
actual data, or there must be a strong correlation between the
actual and estimated data, which can be used to predict the

Fig. 2: Estimate the sensing parameter values at point P0 using
section formula.

actual data from estimated data. As listed in Table I, Zn
p (i)

is the ith instantaneous value of the pth parameter at the nth

HCSS. The instantaneous samples of the sensing parameters
are collected at a high sampling rate that satisfies the Nyquist
criteria, to enable successful reconstruction of the original
signal at the edge node [5]. These instantaneous values of the
sensing parameters are denoted as short term data, whereas the
long term average is computed by averaging the instantaneous
values over a long period which is denoted as long term
averaged data. The optimum averaging period is decided by
minimizing the error between the long term averaged actual
data Z̄act

p and the long term averaged estimated data Z̄est
p .

To estimate the sensing parameters at P0, a virtual node N4

is placed at position P4, which is the intersecting point of the
two lines passing through (N0, N1) and (N2, N3). Knowing the
distance between the nodes, the sensing parameters are first
estimated at P4 using the section formula, as given in (1).
These estimated values at P4 are further used to estimate the
sensing parameters at P0, as given in (2). Thus, the estimated
long term averaged data at the point of interest are calculated
using (2).

Z̄4
p =

Z̄2
pd24 + Z̄3

pd43

d24 + d43
. (1)

Z̄est
p =

Z̄1
pd10 + Z̄4

pd04

d10 + d04
. (2)

Z̄est
p has a strong correlation with Z̄act

p , which provides
the actual data at P0. Let, F1 is the underlying estimation
function to calculate Z̄act

p from Z̄est
p , as expressed in (3),

and A = {A1, A2, · · · , Am} is the vector containing the
coefficients of the function. Let Z̄pred

p is calculated from the
long term averaged Z̄est

p using (3), which is similar to Z̄act
p .

The optimum coefficient values of the vector A should be
estimated to minimize the prediction error between Z̄pred

p and
Z̄act
p .

Z̄act
p ≈ Z̄pred

p = F1(A, Z̄est
p ). (3)

The optimum coefficient values of A = {A1, A2, · · · , Am}
are estimated using the least square regressor method by
minimizing the deviation between Z̄pred

p and Z̄act
p . The op-

timization function, defined in (4), finds a set of coefficients
of the vector A that minimizes the mean squared error between
Z̄pred
p and Z̄act

p .
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TABLE I: List of Symbols

Zn
p (i) ith instantaneous value of the pth parameter at the nth HCSS

Z̄n
p Long term average value of the pth parameter at the nth HCSS

Z̄est
p Long term average value of the pth parameter at position P0 estimated from the nearby HCSS

Zmsn
p (i) ith instantaneous value of the pth parameter collected from uncalibrated MSN N0

Z̄msn
p Long term average value of the pth parameter collected from uncalibrated MSN N0

Zact
p (i) ith instantaneous value of the pth parameter collected from high cost reference sensor N ′ deployed at location P0, which gives

the actual data
Z̄act
p Long term average value of the pth parameter collected from high cost reference sensor N ′ deployed at location P0

Z̄pred
p Long term average value of the pth parameter predicted from the estimated data at P0

Z̄cal
p Long term average value of the pth parameter calibrated from data collected from the MSN at P0

A∗ = min
A

{
1

K

K∑
k=1

(Z̄act
p (k)−F1(A, Z̄est

p (k)))2

}
. (4)

The predicted data can be used to calibrate the data collected
from the MSN N0 using (5). The input to the calibration model
is the long term average of uncalibrated MSN data Z̄msn

p

and the output is the predicted data Z̄pred
p , as given in (5).

The calibrated output is defined as Z̄cal
p . Once the calibration

function F2 is obtained from the long term average of Z̄msn
p

and Z̄pred
p , it can be used to calibrate the instantaneous values

of the MSN using (6).

Z̄act
p ≈ Z̄pred

p ≈ Z̄cal
p = F2(B, Z̄msn

p ). (5)

Zact
p (i) ≈ Zpred

p (i) ≈ Zcal
p (i) = F2(B, Zmsn

p (i)). (6)

Similar to (4), an optimization function is defined in (7) to
find the optimum coefficient values of B = {B1, B2, · · · , Bn},
by minimizing the mean squared error between Z̄cal

p and
Z̄pred
p , that subsequently minimizes the error between Z̄cal

p

and Z̄act
p , which is defined as the calibration error.

B∗ = min
B

{
1

K

K∑
k=1

(Z̄pred
p (k)−F2(B, Z̄msn

p (k)))2

}
. (7)

In (4) and (7), K is the total number of samples available
in the dataset to estimate the coefficients at the beginning.
Z̄act
p (k), Z̄est

p (k), and Z̄msn
p (k) are respectively the kth long

term averaged actual, estimated, and uncalibrated MSN data.
A reference sensor node N ′ at P0 is placed at the beginning

to collect actual data to find F1. It is assumed that the function
F1 is valid for position P0 and does not change with time.
Thus, the reference node at P0 is not required further to
calibrate and recalibrate the MSN node at P0. Hence this
method is reference free. However, to maintain the accuracy
of the proposed autocalibration model, the function F1 needs
to be redefined and its coefficients needs to be recomputed by
placing a reference sensor node at P0 during the recalibration
of HCSSs.

The proposed autocalibration method is applicable to any
WSN consisting of sparsely deployed HCSSs and low cost
MSNs, where the deployment location of a MSN should be
within the area covered by three or more nearby HCSSs.

B. Machine Learning-based Calibration Model
As discussed in Section III-A, suitable regressors have to be

chosen to find F1 and F2 that minimizes the prediction error
and the calibration error. Initially F1 is derived to predict the
actual dataset. Further, the predicted dataset is used to calibrate
the MSN using F2. However, the accuracy of the calibration
model decreases with time, which needs to be recalibrated
after a certain period by collecting data from the HCSSs.

Various machine learning models are available in literature
to calibrate the MSNs [23]. In order to find appropriate
functions F1 and F2, four different regressor models, namely,
multivariate linear regressor (MLR), Polynomial regressor,
Support Vector regressor (SVR), and Gaussian process re-
gressor (GPR) are used in this work. To find the estimation
function, the input and the target vectors of the regres-
sors are respectively Z̄est

p = {Z̄est
p (1), · · · , Z̄est

p (J)}T and
Z̄act

p = {Z̄act
p (1), · · · , Z̄act

p (J)}T , where J is the number
of training samples. Similarly, to find the calibration func-
tion, the input and the target vectors of all the regressors
are respectively Z̄msn

p = {Z̄msn
p (1), · · · , Z̄msn

p (J)}T and
Z̄pred

p = {Z̄pred
p (1), · · · , Z̄pred

p (J)}T .
The linear regressor model involves a linear combination

of the input variables. Since, the input is one-dimensional,
the output of the calibration model is expressed as, Z̄cal

p =
a0+a1Z̄

msn
p , where A = [a0, a1] ∈ R

1×2 [24]. While training
the model, the optimum values of a0 and a1 are estimated for
different combinations of Z̄pred

p and Z̄msn
p .

If the relation between Z̄msn
p and Z̄pred

p is non-linear,
the linear regressor can not provide the best fit. In such
cases, polynomial regressor model can be used to find the
underlying calibration function. The output is expressed as,
Z̄cal
p = a0 + a1Z̄

msn
p + a2(Z̄

msn
p )

2
+ · · · + aM (Z̄msn

p )
M ,

where A = [a0, a1, a2, · · · , aM ] ∈ R
1×M [24].

The linear and polynomial regressors try to find the un-
derlying function in its original domain, however, the data
may not be strongly correlated in its original domain. SVR
transforms the data to high-dimensional space by using ker-
nel functions and performs linear regression. Thus, Z̄msn

p is
transformed to ϕ(Z̄msn

p ) using the kernel functions, such as,
linear, polynomial, radial basis function, etc. and the output of
the calibration model is expressed as, Z̄cal

p = a0+a1ϕ(Z̄
msn
p ),

where A = [a0, a1] ∈ R
1×2 [24].

SVR considers a fixed parametric model of the data,
which may not be valid in case of non-stationary sens-
ing signals. In such cases GPR performs better than SVR,
polynomial, and linear regressor models [25]. To predict
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Fig. 3: Cross-correlation among the sensing parameters collected from high cost reference sensors.

Z̄pred
p from Z̄msn

p , GPR finds the underlying function F2 as,
Z̄pred
p (∗) ≈ Z̄cal

p (∗) = F2(Z̄
msn
p (∗)) = F2(∗), such that,

F2 ∼ N(0,KJ×J), where KJ×J is the covariance matrix
[25]. According to [26], [27], the mean and the covariance
functions of the GPR model are respectively

F2(∗) = K(Z̄msn
p , Z̄msn

p (∗))[K(Z̄msn
p , Z̄msn

p ) + σ2I]−1Z̄pred
p .
(8)

Cov(F2(∗)) = k(Z̄msn
p (∗), Z̄msn

p (∗)) +K(Z̄msn
p (∗), Z̄msn

p )

[K(Z̄msn
p , Z̄msn

p ) + σ2I]−1K(Z̄msn
p , Z̄msn

p (∗)). (9)

Using the proposed method, the MSN can be cali-
brated/recalibrated without the need of actual data collected
from the reference sensor at P0, as the data collected from
the HCSSs can predict the reference data at P0 using the
estimation function.

C. Automatic Recalibration of Low Cost Air Pollution Moni-
toring Sensors in MSN

The sensors are initially calibrated in the lab environment
before being deployed in the field. However, the sensing
accuracy decreases with time. In such cases, bringing them to
the lab for recalibration is not practically feasible always. The
low cost sensors need to be recalibrated more frequently than
the HCSSs. In such cases, recalibrating the low cost sensors
unnecessarily increases the overhead cost.

Consider that a MSN consists of multiple sensors for
monitoring various parameters in the environment. In this
work it is proposed to exploit the cross-correlation among
the parameters to find the optimum recalibration instants.
Under normal circumstances, cross-correlation between two
parameters could be strong or medium. Since the calibration

error is random and increases with time, the cross-correlation
decreases, which indicates the recalibration instants of the
corresponding sensors.

To explore the cross-correlation among the air pollution
monitoring parameters, datasets of ten monitoring stations
were collected from the website of [28]. Each dataset con-
tains eight parameters, namely, PM2.5, PM10, CO, O3, NO2,
SO2, temperature, humidity. Fig. 3 shows the cross-correlation
among the parameters for ten monitoring stations. Dataset id
in Fig. 3 denotes the index of each dataset, collected from
one monitoring station. In most cases, the cross-correlation is
above 0.4, however, in some cases it is above 0.5 and 0.7.
Thus, a suitable correlation threshold can be chosen from this
observation. If cross-correlation between any two parameters,
mentioned in Fig. 3 falls below the threshold, the correspond-
ing sensors need to be recalibrated. The recalibration instants
can be verified by collecting the data from the HCSSs. For the
system model in Fig. 1, the correlation between the estimated
and calibrated data is much higher than the correlation between
the estimated data and uncalibrated low cost sensor data.
As the sensing accuracy reduces with time, the correlation
coefficient also decreases, which indicates the recalibration
instants.

The multi-sensing nodes send data to edge node, where
the MSNs data are calibrated to find Zcal

p . Simultaneously,
the cross-correlation among the parameters are exploited at
the edge node. If the correlation coefficient between any two
parameters falls below a threshold, the edge node collects data
from the three HCSSs and compute the estimated data Zest

p

of those sensing parameters. If the correlation between the
Zcal
p and Zest

p also falls below a threshold, the edge node
retrains the calibration models by collecting recent samples
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Fig. 4: Prototype implementation of low cost PM sensor.

from the MSN and the HCSSs. The estimation of optimum
cross-correlation threshold is discussed in Section V-E.

It is notable that in the proposed reference free calibration
method the recalibration decision at the edge node is purely
based on the multiple sensed parameters at the MSN. The
remotely located HCSSs data are then collected by the nearby
edge node to which the MSN is connected and this dataset is
used to recompute the calibration coefficients of the MSN.

IV. EXPERIMENTAL SETUP FOR DATA COLLECTION

The proposed autocalibration method is applicable to any
low cost air pollution parameter, such as, PM, CO, O3, NO2,
SO2, etc. In this exercise, a low cost PM sensor is designed
to validate the efficacy of this method. Section IV-A and IV-B
explains the design and deployment of low cost PM sensor.

A. Design of Low Cost PM sensor

To validate the proposed autocalibration method, discussed
in Section III, a MSN consisting of a low cost PM sensor of
dimension 4.5 cm × 5.5 cm has been developed. According
to the design reference in [29], an optical particle counter
consists of a low cost light emitting source, such as LED, a
photodetector, a series of transimpedance amplifiers, and a fan.
The designed PM sensor is shown in Fig. 4, which is able to
monitor PM2.5 and PM10 in the air. The sensor is completely
covered by a black box with one side of the fan exposed to the
air such that no external light can enter inside the box. The fan
is placed in between the LED and photodetector in the board
to draw air from outside environment. The emitted light from
the LED passes through the PM contaminated air and falls
on the photodetector. Based on the incident intensity of the
light, the amplitude of the current through the photodetector
changes. The analog front end (AFE) of the sensor, shown in
Fig. 4, consists of a series of transimpedance amplifiers and
filters to amplify the current of the photodetector, convert it to
a voltage signal, and eliminate the high frequency noise of the
signal. The amplified and filtered voltage is finally measured at
the output. Based on the voltage level, the concentration of the
PM particles is calculated. An Arduino UNO board consists
of ATMEGA328P microcontroller is used to read the output
voltage of the PM sensor. The microcontroller is programmed

using Arduino integrated development environment (IDE) to
compute the concentration levels of PM2.5 and PM10 in µg/m3

from the voltage detected at the output of the PM sensor [29].

B. Deployment of Low Cost PM Sensor

The developed low cost miniature PM sensor has been
deployed in the campus of IIT Delhi. Along with the MSN,
a high cost OPC N3 PM sensor is also deployed to collect
accurate data initially to compare with the calibrated data and
validate the autocalibration method discussed in Section III.
Although OPC N3 does not perform like the HCSSs, it is
calibrated using a Beta attenuation monitor (BAM) to provide
accurate data [30]. PM2.5 and PM10 data are collected from
both the MSN and the OPC N3 PM sensor in October 2021 at
the campus of IIT Delhi. As shown in Fig. 5(a), the low cost
PM data are collected using Arduino board. The OPC N3 PM
sensor is also placed along with it. The MSN is surrounded
by three nearest air pollution monitoring stations deployed by
the central Pollution Control Board (CPCB), depicted in Fig.
5(b) [28]. Let N1, N2, and N3 be respectively the HCSSs
deployed at locations P1 (Sri Aurobindo Marg), P2 (R. K.
Puram), and P3 (Sirifort). They are 2 km away from the MSN
N0, deployed at location P0 (inside IIT Delhi).

The uncalibrated data collected by low cost MSN as well
as the calibrated data from the HCSSs are transmitted to the
edge node, where the calibration algorithm is implemented to
calibrate the MSN data. Since the calibration coefficients vary
with the dynamics of the environment, the calibration models
are retrained at the edge node after an optimal recalibration
interval (discussed in Section III-C) using the previously stored
data.

V. RESULTS AND DISCUSSIONS

As discussed in Section IV-A, a low cost PM sensor has
been developed based on the design circuitry provided in [29].
This sensor module has been used for studying our proposed
autocalibration method. It is intended to validate the accuracy
of low cost PM sensor such that the sensing error remains
with in an acceptable range.

A. Estimation of Actual Data Z̄act
p from Long Term Averaged

Estimated Data Z̄est
p

PM2.5 and PM10 data were collected inside the IIT Delhi
campus using both the low cost PM sensor and the OPC
N3 PM sensor, which are denoted respectively as N0 and
N ′. The HCSS datasets N1, N2, and N3 were collected
from the website of CPCB [28]. Before determining the
Nyquist criteria, the data are collected from the sensor at
a very high rate such as fs > 1 Hz, where fs is the rate
of oversampling. From the temporal samples, the maximum
frequency Fm of each parameter was computed such that
99% of the total energy of the signal is concentrated within
that frequency range. From the power spectral density (PSD),
the observed maximum frequency of PM2.5 and PM10 were
noted to be respectively 0.0062 Hz and 0.008 Hz. Thus, the
Nyquist sampling rate for PM2.5 and PM10 are respectively
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(a) (b)

Fig. 5: (a) Experimental setup for data collection; (b) high cost air pollution monitoring nodes deployed by CPCB [28].
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Fig. 6: Short term variation of (a) Estimated PM2.5 and actual PM2.5; (b) Estimated PM10 and actual PM10.

Fs = 2Fm = 0.0124 and Fs = 2Fm = 0.016, which gives a
sampling interval of Ts ≈ 80 sec for PM2.5 and Ts ≈ 62 sec
for PM10. As a little conservative measure, in our experiment
the sampling interval of the PM sensor was set as 60 sec for
collecting the instantaneous samples or the short term data
from both the low cost and the reference sensor.

After collecting the initial dataset, the long term averaged
values of PM2.5 and PM10 at P0 are estimated from the long
term averaged HCSS data using (1) and (2). Fig. 6 presents the
short term variation of estimated and actual data with time. It
can be observed that the estimated data are not able to provide
the local variations at P0, hence a sensor needs to be deployed
to monitor the local variations of the pollutants accurately
to provide the real-time data. However, the estimation error
reduces for the long term averaged data.

To find the estimation error, mean absolute error (MAE)
is considered as the performance metric. If Z̄est

p (j) and
Z̄act
p (j) are respectively the long term averaged jth samples

of the estimated dataset and the reference dataset for the pth

parameter, the MAE is given by

ee =
1

J

J∑
j=1

|(Z̄est
p (j)− Z̄act

p (j))|. (10)

To find the optimum averaging periods τPM2.5
and τPM10

for
PM2.5 and PM10, respectively, ee is computed using (10) with
varying τ . Fig. 7, presents the variation of ee with τ . The
optimum values are set as τPM2.5

= 11 hrs and τPM10
= 14

hrs.

The variations of the estimated and actual values of PM2.5

with 11 hrs moving average and PM10 with 14 hrs moving
average are respectively shown in Figs. 8(a) and 8(c). Although
Figs. 8(b) and 8(d) show that a linear relation exits between
the averaged estimated and actual data, four different types
of regressors, such as, linear regressor, polynomial regressor,
SVR, and GPR were used to predict the actual data from the
estimated data.

To analyze the accuracy of the predicted PM data, root
mean squared error (RMSE) is considered as the performance
metric. If Z̄pred

p (j) and Z̄act
p (j) are respectively the long term

averaged jth samples of the predicted dataset and the reference
dataset, the RMSE is given by

ep =

√√√√ 1

J

J∑
j=1

(Z̄pred
p (j)− Z̄act

p (j))2. (11)

A comparison of prediction error using different regressors is
listed in Table II. It can be observed that the RMSE values are
similar. According to [31], RMSE < 7 µg/m3 is acceptable for
PM parameters. Thus, all the regressor models are meeting the
accuracy of the data. However, linear regressor is the simplest
model with least computational overhead. Hence, a linear
function can be adopted to predict the actual data from the
estimated data such that Z̄pred

p = αZ̄est
p + β. By solving (4),

the optimum values of α and β are obtained as, α∗ = 0.598,
β∗ = −9.236 for PM2.5 and α∗ = 0.116, β∗ = 47.38 for
PM10. Variations of averaged estimated, actual, and predicted
values for PM2.5 and PM10 are shown in Fig. 9.
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Fig. 7: Variation of mean absolute error of (a) PM2.5, and (c) PM10 with averaging period.
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Fig. 8: Variation of long term averaged (a) PM2.5 and (c) PM10 with time, (b) Estimated PM2.5 versus actual PM2.5, and (d)
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Fig. 9: Comparison of the estimated, actual, and predicted long term average values of (a) PM2.5, and (b) PM10.

TABLE II: Comparison of error between predicted and actual data for different regressors

Regressor Linear Polynomial Support vector regressor Gaussian process regressor
Prediction error of PM2.5

(RMSE in µg/m3)
0.21 0.20 0.21 0.21

Prediction error of PM10

(RMSE in µg/m3)
0.44 0.43 0.44 0.42

TABLE III: Variation of prediction error with the area of
triangle

Area (km2) 3.675 18.253 36.412 44.159
Prediction error of PM10

(RMSE in µg/m3)
0.44 1.1 1.6 1.7

Prediction error of PM2.5

(RMSE in µg/m3)
0.21 0.51 1.2 1.4

B. Variation of Prediction Error with Distance of MSN from
HCSSs

The prediction error between the actual and predicted sig-
nals depends on the distance between the HCSSs and the
MSN. Considering three HCSSs at a time, the signal estima-
tion method is applied on multiple HCSSs deployed far from
the MSN to find an optimum area of the triangle to estimate the
actual signal. Table III shows that the error increases with the
increase in area of the triangle, i.e., when the chosen HCSSs

are more and more away from the MSN position. As the
predicted data is further used to calibrate the low cost MSNs,
the calibration error is higher than the prediction error. Thus,
considering the prediction error threshold in terms of RMSE as
1.6 µg/m3 [32], and the calibration error threshold as 7 µg/m3

[31], the reference HCSS locations chosen such that the area
of the triangle is below 36 km2. This observation of increased
prediction error as a function of HCSS distance highlights the
limit of the proposed local reference free calibration approach.

C. GPR based Calibration Model

A comparison of data collected from uncalibrated MSN and
the actual data for PM2.5 and PM10 is shown in Fig. 10. It
can be observed that the MSN over-estimates the data and
hence it needs to be calibrated to find the accurate values. As
discussed in Section I-A and III-B, various machine learning
models, such as, linear regressor [12], polynomial regressor
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Fig. 10: Long term average of the particulate matter (PM) data collected from the uncalibrated MSN and the high cost reference
sensing station installed in IIT Delhi campus.

TABLE IV: Comparison of sensing error between calibrated MSNs data and actual data

Regressor Linear [12] Polynomial [13] Support vector regressor [12] GPR (proposed)
Calibration error of PM2.5

(RMSE in µg/m3)
0.98 0.8 0.94 0.76

Calibration error of PM10

(RMSE in µg/m3)
1.14 1.10 1.18 1.04
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Fig. 11: Comparison of uncalibrated, actual, and calibrated sensor data: (a) Long term average values of PM2.5; (b) Instantaneous
values of PM2.5; (c) Variation of calibration error of PM2.5.

[13], SVR [12], are used to calibrate the low cost sensors data.
In this work, GPR based calibration model is proposed due to
its higher prediction accuracy compared to other regressors
[27].

The model is trained and tested using the long term averaged
values for both PM2.5 and PM10, where Z̄msn

p and Z̄act
p are

respectively the input and output of the model for the pth

parameter. Based on the training, once the expected accuracy
is achieved, the same calibration model is used to predict the
actual instantaneous values of PM data from the instantaneous
values of the uncalibrated low cost PM sensor.

To analyze the accuracy of the calibrated PM data, RMSE is
considered as the performance metric. If Zcal

p (j) and Zact
p (j)

are respectively the jth instantaneous values of the calibrated
dataset and the reference dataset, the RMSE is given by

ec =

√√√√ 1

J

J∑
j=1

(Zcal
p (j)− Zact

p (j))2. (12)

The error threshold is set as ethc = 7µg/m3 [31]. The ec values
for the calibration models with different regressors, computed
using (12), are listed in Table IV. The calibration error is
calculated from the instantaneous values of the actual and
calibrated dataset of PM2.5 and PM10. It can be observed that,
using all the regressors the error achieved is lower than the
threshold. Since GPR gives the minimum error, it is chosen
for calibrating the designed low cost PM sensor in this work.

Comparison of averaged actual PM data (collected from
OPC N3), uncalibrated low cost PM data, and the calibrated
PM data are shown in Fig. 11(a) and Fig. 12(a) for PM2.5 and
PM10, respectively. Once the calibration coefficients are esti-
mated, the same model is used to calibrate the instantaneous
values of PM2.5 and PM10. Fig. 11(b) and Fig. 12(b) presents
the short term variation of PM2.5 and PM10, respectively. It
can be observed that, the GPR based calibration model is able
to find the actual data from the uncalibrated MSNs data. Fig.
11(c) and Fig. 12(c) show the variation of calibration error
with time. The figures show that the error lies within the
threshold after calibration.

From Fig. 13 it is observed that the training and cross
validation errors of the calibration model are minimum if the
training length is around 45− 50 samples for both PM2.5 and
PM10. Thus, the prediction error is also minimum for this
range of training samples. Hence, the regressors are trained
using 45 samples of the long term averaged dataset.

D. Automatic Recalibration Performance

To validate the cross-correlation method for finding the op-
timum recalibration instants, as discussed in Section III-C, the
following approach in taken. A calibrated multisensing node is
used to capture the variation of environmental parameters, and
their cross-correlation values are computed. Along with this,
the cross-correlation of the sensed data from an uncalibrated
multisensing node is also computed. The two cross-correlation
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Fig. 12: Comparison of uncalibrated, actual, and calibrated sensor data: (a) Long term average values of PM10; (b) Instantaneous
values of PM10; (c) Variation of calibration error of PM10.
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Fig. 13: Variation of training and cross validation error of (a)
PM2.5, and (b) PM10 with number of training examples.

matrices are compared to make a decision on recalibration of
the uncalibrated node. The sensors include DHT11 to monitor
temperature and humidity, Alphasense OPC N3 PM sensor
to monitor PM2.5 and PM10, and Alphasense AFE A4 Gas
sensors to monitor CO, O3, NO2, SO2. Thus, six sensor
modules monitor eight parameters. Although 28 combinations
are created from eight parameters considering two at a time
to find the cross-correlation, it has been observed that only
few combinations exhibit average correlation coefficient above
0.5 with calibrated data. Hence, these are considered as
correlated, whereas the other combinations of parameters are
not correlated [33]. For the correlated parameters, Fig. 14
presents the variation of cross-correlation with time for both
the calibrated and uncalibrated data. It can be clearly observed
that the cross-correlation of uncalibrated data is lower than that
of the calibrated data. Thus, a cross-correlation threshold can
be set to find optimum time for recalibration.

The data collected from the old sensors over-estimates the
actual parameter values, as shown in Fig. 15. Hence the data
are calibrated using GPR models, where the input to the
regressor is the uncalibrated data and the output is the actual
data collected from the calibrated new sensors. Fig. 15 shows
that the old sensor data follows the actual data after calibration,
which validates the efficiency of the GPR based calibration
model.

E. Recalibration Overhead

In the presence of HCSSs, the MSN can be recalibrated
using the data collected from the cloud. In this case, the
calibration overhead is negligible as the sensors need not
be calibrated in the lab or no reference sensor need to be
colocated to collect actual data for recalibration. However, in
the absence of HCSSs, the MSN has to be recalibrated by colo-
cating a high cost sensor node consists of reference sensors.

The reference sensor node visits the deployed location, collects
sufficient samples to recalibrate the models, and transmits
them to the edge node, where the models are recalibrated. In
this case the calibration overhead in terms of cost or energy
is very large. Thus, estimating optimum recalibration instants
can reduce the overhead.

To validate the efficiency of the cross-correlation based
detection of optimum recalibration instants, three months data
have been collected from the uncalibrated MSN and the
calibrated high cost sensors. The PM and temperature data
collected from the low cost sensors have been calibrated using
the PM and temperature data collected from the high cost
sensors. The calibration error of the low cost sensors increases
with time. When the sensors give erroneous reading, it leads to
reduction in cross-correlation among the parameters. Consider
the example of temperature and PM2.5. They exhibit a good
correlation in the range of 0.5 − 0.6, when the sensors give
accurate measurements. However, Fig. 16a shows that the
correlation decreases with time, as the measurement error of
the sensors increases. Fig. 16a presents the variation of cross-
correlation between the calibrated absolute temperature (AT)
and PM2.5 data along with the calibration error of PM2.5 with
time. It can be observed that the calibration error increases
and cross-correlation decreases with time. Since the calibration
error is unknown in the absence of reference data, a suitable
cross-correlation threshold between AT and PM2.5 is set to
find the optimum recalibration instants. In case of periodic
recalibration, the calibration error in the data is exploited
and a suitable time is estimated beforehand to calibrate the
MSNs periodically. If the error threshold is set as 0.09, the
recalibration period is 15 days, as shown in Fig. 16a. Let
t be the overhead for one-time recalibration of the sensor
node. Thus, the total recalibration overhead in three months
for a fixed recalibration period is 6t. However, the sensing
signals vary dynamically, and hence the recalibration period
also varies dynamically. In Fig. 16a, it has been observed that
the cross-correlation is 0.57 when the calibration error of 0.09.
Thus, a cross-correlation threshold cth is set as 0.57 to find
the optimum recalibration instants, such that the calibration
error remains within the threshold.

Considering cth = 0.57, the calibration models are re-
trained with the recent samples when the cross-correlation
between the calibrated temperature and PM2.5 falls below
the threshold. Fig. 16b shows that the cross-correlation varies
dynamically. The models are retrained adaptively, which gives
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Fig. 14: Comparison of cross-correlation among the sensing parameters collected from calibrated and uncalibrated low cost
sensors.
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Fig. 15: GPR based calibration of the uncalibrated sensing parameters.
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TABLE V: Performance comparison

Performance parameters OPC N3 PM sen-
sor [30]

low cost PM sensor

Energy consumption of
PM sensor per hour (J)

1773 749

Sensing error (RMSE in
µg/m3)

reference 0.76 for PM2.5 and
1.04 for PM10

Cost of PM sensor
(USD)

427.25 36.50

a total recalibration overhead of 4t in three months. Thus,
the recalibration overhead is reduced by ( 6t−4t

6t ) × 100% =
33.33%. In this analysis, the low calibration error threshold is
chosen to estimate the overhead from the limited number of
samples. However, the recalibration interval increases if the
error threshold is increased.

F. Energy Saving Performance

The energy consumption of the designed low cost PM sensor
is compared with that of the reference OPC N3 PM sensor.
This section presents the performance comparison of the low
cost PM sensor and the proposed autocalibration model with
the reference PM sensor.

As discussed in Section V-C, RMSE = 7 µg/m3 is taken
as the error threshold [31]. It has been observed that the error
between the sensed low cost PM data and reference PM data
is higher than the threshold. However, after calibration, the
error between the calibrated PM data and the reference data
reduces and lies below the tolerance threshold.

From the experimental results it has been observed that the
OPC N3 PM sensor draws 187 mA of current during turn ON
period and 55 mA of current while sensing. The turn on period
is 28 sec. The operating voltage of the sensor is 5 V. On the
other hand, the proposed on-board PM sensor consumes only
84 mA current during both turn ON and sensing period, and
the turn ON period is only 5 sec. The energy efficiency of the
low cost PM sensor is calculated as:

Energy saved =

[
Eh − El

Eh

]
× 100%. (13)

In (13), Eh and El are the total energy consumed in one
hour by the OPC N3 and low cost PM sensors, respectively.
As listed in Table V, the cost of on-board PM sensor is
91% less compared with the reference high cost PM sensor.
Moreover, the proposed low cost PM sensor saves up to
57% energy compared to the OPC N3 PM sensor, while
maintaining sensing error of 0.76 and 1.04 for PM2.5 and
PM10, respectively, after applying the proposed local reference
free calibration model.

VI. CONCLUDING REMARKS

The proposed local reference free in-field calibration
method can be used in a sparsely deployed sensing stations
for accurate pollution mapping. The MSNs can be calibrated
and recalibrated without colocating any high cost reference
sensor. The proposed cross-correlation based method of es-
timating the optimum recalibration instants performs well
in reducing the recalibration overhead significantly. As an

implementation-based low cost sensor calibration verification
exercise, prototype design of a low cost, low power PM sensor
and its implementation has also been presented. The low
cost PM sensor is 91% more cost efficient and 57% more
energy efficient compared to the OPC N3 PM sensor while
maintaining sensing error within RMSE = 0.76 for PM2.5 and
RMSE = 1.04 for PM10. The GPR based calibration models
perform well in calibrating the PM data. Although the sensed
PM data over-estimates the actual PM data, the accuracy
increases after calibration. Acceptable range of calibration
error validates the efficiency of the proposed autocalibration
method and the accuracy of the design.
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