
1

A Novel Learning-based Estimation Scheme for
Communication over Impulsive Noise Channels

Akash Kumar Mandal and Swades De

Abstract—This paper proposes a novel statistical hybrid neural
network (S-HNN) based estimation of impulse noise infested
wireless communication channels. Spatial fading characteristics
are found using a convolutional neural network (CNN), while
long short-term memory (LSTM) network extracts temporal
information over subsequent time horizons. Finite lag samples
are employed to extract the channel gain distribution based on
multiple recycling of the CNN-LSTM network. The proposed S-
HNN framework for orthogonal frequency division multiplexed
(OFDM) communication channel with subcarrier spacing of 15
kHz, sampling rate of 15.36 MHz, IFFT size of 1024, and various
pilot density deployments is shown to outperform the existing
state-of-the-art channel estimation techniques in terms of 50%
reduced training length and nearly 49% saving in training time.

Index Terms—Impulse noise, smart grid communication, sta-
tistical hybrid neural network, wireless channel estimation

I. INTRODUCTION

With growing wireless infrastructure in system monitoring,
control, and automation, impulse noise scenarios have become
prevalent in communication setups. Such noise may originate
from power lines, motors, high intensity lightning, pulse-type
radars, etc. [1]. One such scenario that has gained significance
is smart grid monitoring. Due to increased disturbances in the
power grids, real-time monitoring of system parameters has
gained importance for ensuring reliable operation [2]. Orthog-
onal frequency division multiplexing (OFDM) provides some
robustness against such impulsivity by spreading the noise
power over multiple subcarriers. However, its performance
degrades sharply when the power or degree of impulsiveness in
the noise exceeds a certain threshold [3]. The existing channel
estimators are not adaptive to the spatio-temporal dynamics of
the impulsive noise environment, and hence are not robust.

A. Literature Review and Motivation

The channel estimation techniques in literature use either
mathematical analysis of wireless channel or learning methods
for finding the channel coefficients. In the first bracket, least
square (LS) and minimum mean square error (MMSE) are
the two typical pilot-based methods. LS assumes no addi-
tional channel information and provides a simple structure
for channel estimation, however with an inferior performance
compared to MMSE based measure [4]. The MMSE based
estimator uses second order statistics for channel estimation at
the cost of complex matrix operations. In [5], a closed-form
of impulsive noise channel model is obtained, but it does not
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provide a channel estimation approach in dynamic impulsive
noise environments.

The shortcomings of conventional MMSE were addressed in
data-driven MMSE estimators in [6] and using an implemen-
tation of LS in obtaining sampled covariance matrix to reduce
processing order in [7]. The study in [8] solved the problem of
pilot contamination using large number of antennas. Though a
decent reliability is assured using such advances in statistical
channel estimation, all these methods assume some prior
channel knowledge. Such assumptions are hard to meet in
practical deployment scenarios. Moreover, the information of
noise statistics become scarce as the noise becomes impulsive,
which is the case in smart grid communication.

Learning-based estimators relax prior statistical information,
thereby gaining widespread popularity. An implementation
of convolutional neural network (CNN) and long short term
memory (LSTM) based bi-stage offline-online training for
extracting channel information is demonstrated in [9], while a
multi-layer perceptron based channel estimation is suggested
in [10]. However, these techniques suffer from model reliabil-
ity and implementation complexity. The work in [11] alleviates
this issue by using spatial-frequency-temporal CNN for chan-
nel estimation, by exploiting correlation among these three
aspects of the channel, thus improving estimation accuracy.

However, as prevalent in power grid environments, owing to
the dynamic nature of source generation rate, source lifetime,
impulse generation rate, impulse duration, and noise floor
level in impulse noises, the existing techniques are inadequate
to deal with impulse noise, which can significantly affect
the performance optimization of such communication systems
[12]. The modified convolutional blind denoising network
(CBDNet) can tackle conventional communication noise by
adjusting its level map [13]. But, its performance degrades
when the noise dynamics are impulsive [14]. Moreover, the
use of high dimensional dataset renders such implementations
unsuitable to the dynamics presented by impulse noise [15].

As noted above, statistical estimators either under-perform
or require complex computation with prior channel knowledge.
In contrast, learning based estimators ignore the domain in-
formation, resulting in unstable performance and high training
costs, especially in highly dynamic conditions. The study
in [16] considered a mix of MMSE based measure along
with learning based channel estimation in a knowledge-driven
machine learning (KDML) framework. However, its inability
in capturing spatial information in the channel coefficients
makes the performance inadequate in impulse noise scenarios.

We note that, on one hand, the dynamic nature of impulsive
noise channel does not allow tractable and accurate channel
characterization through the standard analytical approach of
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Figure 1: Impulse noise infested smart grid wireless communication.

fading channel modeling. On the other hand, owing to preva-
lent impulse noise sources in industrial environments, Internet-
of-Things (IoT) communications frequently encounter such
noise. This letter aims to fill the lacuna of robust channel
estimation for communication over impulsive noise channels.
A statistical hybrid neural network (S-HNN) based approach to
channel estimation is proposed for an OFDM communication
system in impulsive noise environments.

B. Contributions and Scope of Application

The key contributions of this work are: 1) A S-HNN based
channel estimation framework is proposed for estimation of
communication channel over spatio-temporal impulsive noise
channel, wherein partial statistics of the channel is used to
enhance reliability and reduce the learning input data size. 2)
LS-aided MMSE is used as a statistical method to generate
approximate channel estimates while addressing time and
frequency selective fading in OFDM systems. 3) Deep CNN
is used to find spatial estimates of the coarse channel simulta-
neously across all subcarriers, whereas LSTM is employed
to handle the temporal effects of fading. 4) Optimum lag
estimates are used to find the channel density function for each
subcarrier using multiple recycling of CNN-LSTM network.

Simulation results demonstrate a sufficiently improved per-
formance of the proposed S-HNN estimator over the existing
competitive statistical and learning-based estimators in terms
of bounded nRMSE, short 30-40 training epochs with 2
retrainings per day, training length saving of 50%, and 48.71%
training time saving. This framework can be used for channel
estimation in vehicular, power line, underwater acoustic, and
plasma channel communication.

In the following, Section II describes the system model; Sec-
tion III presents S-HNN channel estimation; and results and
conclusion are presented in Sections IV and V, respectively.

II. SYSTEM MODEL FOR WIRELESS COMMUNICATION

As an example of impulsive noise environment, a smart
grid communication scenario is shown in Fig. 1. Impulse
noise is originated from ionization around the high voltage
lines, represented by solid curved lines. Ambient network
monitoring is performed using IoT devices, such as phasor
measurement units (PMUs), circuit breakers, and smart meters
[17]. It is notable that a monitoring scenario for the whole

network implies a federated monitoring of the transmission
and distribution systems, with joint data processing at the local
or central data collectors. These IoT devices communicate with
the local/central data collector over multiple OFDM subcarri-
ers. In an imperfect channel state information (CSI) scenario,
the receiver works in coordination with the transmitter to
generate channel estimates, which are fine-tuned later using the
S-HNN channel estimator. The proposed channel estimation
is deployed at the receiver in a data-aided channel estimation
approach, for estimation of impulse noise infested wireless
channels. The algorithm is implemented on an E3-1285 CPU
@4.10 GHz clock frequency for various channel dynamics.

III. S-HNN BASED CHANNEL ESTIMATION

This section presents the proposed S-HNN based channel
estimation framework for an OFDM communication over
spatio-temporal impulsive noise channels, as in Fig. 1.

A. Impulse Noise Impaired Communication Channel Model

The transmitted data Xs is fed through a serial-to-parallel
converter, which is then partitioned into blocks of size N .
All the data blocks undergo appropriate modulation, after
which orthogonal subcarriers are allocated to them by N -
point IFFT operations. Pilots are placed in Xs at equal
intervals, which is known at both transmitter and receiver. The
OFDM symbols are transmitted through the channel Hs. Using
Jake’s model with K plane waves arriving uniformly from
all directions to capture the time selective fading, we have
g(t) = E0√

2K0+1
(gI(t) + jgQ(t)), where K0 = 1

2

(
K
2 − 1

)
and E0 is the average fading channel amplitude. The in-
phase and quadrature components are respectively expressed
as: gI(t) = 2

∑K0

m=1 cosϕm cosωmt +
√
2 cosϕK cosωDt

and gQ(t) = 2
∑K0

m=1 sinϕm cosωmt +
√
2 sinϕK cosωDt,

where ϕm is the angle of arrival of the m-th incoming
wave on the receiver, ωd is the maximum Doppler shift, and
ωm = ωd cos

(
2πm
K

)
for m ∈ 1, · · · ,K0. The initial phases

are set to yield an uniform phase distribution.
Tapped delay line model is used to capture frequency

selective fading. The channel response is expressed as h(t) =∑l
i=1

√
Pigi(t)δ(t−τi), where l is the number of distinguish-

able multipaths, Pi is the power of the i-th multipath and τi
is its delay. Thus, the frequency domain received data is

Ys = HsXs + F + E = HsXs +W (1)

where Ys is the received data, Xs is the transmitted data, Hs

is the frequency domain channel impulse response, F is the
receiver thermal noise, and E is the electromagnetic impulse
noise peculiar to smart grid communications. The statistics
of W is detailed in [5]. Next section explains the proposed
S-HNN framework and the time complexity involved in the
estimation of an impulse noise infested channel.

B. S-HNN Channel Estimation Framework

Let X, Y, and (W, θ) be the input, output, and parameter
space of the S-HNN, respectively (c.f. Fig. 2). From (1), the
MMSE estimate of the channel is ĤMMSE = RHsHs

(RHsHs
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Figure 2: S-HNN based smart grid channel estimation framework.

+
σ2
W

σ2
Xs

I
)−1

ĤLS , where I is an identity matrix and RHsHs
=

E[HsH
H
s ] is the channel auto-correlation matrix, σ2

W =
E[WHW ] is the noise variance, and σ2

Xs
= E[XH

s Xs] is
the signal power. Under imperfect CSI, we have RHsHs

=
E[ĤLSĤ

H
LS ], where ĤLS = Ys

Xs
is the LS channel estimate.

We deploy pilots at equal intervals, known at both transmitter
and receiver. For non-pilot positions, CSI is interpolated by
transforming the estimated frequency domain values into time
domain, and setting the samples out of cyclic prefix to null.

Further, the effect of pilot contamination can be mitigated
using known techniques such as, sparse pilot design, pilot
clustering, and compressed sensing [4]. The coefficients mined
by the statistical module for N subcarriers at time t are
converted into time domain, ĥt ∈ CK×N , before feeding to
HNN. Each element of both the input and output vectors
is a complex vector of dimension CK×1, owing to spatial
randomness, defining its density function. ĥt is transformed
into a dataset of supervised learning ĥK×N(L+M), and di-
vided into a training dataset with L lag samples, x :=
[ĥt−NL+1, · · · , ĥt−1, ĥt]

T ∈ CK×NL and a validation set
with M samples y := [ĥt+1, ĥt+2, · · · , ĥt+NM ]T ∈ CK×NM

for N subcarriers, where C is the set of complex numbers.
CNN is employed in spatial channel estimation because of

its ability in harnessing the spatial correlations in the data.
CNN takes the real and imaginary parts separately as inputs
into different channels. Each channel is processed using CNN,
and these outputs are combined to produce the complex-valued
results. A layer j can be found from layer (j − 1) as

xj =ρj(Wjxj−1)=ρj

(∑
k

∑
v

xj−1(v, k)wj,kj
(u−v, k)

)

=ρj

([∑
k

xj−1(:, k) ∗ wj,kj
(:, k)

]
(u)

) (2)

where ρ(·) is the non-linear mapping for the output of the
convolutional layer achieving contraction in data size as a
virtue of spatial correlation. In this work, a rectified linear
unit function is employed as a non-linear transform. For J
convolutional layers, the output of the final layer is given
by xJ

t,o = ρJ (· · · (ρ1 (W1x0))) = α (W1x0), where xJ
t,o ∈

RK×P , and x0 = x ∈ RK×NL is the input to the CNN. This
output is then fed to the recurrent neural network (RNN).

LSTM is employed as a variant of RNN because of its
reliability in handling time series data. LSTM performs 3 gated
operations as listed in (3), namely, forget gate ft, input gate

it, and output gate ot, thus avoiding gradient vanishing.

ft= δ

(
ωT
f

[(
xJ
t

)T
,zTt−1

]T
+bf

)
; it=δ

(
ωT
i

[(
xJ
t

)T
,zTt−1

]T
+bi

)

c
′
t= tanh

(
ωT
c

[(
xJ
t

)T
, zTt−1

]T
+bc

)
; ct=ftct−1+itc

′
t

Ot = δ

(
ωT
o

[(
xJ
t

)T
,zTt−1

]T
+ bo

)
; zt=Ot tanh (ct)

(3)

where δ(x) = 1
1+e−x is the sigmoid function, and tanh(·) is

the hyperbolic tangent function. xJ
t,o is transformed to xJ

t ∈
RKP×1 and fed as the input of LSTM, whereas zt ∈ RD×1,
and ct ∈ R1×D denote the output and cell state of the LSTM at
time t, respectively. Further, ω ∈ R(KP+D)×D and b ∈ RD×1

capture the parameters of the LSTM, s.t. ω, b ∈ θ, which are
optimally determined in the training process.

The input is combined with the previous output of the
LSTM, as [xJ

t , zt−1], and ft, it = [0, 1] is calculated based on
the respective activation functions. This decides the percentage
of the previous cell state information to be retained at the
current moment, and the current cell state ct based on the
combination of previous cell state ct−1 with the candidate
cell state c

′

t. ct is generated by mixing c
′

t and ct−1. Fi-
nally, the output zt of the LSTM is computed based on
the weights assigned through Ot ∈ [0, 1] for ct. The final
dimension transformation from zt ∈ RD×1 to z̃t ∈ RNM×1

is achieved by a fully connected layer, z̃t = ωz̃zt + bz̃ ,
where ωz̃ ∈ RNM×D is the feature transformation matrix. The
network parameters are optimized based on the loss function
L
(
z̃pt+i, yt+i

)
= 1

M

∑M
i=1 ||z̃

p
t+i − yt+i||22.

Proof of convergence: L(·) is a composition of the Eu-
clidean norm and the square function, both of which are
smooth. Therefore, their composition results in a smooth
function as well. Further, since Euclidean norm is always
non-negative, applying reverse triangle inequality we have:
0 ≤ L

(
z̃pt+i, yt+i

)
≤ ∥z̃pt+i∥22 + ∥yt+i∥22. Thus, L

(
z̃pt+i, yt+i

)
is bounded on both sides. Since the loss function is convex,
smooth, and bounded, it must converge to its global minimum,
which guarantees convergence of the S-HNN framework [18].

C. Time Complexity Analysis

The time complexity of a neural network translates to
the number of floating point operations (FLOPs) used in
generating the output. From (2), we note that the CNN
processes the inputs with a constant feature map of size
equal to the input, i.e., K × NL. The time complexity is
given by O(K × NL). From (3), we conclude that the
FLOPs depend on the total matrix operation and biases. The
matrix-bias couples given by {ωf , bf}, {ωi, bi}, {ωc, bc}, and
{ω0, b0} offer an equal complexity of order O((KP +D)D)
as ω ∈ R(KP+D)×D, while the feature transformation renders
a time complexity resulting from ωz ∈ RNM×D. For a
training length lt and establishing lt ≪ D, KP ≪ D,
NM ≪ D, we evaluate the total time complexity of the
LSTM network as CLSTM ≈ O

(
ltD

2
)
. Further, it was noted

during simulation that the training length lt is ≥ K, the spatial
inputs used in extracting the density function of channel gain.
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Thus, time complexity presented by the S-HNN framework
is CS−HNN ≈ O(lt(NL + D2)) = O

(
(1 + η)ltD

2
)
, where

ηD = NL
D is the compression provided by S-HNN.

Time complexity of the two competitive schemes, KDML
and MLP, are [16]: CKDML = O(lt,KDMLD

2) and
CMLP = O

(
lt,MLP

∑nl−1
i=1 hs,ihs,i+1

)
. lt,KDML, lt,MLP

are the training lengths for KDML and MLP schemes, respec-
tively, and hs,i is the size of the i-th layer of MLP. Thus, it can
be concluded that learning-based estimators provide a linear
complexity. Whereas, MMSE estimator operates under a cubic
complexity, O

(
l3t,MMSE

)
, where lt,MMSE is the dimension

of the input matrix. Further comparison between the learning-
based counterparts of S-HNN is done in the next section.

IV. RESULTS AND DISCUSSIONS

This section presents the performance of the proposed S-
HNN channel estimator with the parameters in Tables I. The
considered OFDM system subcarrier spacing is 15 kHz, sam-
pling rate is 15.36 MHz, IFFT size is 1024, and the numbers of
pilot spacing (NPS) are 2, 4, and 8. Communication scenarios
under different noise impulsiveness are simulated, and the per-
formance of the proposed framework is compared with MLP
[10] and KDML [16] for learning-based estimators. Further,
it is compared with the conventional statistical estimators,
LS and MMSE+DFT. Channel mobility effect is studied by
considering Doppler spread, which can arise due to mobility
of the users and/or the surrounding environment.

A. S-HNN based Impulsive Noise Channel Estimation

Figs. 3 and 4 present the temporal estimation of the channel
with NPS = 2. Fig. 3(a) shows the channel estimation for
different γ over a window of 500µs. The actual and S-HNN
estimated plots closely match with nRMSE ≈ 10−3 to 10−4,
∀ γ. Further, from Fig. 3(b), we observe that, even for varying
mobility environments the proposed framework estimates the
temporal variations of the channel with a similar accuracy.

Fig. 4(a) shows the estimation of channel density function
at various SNR. The proposed channel estimator is observed
to provide a highly accurate channel statistics, with an nRMSE
≈ 10−4. Fig. 4(b) estimates the density function for different
Doppler shifts, which indicate that the estimator works with
similar accuracy for varying Doppler shifts as well. Thus,
the proposed S-HNN based estimator provides spatio-temporal
estimation of the channel and its density function under
various conditions with high accuracy.

(a) S-HNN estimate at different SNR (b) S-HNN in mobile environment

Figure 3: (a) Static; (b) at various Doppler frequencies, fD .

(a) (b)

Figure 4: Channel pdf estimation using S-HNN under (a) different
SNR at fD = 0 Hz, and (b) varying Doppler shift, γ = 5 dB.

Table I: S-HNN estimator parameters

Parameters Values

CNN

Activation function Sigmoid and tanh
Hidden layers 4
Feature maps 64
Kernel size 3× 3

RNN Activation function ReLU
Hidden layers 64

Learning rate 0.001
Batch size 500
Training length 15000
Training epochs 30-40 for γ = 5-15 dB
Optimum lag samples, L 100

(a) (b)

Figure 5: Performance comparison of S-HNN with state-of-the-art
(a) at NPS = 2 and (b) varying NPS = {2, 4, 8}.

Remark 1. As noted above, under practical consideration of
dynamic impulsive noise, while analytical characterization of
channel pdf is non-tractable, S-HNN based channel estimation
can be effective for efficient channel utilization.

B. Error Performance Comparison

Fig. 5(a) compares the performance of S-HNN against
various existing channel estimation techniques in literature.
It is observed that the proposed algorithm outperforms the
existing techniques in estimating an impulse noise infested
wireless channel. Even at average SNR levels of −5 dB,
the error remains below ≈ 10−3, which decreases as the
SNR improves. The effectiveness of the proposed S-HNN
over the baseline algorithms results from the advantage of
accounting the temporal and spatial correlation in the channel
data, thereby increasing the accuracy of channel estimation.
From Fig. 5(b) it is inferred that the decrease in pilot density
does not affect the performance of the estimator significantly,
while other channel estimators digress with NPS varying from
2 to 8, the S-HNN estimator stays highly stable. Thus it can
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(a) (b)

Figure 6: Retraining count of various ML channel estimators with
(a) learning rate, and (b) training length; over 24 hours horizon.

be inferred that, the recycling of CNN-LSTM network makes
the proposed estimator robust to the varying number of pilots.

C. Complexity Comparison

Fig. 6 shows the retraining instances required in various
learning-based estimation schemes over a day’s time window.
Fig. 6(a) reveals that the number of retrainings required by
the proposed S-HNN is 2, which is fairly less than the most
competitive KDML framework. This proves the robustness
and reliability of the proposed framework. As expected, the
retraining instances vary with learning rate and average SNR.
However, at the optimal learning rate 0.001, the proposed S-
HNN framework presents the same number of retrainings at
all γ, unlike the other competitive frameworks. From Fig. 6(b)
we observe that the training length at optimality is the least for
the proposed S-HNN framework, which manifests to a lesser
estimation overhead. Furthermore, the S-HNN framework re-
quires 50% less training data than the KDML approach.

Fig. 7 presents the time complexity for various learning-
based channel estimators. From Fig. 7(a) it is noted that the
number of training epochs required for S-HNN estimator is
less compared to the best learning-based estimator (KDML) in
literature, while MLP estimator requires even higher training
epochs. Moreover, the training epochs for the proposed S-
HNN framework does not vary considerably over a wide range
of SNR. As compared to KDML, S-HNN estimator achieves
a lower nRMSE within 30-40 training epochs. From Fig. 7(b),
we note that the S-HNN estimator requires 48.71% less mod-
eling time, compared to the most competitive KDML channel
estimator, which is corresponding to η = 1, leading to least
channel estimation delay. This time saving increases when

(a) (b)

Figure 7: Comparison of (a) training epochs, and (b) channel estima-
tion delay for different learning-based channel estimation schemes.

η > 1, and decreases marginally with η < 1. Therefore, for all
η, the proposed algorithm presents an improved performance.

V. CONCLUDING REMARKS

This paper proposed a novel S-HNN framework for estima-
tion in impulsive noise channels, which is not possible with
classical methods. The approach aimed at estimating spatio-
temporal channel coefficients and gain distribution in OFDM
systems. Estimations were done under varying impulse noise
amplitudes leading to different average SNR. It was con-
cluded that the CNN-LSTM recycling led to a robust channel
estimation. The statistical aid along with HNN resulted in
considerable decrease of retraining instances. Furthermore, the
use of spatio-temporal correlation reduced the training data
length, leading to reduced channel estimation delay.
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