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Abstract

Backscatter communication based wireless charging of the sensor nodes and data collection from

them is a promising solution due to ultra-low power consumption. However, challenges of short trans-

mission range requirement, high self-interference, and simultaneous operation with multiple backscatter

nodes (BSNs) need to be addressed. To this end, this paper presents a novel framework for joint field data

collection and wireless charging in an unmanned aerial vehicle (UAV)-aided wireless sensor network via

monostatic backscatter communication at millimeter waves. The framework is divided into three tasks,

namely, energy-optimized UAV transceiver design, UAV constraints aware BSN clustering, and optimized

resource allocation per cluster. To strike a balance between serving efficiency and self-interference,

optimum BSN cluster size is estimated offline, which in turn governs BSN clustering optimization.

With UAV communication energy and clustering information, a joint sum energy transfer and sum

data collection maximization problem is formulated by considering the minimum required charging and

data collection constraints. To handle non-convexity, an alternating optimization approach is devised,

estimating optimal backscatter reflection coefficients, data collection time, and power distribution among

the BSNs using successive convex approximation. Finally, via Monte-Carlo simulations, performance

of the proposed system is compared with the current state-of-the-art.

Index Terms

Backscatter communication, wireless energy transfer, self-interference, energy efficiency, unmanned

aerial vehicle (UAV)

I. INTRODUCTION

Recent advances in wireless technologies have enabled the vision of massive Internet of Things

(IoT) network where billions of IoT sensor nodes monitor, communicate, and possibly control
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the intended entities in different applications [1]. However, the scalability and flexibility of

IoT sensor node deployment are limited by the communication medium, energy constraints,

and network cost. Conventional IoT sensor nodes use batteries for sensing and communication.

But their limited battery life necessitates frequent replacement or recharging, which can be

costly and challenging in hazardous or inaccessible deployment areas. To address this challenge,

technologies with near-zero communication power requirements, like backscatter communication

(BSC), are being investigated.

A BSC system comprises backscatter tags, a carrier emitter, and a backscatter receiver. The

backscatter tags transmit data by modulating and reflecting the incident radio frequency (RF)

wave emitted by the carrier emitter toward the backscatter receiver. Backscatter tags, such as

RF identification cards, are examples of passive devices that do not require a battery for data

transfer. In contrast, as a sensor, a backscatter node (BSN) functions in a semi-passive mode with

a small rechargeable battery to power its sensing activity [2]. Further, unmanned aerial vehicle

(UAV) is being considered as a flexible option for on-demand energy supply through RF wireless

energy transfer (WET) without incurring high infrastructure costs [3]. In addition, directional

beams can enhance RF energy harvesting. Sub-6 GHz band operation limits the number of UAV-

mounted antennas and results in broad beams. This limitation is addressed by utilizing millimeter-

wave (mmWave) technology, enabling the deployment of large antenna arrays to generate highly

directional beams [4]. When used in conjunction with UAVs, this further minimizes the spot size

of the main lobe of the beam because of the short communication distance. It also establishes

a strong line-of-sight communication link, leading to reduced interference between nodes in

multi-node communication situations.

A. Related Work

The two broad BSC system configurations are monostatic BSC and bistatic BSC. In a mono-

static BSC architecture the carrier emitter and BSC receiver are co-located, whereas in bistatic

BSC they are physically separated. In [5], the authors presented a data collection framework for

BSC networks, wherein a UAV-based bistatic BSC architecture with multiple terrestrial carrier

emitters was considered to optimize the UAV energy efficiency. In remote or rural areas it is

less likely to have high-density of terrestrial communication infrastructure [6]; hence for most

applications UAV-aided monostatic BSC is preferred.
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The authors in [7] studied two strategies for optimizing UAV operations during sensor data

collection under limited energy availability: minimizing UAV flight duration and maximizing

UAV energy efficiency. Meanwhile, the authors in [8] investigated network lifetime maximization

aspects of UAV-aided sensor data collection. This study examined sensor nodes equipped with

hybrid transmitters capable of switching between conventional wireless information transfer

(WIT) and BSC phases to optimize network lifetime. In contrast to passive data transmission in

BSC phase, a BSN acts as an active device during WIT phase, generating its own data signal

utilizing its power. With every instance of sensing and data offloading, each BSN incurs an

energy cost. Hence, for semi-passive BSNs energy is a crucial resource that must be utilized

sparingly and replenished timely. The authors in [9] established closed-form expressions for

the outage probability of a UAV-aided monostatic BSC system at sub-6 GHz. Considering two

UAVs-aided systems for full duplex communication, the authors in [10] studied the resource

allocation problem for maximizing throughput with two UAVs by deploying one UAV each for

downlink and uplink data transmission. In BSC networks, WET occurs in downlink and WIT

in uplink. Since WIT operations are followed by WET, segregating operations and allocating

different UAVs would not be efficient.

It is worth noting that the authors in [8]–[10] optimized different parameters, namely, energy

efficiency, power allocation, and node visiting sequence while serving a single BSN at a time. The

study in [11] addressed the issue of serving multiple sensor nodes and introduced a strategy for

joint location and power allocation in NOMA-UAV networks. In scenarios where sensor nodes

are sparsely distributed, simultaneous servicing of all nodes becomes impractical, prompting the

exploration of clustering as a more viable alternative. The study in [12] incorporated signal-to-

noise ratio outage constraints to determine the cluster radius, while orthogonal frequency division

multiplexing resource blocks govern the maximum number of users in a cluster. Similarly, in

[13], considering a fixed amount of required energy to be harvested at each sensor node for

energy sustainability, integrated WET strategy with UAV trajectory design was proposed at sub-

6 GHz range. The study in [14] aimed at enhancing the system throughput of an underground

BSC network for smart agriculture where a single beam-based BSC transceiver was employed

for data collection from the BSNs via harvest-then-sequentially offload protocol (HTSeqOP).

The existing studies focused on optimizing monostatic BSC operation in sub-6 GHz range,

where a broad beam covered all the BSNs within its coverage area. They optimized either BSN

clustering [12] or beam coverage [13]. The most relevant work at mmWaves is [15] that considers
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multiple beams in a UAV-based wireless-powered mobile edge computing system, but it does

not consider BSC. Specifically, all IoT nodes harvest energy during the first phase and transmit

data simultaneously using harvested energy in half-duplex communication mode, which we call

harvest-then-simultaneous offload protocol (HTSimOP). This approach does not account for high

power consumption of hardware as it uses the same number of RF chains as the number of served

IoT sensor nodes for simultaneous energy and data transfer in uplink.

On energy harvesting modeling, coverage probability and transmission capacity of backscatter

networks were studied in [16] by considering a linear energy harvesting model. However,

experimental studies have shown that the energy harvesting circuitry exhibits non-linearity in

practice. A more realistic non-linear energy harvesting model was proposed in [17], where the

energy efficiency of multi-tag BSC networks was optimized using max-min based optimization.

B. Motivation

The reported research highlighted in [8]–[10], [16], [17] primarily focused on UAV-aided

BSC for IoT data collection and WET. However, there is a need for further investigation into the

energy efficiency of joint powering and data collection. In view of the limited onboard energy

capacity of the UAVs, for effective charging and data collection, a UAV should minimize energy

expenditure and intelligently allocate the increased power availability. Addressing this challenge

requires a holistic approach, considering transceiver architecture design, UAV maneuverability,

and resource allocation simultaneously.

Unlike the previous approaches [12], [13], leveraging the directionality of communication

at mmWaves, the UAV can utilize multiple beams for simultaneous WET and BSC. From a

transceiver architecture perspective, reducing hardware power consumption at mmWaves is a

key concern that necessitates a decrease in RF chains without compromising the generation of

multiple beams. On the other hand, while considering UAV maneuverability, determining the

optimal combination of nodes to be served together and their visiting sequence is crucial. At a

high altitude, serving all nodes in a single sweep may seem ideal. Yet, it becomes infeasible due

to dual-channel path loss in backscatter communication and low energy harvesting efficiency.

Moreover, increasing the number of beams to serve more BSNs simultaneously raises self-

interference, which can reduce QoS. This aspect necessitates careful consideration of the number

of BSNs to be served together to strike a balance between serving efficiency and self-interference.

From a node perspective, BSN has two primary purposes: to sense and to transfer information. It
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is necessary that minimum required energy and data rate are ensured while performing resource

allocation. However, the challenge arises when BSNs may demand additional energy for increased

frequent sensing or higher data rates essential for updating specific field status. Addressing this

challenge entails formulating an optimization problem that concurrently optimizes weighted sum

data rate and energy harvesting. This is essential for adapting to dynamic demands in BSNs across

different spatio-temporal conditions while maintaining a minimum threshold fairness among

BSNs.

Based on our literature studies, as presented above, there is a research gap in the literature

regarding the exploration of efficient UAV transceiver architecture with low-power RF circuitry

and resource allocation strategy for joint data collection and wireless charging of multiple BSNs.

This research aims to fill this gap and contribute to the understanding of efficient UAV-aided

BSC for IoT applications.

C. Contributions and Scope

To address the research gap on efficient data collection and energy sustainability of field

sensor nodes, we propose a novel multi-beam UAV-aided monostatic BSC system at mmWaves

that takes into account critical system aspects. The key contributions of this work are summarized

as follows.

1) A novel UAV-aided monostatic BSC and WET system is proposed for joint charging of

BSNs and data collection from them using multiple directional beams at mmWaves. This

architecture requires only three RF chains at the UAV to generate multiple beams, with

each beam targeting a single BSN within a cluster. The resulting residual self-interference

(RSI) on the data beam at the UAV receiver from simultaneously active energy beams is

addressed in the achievable system performance.

2) An optimal number of beams is estimated offline for the proposed UAV transceiver archi-

tecture to maximize energy efficiency, allowing to determine the optimal number of BSNs

per cluster to be served simultaneously.

3) For a system with a total number of BSNs larger than the number of beams supported

at the UAV, BSN clustering is performed based on beam steering constraints and the

optimal number of beams estimated offline. Thereafter, BSN cluster visiting sequence is

also determined.
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4) For joint BSC and WET operation, an optimization problem is formulated considering

the minimum BSN energy harvesting and data rate constraints as well as UAV power

limit. Due to inter-dependency of the optimization variables, the problem is non-convex.

An alternating optimization technique is devised that iteratively estimates power allocation

among the beams, reflection coefficients, and data collection time for each BSN in a cluster.

5) Finally, through extensive Monte Carlo simulations, the proposed system model’s perfor-

mance is compared with the existing state-of-the-art approaches.

While our current study considers a single UAV, there is potential for improving time-constrained

operations via multi-UAV cooperation, which is out of scope of this study.

The proposed UAV-aided monostatic BSC and WET system model is presented in Section II,

followed by the overall problem formulation and resource allocation optimization in Section III.

Complexity and convergence analysis is presented in Section IV. Simulation results are discussed

in Section V, and concluding remarks are drawn in Section VI.

II. PROPOSED SYSTEM MODEL

This section presents the proposed BSC and WET system architecture and modeling of the

various parameters associated with the working of UAV-aided BSC and WET system.

UAV maneuvering path

cluster with 
BSNs

(a) (b)

Figure 1: (a) Illustration of 𝑁 BSNs, grouped into 𝑁𝑐 clusters with 𝑁𝐵𝑖 BSNs in 𝑖𝑡ℎ cluster being served by the UAV

according to cluster visiting sequence V𝑠 . (b) UAV serving 𝑖𝑡ℎ having 𝑁𝐵𝑖 = 4 BSNs with a total 𝑁𝐵 = 4(= 𝑁𝐵𝑖)

beams.
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Table I: System parameters and their notations

Notation Description Notation Description

𝐷th Minimum data collection requirement 𝑣𝑜 Mean induced velocity in hovering

𝐸th Minimum energy harvesting requirement 𝑠 Rotor solidity

𝑃BSN BSN internal circuitry power consumption 𝐴 Area of rotor disk

𝐷𝜏,𝑖,𝑘 Data offloaded by 𝑘 th BSN of 𝑖th cluster in 𝜏th interval Ω Blade angular velocity

𝐸𝜏,𝑖,𝑘 Energy harvested by 𝑘 th BSN of 𝑖th cluster in 𝜏th interval 𝑅 Rotor radius

𝛽𝜏,𝑖,𝑘 Reflection coefficient to 𝑘 th BSN of 𝑖th cluster in 𝜏th interval 𝑊 Weight of UAV

𝜍1, 𝜍2 scaling weights 𝜌 Density of air

𝜂𝑃𝐴 Efficiency of power amplifier 𝑈𝑡𝑖 𝑝 Tip speed of rotor blade

𝑃LNA Power consumption of low noise amplifier 𝑉 UAV velocity while maneuvering

𝑃M Power consumption of mixer 𝑑𝑜 Fuse large drag ratio

𝑃O Power consumption of local oscillator V𝑠 Cluster visiting sequence

𝑃LPF Power consumption of low pass filter 𝛿 Profile drag coefficient

𝑃DAC Power consumption of digital-to-analog converter 𝑁𝐵𝑖 Number of BSNs in 𝑖th cluster

𝑃ADC Power consumption of analog-to-digital converter 𝑁∗
𝐵

Optimal number of beams

𝑘𝑒 Incremental correction factor to induced power 𝑁𝑐 Number of clusters

A. Proposed System Architecture and Operation Protocol

We consider a UAV-aided monostatic BSC and WET system at mmWaves with 𝑁 BSNs

distributed according to a Binomial point process across a two-dimensional (2D) circular region

of radius 𝑅𝐴𝑂𝐼 , as shown in Fig. 1(a). Rotary wing UAV is considered to serve the BSNs, owing to

its ability to hover stably and move around at low altitudes. The UAV is equipped with a uniform

planar array (UPA) of antenna elements capable of generating maximum 𝑁𝑚𝑎𝑥
𝐵

directional beams,

with each beam generated from a subarray comprising 𝑁𝑇=𝑁𝑥×𝑁𝑦 antenna elements. Each BSN

is equipped with a single antenna. Let, X𝑘={𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 } and X𝑣={𝑥𝑣, 𝑦𝑣, 𝑧𝑣} denote the Cartesian

coordinates of the 𝑘 th BSN and UAV, respectively. We assume that 𝑁𝑚𝑎𝑥
𝐵
≪ 𝑁 and hence

BSNs are clustered into 𝑁𝑐 clusters, each containing 𝑁𝐵𝑖 ≤ 𝑁𝑚𝑎𝑥𝐵
BSNs in 𝑖th cluster, so that

∪𝑁𝑐

𝑖=1 |𝑁𝐵𝑖 | =𝑁 . The UAV serves the 𝑖th cluster of 𝑁𝐵𝑖 BSNs while generating a total of those many

number of beams for a hovering duration of 𝑇ℎ, after which it moves to the next cluster, based

on the cluster visiting sequence V𝑠. The UAV is considered to hover at a height 𝑧𝑣=ℎUAV at the

center of a cluster. Additionally, we assume constant hovering time 𝑇ℎ for all clusters, regardless

of the value of 𝑁𝐵𝑖. Furthermore, 𝑇ℎ is divided into 𝜏𝑡𝑜𝑡=⌊𝑇ℎ/𝑡𝑐⌋ intervals each of time period

𝑡𝑐, where 𝑡𝑐 denotes the coherence time. The time intervals are indexed by 𝜏 ∈ {1, 2, · · · , 𝜏𝑡𝑜𝑡}.
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In beginning of every interval a small fraction of time is utilized for channel estimation and

synchronization and in the rest of the time BSC and WET operations are performed [5].

The backscatter nodes (BSNs) are static and deployed in remote geographical locations. As the

UAV serves these nodes while hovering and maintaining a stationary position, any significant

movement during service is avoided. Additionally, the short communication range and high

probability of line-of-sight contribute to minimal fading effects. Furthermore, as the studies in

[18], [19] demonstrated, narrow beam and directional transmission reduce the channel state

information (CSI) variation, facilitating longer coherence time and reasonably accurate CSI

estimation [20]. We use time division multiple access to serve BSNs within a cluster, dividing

the 𝜏th interval into 𝑁𝐵𝑖 slots. During each slot, one beam collects data from a specific BSN

while the others transmit energy to the remaining BSNs in the cluster. The duration of the 𝑘 th

slot is denoted by 𝑡𝜏,𝑖,𝑘 . In each subsequent slot, data is collected from a different BSN while

the others harvest energy. For example, as shown in Fig. 2 (a), consider a 𝑁𝐵𝑖 × 𝑁𝐵𝑖 matrix to

represent the time instants and BSN’s operations in the 𝜏th interval of 𝑖th cluster. Therefore, at

a given time only one BSN operates in BSC mode to transmit data while the remaining BSNs

harvest energy from the energy beams. In addition to reducing the number of the RF chains

in the UAV (as discussed next in Section II-B), only one BSN is allowed to operate in BSC

mode to reduce co-backscatter node interference. However, the UAV’s residual self-interference

remains intact due to the presence of energy beams.

B. Proposed Transceiver Architecture

We propose a novel energy-efficient UAV transceiver architecture that enables joint operation

of simultaneous backscatter-based data collection and energy transfer to multiple BSNs. The

UAV transmitter RF front-end is composed of only three RF chains coupled to an antenna array

that can generate maximum 𝑁𝑚𝑎𝑥
𝐵

directional beams (Fig. 2(b)). The first RF unit, 𝑅𝐹1 generates

an amplified carrier signal that is transmitted via multiple beams, called energy beams, to charge

the BSNs. While serving the 𝑖th cluster, 𝑁𝐵𝑖−1 energy beams are generated by 𝑁𝐵𝑖−1 non-

overlapping antenna subarrays of size 𝑁𝑥 × 𝑁𝑦 connected to 𝑅𝐹1 via power splitters and phase

shifters. These components are controlled by a digital signal processor [21] to steer the beams

and divide power suitably among them. Notably, since the energy beams do not require different

digital modulations, they can all be managed by a single RF chain. The other two RF chains,

𝑅𝐹2 and 𝑅𝐹3, enable full-duplex BSC operation to collect data from a BSN. They are connected

DRAFT November 11, 2024



9

(a) (b)

Figure 2: (a) Proposed multi-BSN serving protocol: Illustrating the total hovering time 𝑇ℎ for the 𝑖𝑡ℎ cluster with

𝑁𝐵𝑖
BSNs, partitioned into 𝜏𝑡𝑜𝑡 intervals, each interval further segmented into 𝑁𝐵𝑖

slots. (b) Proposed transceiver

architecture at the UAV.

to a single separate sub-array of size 𝑁𝑥 × 𝑁𝑦, which generates a steerable BSC beam towards

the BSN for its data collection. 𝑅𝐹2 transmits an unmodulated amplified carrier signal, while

𝑅𝐹3 serves as the BSC receiver to receive the modulated signal reflected by the BSN. Thus, the

proposed joint WET and BSC transceiver architecture at the UAV with only three RF chains

reduces UAV hardware cost as well as power consumption.

C. Channel Model

Let, 𝑑𝑣,𝑘=∥𝑋𝑣 − 𝑋𝑘 ∥ denote the Euclidean distance between the UAV and the 𝑘 th BSN, and

𝜙𝑘 , 𝜃𝑘 be the azimuth angle and elevation angle, respectively, of 𝑘 th BSN. The UAV-to-BSN

channel is considered line-of-sight (LoS) dominant [5] due to the low altitude of the UAV and

highly directional mmWave beam it uses. Thus, the path loss experienced by 𝑘 th BSN is [22]

PL𝑘=10−(𝑎+𝜇10 log10(𝑑𝑢,𝑘)+𝑛)/10. (1)

Here, 𝑎, 𝜇, and, 𝑛 ∼ N(0, 𝜎2
𝑠 ) respectively denote frequency-dependent constant, path loss

exponent, and log-normal shadowing loss factor . The transmit array response vector a (𝜙, 𝜃) ∈
C1×𝑁𝑥𝑁𝑦 of a sub-array of size 𝑁𝑥 ×𝑁𝑦 at an azimuth angle 𝜙 and elevation angle 𝜃 is expressed

as

a (𝜙, 𝜃) = 1
𝑁𝑥𝑁𝑦

[
1, · · · , 𝑒− 𝑗 2𝜋

𝜆
𝑑 sin 𝜃 [(𝑁𝑥−1) cos 𝜙+(𝑁𝑦−1) sin 𝜙]

]𝑇
. (2)
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Here, 𝑑 is the inter antenna element spacing and 𝜆 is the wavelength. Therefore, the channel

between 𝑘 th BSN and the UAV is given by

h𝑘=
√︁
𝑁𝑥𝑁𝑦𝐺0PL𝑘𝛼𝑘a𝐻𝑇 (𝜙𝑘 , 𝜃𝑘 ) ∈ C1×𝑁𝑥𝑁𝑦 . (3)

Here, 𝛼𝑘 denotes the complex channel fading gain modeled using Rician distribution, parame-

terized by Rician factor 𝐾𝑟 , and 𝐺0 is per antenna element gain. Moreover, we assume block

fading model and complete CSI availability at the UAV transceiver obtained via standard channel

estimation procedures [23]. The steering direction {𝜙, 𝜃} of the beams are controlled by phase

shifters, which generates discrete phase shift controlled by control registers of size 𝑏𝑠 bits. Let,

Φ and Θ denote the set of possible azimuthal and elevation steering directions, respectively, such

that

Φ=

{
2𝜋𝑖
2𝑏𝑠
|𝑖=0, 1, · · · , 2𝑏𝑠−1

}
, Θ=

{
2𝜋 𝑗
2𝑏𝑠+1

|𝑗=0, 1, · · · , 2𝑏𝑠−1
}
.

Due to finite resolution, the beam cannot be steered exactly toward the BSN. Therefore, the

optimal steering direction for the 𝑘 th BSN ∀𝑘 ∈ {1, 2, · · · , 𝑁𝐵𝑖} is given by

𝜙𝑘= arg min
𝜙𝑖∈Φ
|𝜙𝑘 − 𝜙𝑖 |, 𝜃𝑘= arg min

𝜃 𝑗∈Θ
|𝜃𝑘 − 𝜃 𝑗 |.

Let, A𝑅𝐹 ∈ C𝑁𝐵×𝑁𝑥𝑁𝑦 be the analog precoding matrix of the sub-array hybrid structure such

that A𝑅𝐹={a1, · · · , a𝑘 , · · · , a𝑁𝐵
}, where a𝑘 is the RF steering vector for steering the beam towards

𝑘 th BSN governed by {𝜙𝑘 , 𝜃𝑘 }. It is expressed as

a𝑘=
[
1, · · · , 𝑒− 𝑗 (2𝜋/𝜆)𝑑 sin 𝜃𝑘 [(𝑚−1) cos 𝜙𝑘+(𝑛−1) sin 𝜙𝑘]

]
∀𝑚, 𝑛 ∈ Z; (𝑘−1)

√︁
𝑁𝑥𝑁𝑦+1 ≤ 𝑚, 𝑛 ≤ 𝑘

√︁
𝑁𝑥𝑁𝑦 .

(4)

D. Modeling of RSI at UPA

In a full-duplex transceiver, perfect self-interference cancellation is not possible [24], [25].

We model the RSI channel matrix HRSI
𝑗 ,𝑘

between the 𝑗 th transmitter array of size 𝑁𝑥𝑡 × 𝑁𝑦𝑡 and

𝑘 th receiver array of size 𝑁𝑥𝑟 × 𝑁𝑦𝑟 as HRSI
𝑗 ,𝑘
=H𝐿𝑜𝑆 + H𝑁𝐿𝑜𝑆 ∈ 𝐶𝑁𝑥𝑡 𝑁𝑥𝑟×𝑁𝑦𝑡 𝑁𝑦𝑟 , where 𝑯𝐿𝑜𝑆 and

H𝑁𝐿𝑜𝑆 denote LoS and NLoS components, respectively. Let, {𝑖, 𝑝} ∈ Z+ and { 𝑗 , 𝑞} ∈ Z+ denote

the index of antenna elements along the x-axis and y-axis of transmit and receive subarrays,

where 0 ≤ 𝑖 < 𝑁𝑡𝑥 , 0 ≤ 𝑗 < 𝑁𝑡𝑦 , 0 ≤ 𝑝 < 𝑁𝑟𝑥 , and 0 ≤ 𝑞 < 𝑁𝑟𝑦 . Then the LoS and NLoS

DRAFT November 11, 2024



11

components of RSI channel between the (𝑖, 𝑗)th transmit antenna and (𝑝, 𝑞)th receiver antenna

element pair, as modeled in [26], are

H𝐿𝑜𝑆 (𝑖 · 𝑝, 𝑗 · 𝑞) =
𝜅

Δ(𝑖, 𝑗)−(𝑝,𝑞)
𝑒− 𝑗2𝜋Δ(𝑖, 𝑗 )−(𝑝,𝑞) , (5)

and,H𝑁𝐿𝑜𝑆 (𝑖 · 𝑝, 𝑗 · 𝑞) ∼ N (0, 𝜎2
𝑁𝐿𝑜𝑆). (6)

Here, Δ(𝑖, 𝑗)−(𝑝,𝑞) =
√︃[
𝐷2
𝑦+(( 𝑗−𝑞)𝑑)2

]
+
[
(𝑖−1)𝑑 +(𝑝−1)𝑑+𝐷𝑥

]2 is the distance between the antenna

element pair normalized by the wavelength, 𝜅 denotes the normalization scalar depending on

the achievable self-interference cancellation, 𝐷𝑥 and 𝐷𝑦 respectively denote the antenna array

separation distances along x-axis and y-axis normalized by wavelength.

E. Modeling of UAV Power Consumption

To serve 𝑁 BSNs, the UAV performs two broad operations: communication and maneuvering.

Thus, UAV power consumption comprises of consumptions in the communication module and

in UAV maneuvering operations.

Power consumption in the communication module is composed of two main components:

transmission and consumption in communication hardware. Transmit power denotes the overall

power transmitted by the UAV to facilitate energy harvesting and data offloading operations.

Each transmitter RF front end comprises a pair of digital-to-analog converters, a mixer, a low

pass filter, a local oscillator, and a power amplifier connected to the antenna subarray. On the

other hand, the receiver RF front end consists of a low noise amplifier attached to each antenna

element of the subarray, an analog-to-digital converter pair, a low pass filter, and a mixer. We

assume negligible power consumption in phase shifters and power splitters. Accordingly, the

total hardware power consumption of the proposed transceiver is obtained as

𝑃𝑐=2 × 2 (𝑃DAC + 𝑃M + 𝑃LPF) + 𝑃𝑡𝑜𝑡/𝜂PA + 𝑃O + 𝑃LNA𝑁t + 2𝑃ADC + 𝑃LPF + 𝑃M. (7)

Therefore, for a given UAV communication power budget 𝑃𝑐𝑜𝑚, the power available for trans-

mission purposes is 𝑃𝑡𝑜𝑡=𝑃𝑐𝑜𝑚 − 𝑃𝑐.
UAV maneuvering power consumption comprises of two main components: hovering and

movement. The power required for UAV movement 𝑃𝑚𝑜𝑣 (𝑉) is given by [27]

𝑃𝑚𝑜𝑣 (𝑉)=𝑃𝑜

(
1 + 3𝑉2

𝑈2
𝑡𝑖𝑝

)
+ 𝑃𝑖𝑣𝑜

𝑉
+ 1

2
𝑑𝑜𝜌𝑠𝐴𝑉

3, (8)
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where 𝑃𝑜=𝛿𝜌𝑠𝐴Ω3𝑅3/8 and 𝑃𝑖=(1 + 𝑘𝑒)𝑊3/2/
√︁

2𝜌𝐴. Further, the power consumed in hovering

is 𝑃ℎ𝑜𝑣=𝑃𝑜 + 𝑃𝑖. Description of various constants used in (7) and (8) are summarized in Table I.

F. Received Signal and Harvested Energy

For a given total transmission power 𝑃𝑡𝑜𝑡 , let, |𝑏𝜏,𝑖,𝑘 |2 be the power allocated to 𝑘 th BSN,

where 𝑏𝜏,𝑖,𝑘 ∈ R+ and 𝑘={1, . . . , 𝑁𝐵𝑖}, served by a beam (either energy beam or data beam)

during 𝜏th interval over 𝑖th cluster such that
∑𝑁𝐵𝑖

𝑗=1 |𝑏𝜏,𝑖, 𝑗 |
2 ≤ 𝑃𝑡𝑜𝑡 ∀𝑖. Then, the downlink signal

received at the 𝑘 th BSN of 𝑖th cluster is

𝑦̂𝜏,𝑖,𝑘=(h𝐷𝜏,𝑖,𝑘 )
𝐻a𝑖,𝑘𝑏𝜏,𝑖,𝑘 𝑠𝜏,𝑖,𝑘 + 𝑧𝐷𝜏,𝑖,𝑘 . (9)

Here, h𝐷
𝜏,𝑖,𝑘

is the downlink channel (of the form given by (3)), 𝑧𝐷
𝜏,𝑖,𝑘

is the downlink additive

white Gaussian noise, a𝑖,𝑘 is the RF steering vector (by (4)), and 𝑠𝜏,𝑖,𝑘 is unit power transmitted

signal to 𝑘 th BSN of the cluster. Within slot 𝑡𝜏,𝑖,𝑘 , the 𝑘 th BSN modulates 𝑦̂𝜏,𝑖,𝑘 according to

its data and reflects it back towards the UAV in the same direction that is processed by BSC

receiver at 𝑅𝐹3. Therefore, BSN modulated signal received by the UAV in its uplink is

𝑦𝜏,𝑖,𝑘=
√︁

1 − 𝛽𝜏,𝑖,𝑘a𝐻𝑖,𝑘h
𝑈
𝜏,𝑖,𝑘 (h

𝐷
𝜏,𝑖,𝑘 )

𝐻a𝑖,𝑘𝑏𝜏,𝑖,𝑘 𝑠𝜏,𝑖,𝑘𝑥𝜏,𝑖,𝑘︸                                                       ︷︷                                                       ︸
Desired component

+ a𝐻𝑖,𝑘h
𝑈
𝜏,𝑖,𝑘 𝑧

𝐷
𝜏,𝑖,𝑘 + 𝑧

𝑈
𝜏,𝑖,𝑘︸                    ︷︷                    ︸

Noise component

+
∑︁
𝑗≠𝑘

a𝐻𝑖,𝑘H
RSI
𝜏, 𝑗 ,𝑘a𝑖, 𝑗𝑏𝜏,𝑖, 𝑗 𝑠𝜏,𝑖, 𝑗︸                           ︷︷                           ︸

RSI component

. (10)

Here, h𝑈
𝜏,𝑖,𝑘

is the uplink channel of the form given by (3), 𝛽𝜏,𝑖,𝑘 ∈ R is the reflection coefficient,

𝑥𝜏,𝑖,𝑘 is the superimposed information signal, and 𝑧𝑈
𝜏,𝑖,𝑘

is the uplink Gaussian noise for 𝑘 th BSN.

Consequently, the data rate of 𝑘 th BSN over the time 𝑡𝜏,𝑖,𝑘 is

𝑟𝜏,𝑖,𝑘=log2

©­­­­«
1+

���a𝐻𝑖,𝑘h𝑈𝜏,𝑖,𝑘 (h𝐷𝜏,𝑖,𝑘 )𝐻a𝑖,𝑘𝑏𝜏,𝑖,𝑘
���2 (

1 − 𝛽𝜏,𝑖,𝑘
)

∑
𝑗≠𝑘

���a𝐻
𝑖,𝑘

HRSI
𝜏, 𝑗 ,𝑘

a𝑖, 𝑗𝑏𝜏,𝑖, 𝑗
���2 + 𝜎2

(���aℎ
𝑖,𝑘

h𝑈
𝜏,𝑖,𝑘

���2 + 1
)ª®®®®¬
. (11)

It is notable here that the power allocated by the UAV to a BSN remains constant during the

entire 𝜏th interval consisting of 𝑁𝐵𝑖 time slots. This means that the UAV sends the same power to

the set of BSNs throughout the 𝜏th interval. Let, 𝑃𝑖𝑛
𝑡𝜏,𝑖, 𝑗 ,𝑘

denote the input power at the front end

of the energy harvesting module of 𝑘 𝑡ℎ BSN during 𝑡𝜏,𝑖, 𝑗 time slot where 𝑗 and 𝑘 ∈ {1, · · · , 𝑁𝐵𝑖}.
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Then, the power harvested by a BSN considering a non-linear energy harvesting model [28]–[30]

is

𝜂

(
𝑃𝑖𝑛𝑡𝜏,𝑖, 𝑗 ,𝑘

)
=

𝑃0
1+exp(−𝜐(𝑃𝑖𝑛

𝑡𝜏,𝑖, 𝑗 ,𝑘
−𝜗)) −

𝑃0
1+exp(𝜐𝜗)

1 − 1
1+exp(𝜐𝜗)

. (12)

Here, 𝑃0 denotes the maximum possible harvest power, and {𝜐, 𝜗} denotes the shaping pa-

rameters. Importantly, 𝜂
(
𝑃𝑖𝑛
𝑡𝜏,𝑖, 𝑗,𝑘

)
is neither concave nor convex with respect to |𝑏𝜏,𝑖,𝑘 |2. However

𝜂

(
𝑃𝑖𝑛
𝑡𝜏,𝑖, 𝑗,𝑘

)
is a monotonically increasing and injective function with respect to |𝑏𝜏,𝑖,𝑘 |2 [31]. Let,

Ψ(𝜂) be the inverse function of 𝜂
(
𝑃𝑖𝑛
𝑡𝜏,𝑖, 𝑗,𝑘

)
, which is expressed as [29, Eq. (22)]

Ψ(𝜂)=𝜗 − 1
𝜐

ln
𝑒𝜐𝜗 (𝑃0 − 𝜂)
𝑒𝜐𝜗𝜂 + 𝑃0

. (13)

It may be further noted here that, during the WET phase, the power received by the energy

harvestor module of the 𝑘 th BSN is utilized for energy harvesting. Mathematically, this is

expressed as 𝑃𝑖𝑛
𝑡𝜏,𝑖, 𝑗 ,𝑘

=
��𝑦̂𝜏,𝑖,𝑘 ��2 ∀ 𝑗 ≠ 𝑘 . In contrast, during the data collection phase (𝑗=𝑘), a portion of

the received power is allocated for energy harvesting, which depends on the reflection coefficient

𝛽𝜏,𝑖,𝑘 of the 𝑘 th BSN, i.e., 𝑃𝑖𝑛
𝑡𝜏,𝑖, 𝑗 ,𝑘

=𝛽𝜏,𝑖,𝑘
��𝑦̂𝜏,𝑖,𝑘 ��2, while the remaining power is utilized for

transmitting data at an achievable rate, as given by (12).

III. PROBLEM FORMULATION AND OPTIMIZATION

In the proposed system model for UAV-aided BSC based data collection and wireless charging

of BSNs, as described in Section II, we aim to maximize the sum of data collected (weighted

by 𝜍1) and energy harvested (weighted by 𝜍2) by the BSNs deployed in the region of interest.

A. Optimization Problem Formulation

Let, G𝑖,𝜏 (t, 𝜷, b, u)=
∑𝑁𝐵𝑖

𝑘=1 𝜍1𝐷𝜏,𝑖,𝑘 + 𝜍2𝐸𝜏,𝑖,𝑘 denote the joint objective function for the 𝑖th

cluster in the 𝜏th time interval. Here, 𝐷𝜏,𝑖,𝑘=𝑡𝜏,𝑖,𝑘𝑟𝜏,𝑖,𝑘 and 𝐸𝜏,𝑖,𝑘=
∑𝑁𝐵𝑖

𝑗=1 𝑡𝜏,𝑖, 𝑗𝜂(𝑃
𝑖𝑛
𝑡𝜏,𝑖, 𝑗 ,𝑘

) denote

the data collected and energy harvested, respectively, by 𝑘 th BSN of 𝑖th cluster. Therefore, the

optimizing variables for 𝑖th cluster are: vector of UAV’s transmit power coefficients b, vector of

data offloading time t, and vector of BSN reflection coefficients 𝜷. 𝜍1 and 𝜍2 are the scaling

weights and the ratio 𝜍2/𝜍1 specifies the degree to which maximizing energy harvesting takes

precedence over data offloading. Additionally, we optimize the number of BSN clusters 𝑁𝑐.

Therefore, the overall problem formulation is defined as
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(P1) : max
𝑁𝑐 ,{t,𝜷,b}∀𝑖,𝜏

𝑁𝑐∑︁
𝑖=1

𝑇𝑡𝑜𝑡∑︁
𝜏=1

𝑁𝐵𝑖∑︁
𝑘=1

𝜍1𝐷𝜏,𝑖,𝑘 + 𝜍2𝐸𝜏,𝑖,𝑘

s.t. : (𝐶1) :
𝑁𝐵𝑖∑︁
𝑘=1
|𝑏𝜏,𝑖,𝑘 |2 ≤ 𝑃𝑡𝑜𝑡 ∀𝑖, 𝜏

(𝐶2) : 𝐸𝜏,𝑖,𝑘 ≥ 𝑡𝜏,𝑖,𝑘𝑃BSN + 𝐸th ∀𝑘, 𝜏, 𝑖

(𝐶3) : 𝑡𝜏,𝑖,𝑘𝑟𝜏,𝑖,𝑘 ≥ 𝐷th ∀𝑘, 𝜏, 𝑖

(𝐶4) :
𝑁𝐵𝑖∑︁
𝑘=1

𝑡𝜏,𝑖,𝑘 ≤ 1 ∀𝑖, 𝜏

(𝐶5) : 0 ≤ 𝛽𝜏,𝑖,𝑘 ≤ 1 ∀𝑘, 𝜏, 𝑖

(𝐶6) : 0 ≤ 𝑡𝜏,𝑖,𝑘 ≤ 1 ∀𝑘, 𝜏, 𝑖

(𝐶7) :
𝑁𝐵𝑖∑︁
𝑘=1

𝛿𝑖,𝑘 ≤ 𝑁𝑚𝑎𝑥𝐵 ∀𝑖

(𝐶8) : 𝑅𝑖 ≤ 𝑅𝑚𝑎𝑥 ∀𝑖

(𝐶9) :
𝑁𝑐∑︁
𝑖=1

𝛿𝑖,𝑘 ≤ 1 ∀𝑘

(𝐶10) : 𝑁𝑐 ∈ Z+.

(14)

The constraint (𝐶1) ensures that the total transmission power allocated to every cluster is less

than or equal to the communication power budget of the UAV. (𝐶2) and (𝐶3) ensure that the data

offloaded and the energy harvested by each BSN meet their respective minimum requirements.

(𝐶4) indicates that the duration of each interval is normalized to unity. (𝐶5) and (𝐶6) bound the

values of the backscatter reflection coefficient and data offloading time for all BSNs. (𝐶7) limits

the maximum number of BSNs that can be accommodated in a cluster and served simultaneously

which is governed by the maximum number of antenna sub arrays 𝑁𝑚𝑎𝑥
𝐵

at the UAV. (𝐶8) imposes

an upper bound on the cluster radius 𝑅𝑖. (𝐶9) highlights that a BSN can be associated with only

one cluster, where the BSN cluster association indicator variable 𝛿𝑖,𝑘 is defined as

𝛿𝑖,𝑘=


1 𝑘 th BSN lies in 𝑖th cluster

0 otherwise.
(15)

Additionally, different notations used in (P1) are summarized in Table I. The problem (P1) is

multivariate, and the variables are closely coupled in objective function and constraints. Thus,
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making it non-convex and non-deterministic polynomial-time hard (NP-hard). Therefore, we

solve it using a sub-optimal approach, as discussed next.

B. Optimization of BSN Clustering and Visiting Sequence

To optimize resource allocation per cluster in (P1), we first optimize the number of clusters

𝑁𝑐 that depends on the adopted BSNs clustering strategy. Generally, a small value of 𝑁𝑐 with

large cluster dimensions is desired to serve more BSNs per cluster during 𝑇ℎ. However, there

exist restrictions on both parameters. Let, 𝜃𝑚𝑎𝑥𝑠 be a UPA’s maximum possible elevation steering

angle. Then, the maximum allowable cluster radius is 𝑅𝑚𝑎𝑥=ℎUAV tan
(
𝜃𝑚𝑎𝑥𝑠

)
. Besides 𝑅𝑚𝑎𝑥 , the

value of 𝑁𝑐 depends on the number of beams 𝑁𝐵 generated at the UAV as well. Increasing 𝑁𝐵

allows to serve more BSNs simultaneously and collect more data simultaneously. However, there

is a trade-off because more beams also increase RSI, which can negatively affect data collection.

Therefore, we estimate optimal number of beams 𝑁∗
𝐵

a priori in offline mode with the proposed

transceiver design while still satisfying the minimum requirements for data collection and energy

charging to all BSNs of a cluster. Subsequently, this estimated value is utilized during the optimal

clustering of BSNs.

1) Estimation of 𝑁∗
𝐵

: Employing the proposed UAV transceiver architecture, BSN receives

dedicated communication through an individual beam. This means that with 𝑁𝐵 beams, maximum

𝑁𝐵 number of BSNs can be accommodated within a cluster of radius 𝑅𝑚𝑎𝑥 . For offline 𝑁∗
𝐵

estimation process, we assume that the channel coherence time is divided into 𝑁𝐵 equal slots,

i.e., 𝑡 𝑗=𝑡𝑐/𝑁𝐵 for all 𝑗 . Additionally, for mathematical simplicity, we consider that the reflection

coefficients of all BSNs are fixed.

Increasing the value of 𝑁𝐵 allows to serve more BSNs within a cluster. However, as 𝑁𝐵

increases, the total communication power required by the UAV to fulfill the minimum data

collection and energy harvesting requirements also increases. Consequently, the minimum com-

munication energy used by the UAV during a channel coherence time interval is given as

𝐸𝑡𝑜𝑡=

𝑁𝐵∑︁
𝑘=1

𝑁𝐵∑︁
𝑗=1

𝑃 𝑗 ,𝑘 𝑡 𝑗 . (16)

Here, 𝑃 𝑗 ,𝑘 is the transmission power at 𝑘 th BSN in 𝑗 th slot. Also, the total minimum data

collected is 𝐷𝑡𝑜𝑡=𝑁𝐵𝐷th. For offline estimation of 𝑁∗
𝐵

, we maximize the total energy efficiency
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(EE), which is defined as the ratio of total data collected by the UAV to the total energy spent

by it, i.e.,

EE(𝑁𝐵)=
𝐷𝑡𝑜𝑡

𝐸𝑡𝑜𝑡
=

𝑁𝐵𝐷th∑𝑁𝐵

𝑘=1
∑𝑁𝐵

𝑗=1 𝑃 𝑗 ,𝑘 𝑡 𝑗
. (17)

In each slot, the transmit power of each beam is determined to fulfill the minimum data rate

and energy requirement. The overall procedure to estimate 𝑁∗
𝐵

that maximizes EE(𝑁𝐵) while

meeting the minimum energy transfer 𝐸th and minimum data collection 𝐷th constraints of all

BSNs in a cluster is given in Algorithm 1, and the steps are as follows:

(i) Initially assuming zero RSI, calculate the power required for minimum data collection for

each BSN.

(ii) Calculate transmit power of all energy beams in all slots such that∑︁
𝑗 , 𝑗≠𝑘

𝑡 𝑗𝜂(𝑃 𝑗 ,𝑘 )=𝑡 𝑗𝑃BSN + 𝐸th ∀𝑘, (18)

where {𝑃 𝑗 ,𝑘 } solved using (18) ensures that each BSN harvests sufficient energy in (𝑁𝐵−1)
slots to transmit at least 𝐷th data bits and harvest additional energy.

(iii) Due to {𝑃 𝑗 ,𝑘 }, each BSN sees some RSI that reduces the effective data collection rate

𝑟𝑘 < 𝐷th/𝑡𝑘 of each BSN. Update the RSI component using (10) and recalculate the

transmission power for collecting 𝐷th data bits from each BSN, considering the RSI into

account.

(iv) Calculate EE(𝑁𝐵) using (17).

(v) Increment the value of 𝑁𝐵 and repeat steps (i)-(iv).

(vi) Finally 𝑁∗
𝐵
=𝑎𝑟𝑔𝑚𝑎𝑥

𝑁𝐵

EE(𝑁𝐵).

2) Determination of BSN Clustering and Cluster Visiting Sequence: We now solve for the

minimum possible value of 𝑁𝑐 for a given maximum cluster radius 𝑅𝑚𝑎𝑥 and the corresponding

optimization problem is

(P2) : min
{𝛿𝑖,𝑘}

𝑁𝑐

s.t. : (𝐶7), (𝐶8), (𝐶9), (𝐶10).
(19)

(P2) is solved using a modified version of the artificial bee colony (ABC) based algorithm

presented in [12]. The algorithm comprises multiple iterations, where in 𝑛𝑡ℎ iteration, the set

of BSNs associated with 𝑛𝑡ℎ cluster is determined. In the first step, the boundary set of the

unclustered BSNs location is obtained by the convex hull algorithm. Based on that, the location
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Algorithm 1 Algorithm to estimate 𝑁∗
𝐵

1: Input: CSI, 𝐷th, 𝐸th, X𝑢, X𝑣
2: Output: 𝑁∗

𝐵

3: for 𝑁𝐵=𝑁
𝑚𝑖𝑛
𝐵

to 𝑁𝑚𝑎𝑥
𝐵

do

4: Set RSI component zero ∀𝑘

5: for 𝑘=1 to 𝑁𝐵 do

6: Calculate {𝑃𝑘,𝑘}∀𝑘 such 𝑟𝑘=𝐷th/𝑡

7: end for

8: for 𝑘=1 to 𝑁𝐵 do

9: Calculate 𝑃 𝑗 ,𝑘∀ 𝑗≠𝑘 using (18)

10: end for

11: Update RSI components using (10)

12: for 𝑘=1 to 𝑁𝐵 do

13: Calculate {𝑃𝑘,𝑘}∀𝑘 such 𝑟𝑘=𝐷th/𝑡

14: end for

15: Calculate EE(𝑁𝐵) using (17)

16: end for

17: 𝑁∗
𝐵
=𝑎𝑟𝑔𝑚𝑖𝑛

𝑁𝐵

EE(𝑁𝐵)

set is partitioned into a boundary set and an inner point set. Thereafter, the farthest located BSN

from the centroid of the unclustered BSN is picked. We called it the root BSN around which the

𝑛𝑡ℎ cluster is formed. The neighborhood points across the root BSN within the distance of 2𝑅𝑚𝑎𝑥
are taken into consideration. This is done to reduce the search space. After that, by using the

ABC algorithm, the cluster centroid is obtained, and the BSNs located within the neighborhood

of the centroid (within a radius denoted as 𝑅𝑚𝑎𝑥) are grouped together into a cluster.

The ABC algorithm is an iterative three-phase algorithm. Initially a set of potential centroid

locations are generated around the root BSN. In the first phase, i.e., the employed phase, all the

candidate locations are updated with newly generated random locations via a greedy approach.

Based on their fitness value, the best location is chosen as a centroid. In contrast to the linear

fitness function used in [12], we employ a truncated discrete Gaussian shape-based fitness

function. This fitness function assigns the highest weight to clusters that contain precisely 𝑁∗
𝐵

BSNs. We denote this clustering method as mABC. Therefore, the proposed mABC clustering

algorithm prioritizes clusters where 𝑁𝐵𝑖, matches 𝑁∗
𝐵

. It is important to note that with the mABC
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clustering, some clusters will have 𝑁𝐵𝑖 ≠ 𝑁∗𝐵, as 𝑁𝐵𝑖 can range up to 𝑁𝑚𝑎𝑥
𝐵

. In the second phase,

i.e., the onlooker phase, the candidate locations are chosen probabilistically and are updated based

on the fitness value. Afterward, the candidate locations having fitness value that has not improved

over a predefined number of sub-iterations are abandoned from the further searching process.

In the last scout phase, the abandoned candidate locations are clubbed together and replaced by

new random locations. These three phases are repeated until convergence is achieved. Once the

𝑛𝑡ℎ cluster centroid and the associated BSN index are found, they are eliminated from the search

set. A similar process is repeated in the next iterations until all the BSNs are clustered.

Subsequently, the sequence of clusters the UAV needs to visit (V𝑠) is determined using a

traveling salesman problem (TSP) based approach. By employing the TSP methodology [32],

the problem is transformed into a graph computational problem in which the UAV needs to find

the route with the minimum maneuvering power consumption to visit all the cluster centroids

exactly once and return to the starting point. The locations of the cluster centroids are obtained

from (P2). Then, the distances between each pair of centroids are calculated, and the power

consumption associated with maneuvering between each pair using equation (8) is evaluated and

stored in a lookup table. An initial path/graph is generated such that the UAV begins from the

initial position and chooses the nearest unvisited cluster. This process is continued until all the

clusters have been visited. Thereafter, pairwise swapping is carried out, and its impact on power

consumption is evaluated. If the resultant path consumes relatively less energy, then the swap

is executed. The continual assessment and potential swapping are carried out iteratively until

no further improvement can be made. This approach allows to determine the least number of

clusters and the shortest route to cover their centroids.

C. Alternating Optimization for Resource Allocation

In addition, during the service of a specific cluster, we aim to optimize the parameters b, t,

and 𝜷 ∀𝑖, 𝜏, while satisfying the minimum energy transfer and data collection constraints within

the communication energy budget of the UAV.

It is to be noted that the resrouce allocation is carried out independently for every time interval.

To simplify the notation, we will omit the subscript 𝑖 and 𝜏 in the subsequent discussion. Since the

𝜂(𝑃𝑖𝑛) is an increasing function with respect to 𝑏𝑘 therefore using [33, Lemma 2] we simplify the

objective function by substituting 𝜍2𝐸𝑘 by 𝜍2E𝑘 where E𝑘=𝑏𝑘 | (h𝐷𝑘 )
𝐻a𝑘 |2

(
𝑡𝑘 𝛽𝑘 +

∑𝑁𝐵

𝑗=1, 𝑗≠𝑘 𝑡 𝑗

)
.
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Therefore, the optimization of joint resource allocation for the 𝑖th cluster consisting of 𝑁𝐵𝑖 BSNs

during 𝜏th interval is formulated as

(P3) : max
b,𝜷,t

∑︁
𝑘

𝜍1𝑡𝑘𝑟𝑘 + 𝜍2E𝑘

s.t. : (𝐶1), (𝐶2), (𝐶3), (𝐶4), (𝐶5), (𝐶6).
(20)

The problem (P3) is a non-convex NP-hard problem, and therefore we solve it using an

alternating optimization approach. In each iteration, one subset of variables is optimized while

the other variables are fixed, and then the roles of the subsets are switched in the next step. This

iterative process continues until a stopping criterion is met.

1) BSN power allocation: Here, an iterative algorithm to design b is presented. Fixing 𝜷 and

t, the optimal value b∗ can be obtained by solving the following optimization problem.

(P4) : max
b

∑︁
𝑘

𝜍1𝑡𝑘𝑟𝑘 + 𝜍2E𝑘

s.t. : (𝐶1), (𝐶2), (𝐶3).
(21)

The objective function and constraint (𝐶3) in the power allocation problem (P4) are inherently

non-concave due to the interplay between transmitted signals and the related RSI.

To solve the problem, auxiliary variables 𝝔 and 𝜻 are introduced where the former represents

SNR and the latter represents noise and interference power at the receiver side of the UAV.

Thereafter sequential convex approximation method is applied which successively relaxes the

original non-convex problem, transforming it into a series of convex subproblems. Over the

iterations the solution is refined, leading to an increasingly improved power allocation vector

and thus a suboptimal power allocation vector is obtained.

Using 𝝔, the objective function in (P4) can be transformed to a concave form and is repre-

sented as F (𝝔, 𝜻 , b)=∑
𝑘 𝜍1𝑡𝑘 log(1+𝜚𝑘 ) + 𝜍2E𝑘 . Further using (13), constraint (𝐶2) is simplified

as (𝐶2) : 𝑏𝑘 > ((1/|(h𝐷𝑘 )𝐻a𝑘 |2)Ψ((𝑡𝑘𝑃BSN+𝐸𝑡ℎ)/1−𝑡𝑘 ))1/2. Therefore an equivalent optimization

problem is expressed as

(P4.1) : max
𝝔,𝜻 ,b

F (𝝔, 𝜻 , b)

s.t. : (𝐶1), (𝐶2)

(𝐶3) : 𝜁𝑘 ≥ 2𝐷𝑡ℎ/𝑡𝑘−1

(𝐶4) :
���√︁(1 − 𝛽𝑘 )a𝐻𝑘 h𝑈𝑘 (h

𝐷
𝑘 )

𝐻a𝑘
��� 𝑏𝑘 ≥ √︁

𝜁𝑘 𝜚𝑘

(𝐶5) :
∑︁
𝑗≠𝑘

���a𝐻𝑘 HRSI
𝑗 ,𝑘a 𝑗

���2 𝑏2
𝑗+𝜎2

(��aℎ𝑘h𝑈𝑘 ��2 + 1
)
≤ 𝜁𝑘 .

(22)

November 11, 2024 DRAFT



20

In (22), constraint (𝐶̂3) imposes concave lower bound on the received SNR. (𝐶̂4) and (𝐶̂5)
establishes the relationship between the auxiliary variables and the data rate. The constraints

(𝐶̂3) and (𝐶̂5) are convex however (𝐶̂4) is non-convex due to square root term. Using first

order Taylor series expansion we have
√
𝜁𝑘 , 𝜚𝑘 ≤ 𝐺 (𝜁𝑘 , 𝜚𝑘 ) where

𝐺 (𝜁 (ℓ)
𝑘
, 𝜚
(ℓ)
𝑘
)=

√︃
𝜁
(ℓ−1)
𝑘

𝜚
(ℓ−1)
𝑘

+ 1
2

√√√
𝜁
(ℓ−1)
𝑘

𝜚
(ℓ−1)
𝑘

(
𝜚
(ℓ)
𝑘
− 𝜚(ℓ−1)

𝑘

)
+ 1

2

√√√
𝜚
(ℓ−1)
𝑘

𝜁
(ℓ−1)
𝑘

(
𝜁
(ℓ)
𝑘
− 𝜁 (ℓ−1)

𝑘

)
(23)

and 𝜁 (ℓ−1)
𝑘

, 𝜚
(ℓ−1)
𝑘

represents the optimizing parameters after (ℓ−1)th iteration. Using the above

approximation, (22) is transformed into a convex optimization problem, expressed as

(P4.2) : max
𝝔,𝜻 ,b

F (𝝔, 𝜻 , b)

s.t. : (𝐶1), (𝐶2), (𝐶3), (𝐶5)

(𝐶4) :
���√︁(1 − 𝛽𝑘 )a𝐻𝑘 h𝑈𝑘 (h

𝐷
𝑘 )

𝐻a𝑘
��� 𝑏𝑘 ≥ 𝐺 (𝜁𝑘 , 𝜚𝑘 ).

(24)

The procedure to obtain b∗ via SCA method is summarized in Algorithm 2.

Algorithm 2 SCA method based algorithm to solve (P4)
1: Input : CSI, 𝐷th, 𝐸th, X𝑢, X𝑣 , |𝑁𝐵 |, 𝜷∗, t∗

2: Initialize : b0, 𝜻0, 𝝔0, ℓ=0

3: Output : b∗

4: do

5: Update F𝑜𝑙𝑑 ← F (b(ℓ ) , 𝜻 (ℓ ) , 𝝔 (ℓ ) )

6: Update ℓ ← ℓ + 1

7: Obtain (b(ℓ ) , 𝜻 (ℓ ) , 𝝔 (ℓ ) ) by solving (P4.2).

8: Update b∗ ← b(ℓ )

9: while
��F (b(ℓ ) , 𝜻 (ℓ ) , 𝝔 (ℓ ) ) − F𝑜𝑙𝑑 �� ≥ 𝜖𝑜 or ℓ ≤ ℓ𝑚𝑎𝑥

2) Reflection coefficient optimization: Given that b∗ and t∗ are known, optimal value 𝜷∗ can

be evaluated by solving the following optimization problem

(P5) : max
𝜷

∑︁
𝑘

𝜍1𝑡𝑘𝑟𝑘 + 𝜍2E𝑘

s.t. : (𝐶2), (𝐶3), (𝐶5).
(25)
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In (P5), the objective function is concave. Further simplifying the constraint (𝐶2) using (13),

(P5) is redefined as

(P5.1) : max
𝜷

∑︁
𝑘

𝜍1𝑡𝑘𝑟𝑘 + 𝜍2E𝑘

s.t. : (𝐶2) : 𝛽𝑘 > (1/| 𝑦̂𝑘 |2) × Ψ((𝑡𝑘𝑃BSN+𝐸𝑡ℎ−(1−𝑡𝑘)𝜂( | 𝑦̂𝑘 |2))/𝑡𝑘)∀𝑘,

(𝐶3), (𝐶5).

(26)

The overall problem (P5.1) is convex and can be solved by any standard convex optimization

technique.

3) Communication time optimization: Given b∗ and 𝜷∗, optimal value t∗ is obtained by solving

the following problem

(P6) : max
t

∑︁
𝑘

𝜍1𝑡𝑘𝑟𝑘 + 𝜍2𝐸𝑘

s.t. : (𝐶2), (𝐶3), (𝐶4), (𝐶6).
(27)

In the above problem, the objective function and all the constraints are linear function in terms

of the optimization variable. Therefore, the problem (P6) is a linear optimization problem and

can be solved by the interior point method.

The alternating optimization procedure used to solve problem (P3) is outlined in Algorithm

3. It involves breaking down the original problem (P3) into three subproblems, namely (P4),
(P5), and (P6). The algorithm iteratively optimizes each set of variables while keeping the others

fixed. This iterative process continues until convergence is achieved or a maximum number of

iterations is reached.

Algorithm 3 Algorithm to solve (P3)

1: Input : CSI, 𝐷th, 𝐸th, X𝑢, X𝑣 , 𝑞=1

2: Output : b∗, 𝜷∗, t∗

3: do

4: 𝑞 ← 𝑞 + 1

5: Given t(q) and 𝜷(q), find b(q+1) by solving (P4)

6: Given t(q) and b(q+1), find 𝜷(q+1) by solving (P5)

7: Given 𝜷(q+1) and b(q+1), find t(q+1), by solving (P6)

8: while
��G(t(q+1), 𝜷(q+1), b(q+1)) − G(t(q), 𝜷(q), b(q))

�� ≥ 𝜖 or 𝑞 ≤ 𝑞𝑚𝑎𝑥
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IV. COMPLEXITY AND CONVERGENCE ANALYSIS

A. Complexity Analysis

The computational complexity of the proposed resource allocation Algorithm 3 comprises of

the complexities involved in solving (P4), (P5), and (P6). Power allocation is carried out by

solving (P4) via sequential convex approximation method. The problem (P4.2) comprises of

𝜉=3𝑁𝐵 optimizing variables and 𝜔=3𝑁𝐵+1 constraints and can be solved using via interior point

method. The computation complexity is O
(
𝐼1

(
𝜉0.5(𝜉𝜔2 + 𝜔3) log(2𝜉/𝜖𝑞)

) )
where 𝜖𝑞 denotes

iteration accuracy and 𝐼1 is the number of iterations required for convergence of the Algorithm

2 [34]. The complexity involved in solving problem (P5) is C2=O
(
𝐼2(3𝑁𝐵)2

)
[6], where 𝐼2

denote the number of iterations required for convergence of convex problem (P5). In (P6)
there are 𝑁𝐵 decision variables and 4𝑁𝐵 + 1 constraints, thus computation complexity of linear

optimization problem is C3=O
(
(4𝑁𝐵 + 1)𝑁3

𝐵

)
[35]. Therefore, the overall complexity of the joint

resource allocation problem is O (𝐼3(C1 + C2 + C3)), where 𝐼3 is the number of iteration required

for convergence of Algorithm 3.
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Figure 3: Convergence of the proposed BSC+WET scheme.

B. Convergence Analysis

Let, {t(q+1), 𝜷(q+1), b(q+1)} and {t(q), 𝜷(q), b(q)} be the feasible solution obtained after (𝑞+1)th

and 𝑞th iteration, respectively. The solution set
(
b(ℓ) , 𝜻 (ℓ) , 𝝔(ℓ)

)
obtained at the end of the ℓ

iteration in Algorithm 2 is also a feasible solution for ℓ + 1 iteration due to (𝐶4) [34]. Therefore

Algorithm 2 yield a non decreasing sequence F (b(ℓ+1) , 𝜻 (ℓ+1) , 𝝔(ℓ+1)) ≥ F (b(ℓ) , 𝜻 (ℓ) , 𝝔(ℓ)).
Moreover F (b(ℓ+1) , 𝜻 (ℓ+1) , 𝝔(ℓ+1)) is bounded above due to finite transmit power constraint which

guarantees the convergence of Algorithm 2. Thus G(t(q), 𝜷(q), b(q+1)) ≥ G(t(q), 𝜷(q), b(q)), and

problem (P5.1) is convex; the optimal solution is obtained by solving the dual problem via

subgradient method, thereby G(t(q), 𝜷(q+1), b(q+1)) ≥ G(t(q), 𝜷(q), b(q+1)) holds [6]. (P6) is linear
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in terms of t(q), therefore G(t(q+1), 𝜷(q+1), b(q+1)) ≥ G(t(q), 𝜷(q+1), b(q+1)). This proves the non-

decreasing nature of G(t, 𝜷, b) over the iterations. Also, G(t, 𝜷, b) is upper bounded due to

limited service time. As a result, Algorithm 3 converges within a finite number of iterations, as

shown in Fig. 3, yielding a suboptimal set of parameters.

V. RESULTS AND DISCUSSION

This section presents the performance results of the proposed UAV-aided monostatic BSC and

WET system. These results have been obtained through Monte Carlo simulations conducted in

MATLAB. The different parameter values used in the simulations are specified in Table II.

Table II: Simulation parameters and values [5], [27], [36]–[38]

Parameter Value Parameter Value

𝑅𝐴𝑂𝐼 50 m 𝑁 150

𝑎, 𝜇 61.4, 2 𝑁𝑚𝑎𝑥
𝐵

8

𝜎2
𝑠 33.64 𝑏𝑠 8 bits

𝑃𝑐𝑜𝑚 18.85 W 𝑇ℎ 900 s

𝑃BSN 0.1 mW 𝑓𝑐 28 GHz

ℎUAV 10 m 𝜎2 1 × 10−9

𝐺0 10 dBi 𝜅 40 dB

𝐷th 1 bit 𝐸th 0.32 mW

𝑅𝑚𝑎𝑥 10 m 𝑁𝑥 × 𝑁𝑦 16 × 16

𝐾𝑟 18 𝑃𝑚 4.927 mW

𝑘𝑒 0.1 𝜐, 𝜗 274, 0.29

𝛿 0.012 𝑉 10.21 m/s

𝑑𝑜 0.6 𝜌 1.225 Kg/m3

𝑈𝑡𝑖 𝑝 120 m/s 𝑣𝑜 4.03 m/s

𝑠 0.05 𝐴 0.503 m2

Ω 300 rad/s 𝑅 0.4 m

𝑊 20 N 𝜂PA 27%

𝑃DAC 3.84mW 𝑃M 0.3 mW

𝑃LPF 14 mW 𝑃O 22.5 mW

𝑃LNA 0.5029 mW 𝑃ADC 16.4 mW

A. Energy Efficiency Performance

We first determine the optimal number of beams 𝑁∗
𝐵

that should be activated at the UAV

to serve a cluster and maximize the energy efficiency of the system, as explained in Section
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III-B1. Fig. 4 illustrates that there exists an 𝑁∗
𝐵
< 𝑁𝑚𝑎𝑥

𝐵
that maximizes the energy efficiency.

The concave nature of the curve is due to the fact that an increase in 𝑁𝐵 results in more BSNs

being served simultaneously, thereby increasing the total data collected. However, increase in 𝑁𝐵

also leads to an increase in RSI on the data beam, resulting in the need for more power to meet

the rate constraints. It is notable that the value 𝑁∗
𝐵

depends on 𝐷th and 𝐸th. In simulation we

have considered BSNs are equipped with DHT-11 sensor which are used to record temperature

and humidity values on hourly basis. Per sample BSN consumes 12 mJ [39] and generates total

transmit data of 4.5 bytes, which constitutes of 2 bytes of critical device data, namely sampling

time, BSN’s ID, etc., 2 bytes of sampled data and start bit, end bit, and 2 bits of delimiters in

between. Using simple calculation, minimum energy requirement and data collection per unit

time is 𝐸𝑡ℎ ≈ 0.32 mJ and 𝐷th ≈ 1 bit. High energy efficiency is due to dual channel coefficients

in (11) and 𝐸𝑡ℎ requirements. The value of 𝑁∗
𝐵

is utilized in the subsequent simulation studies.

B. Performance Analysis of the Proposed mABC Clustering

Fig. 5 shows the number of clusters 𝑁𝑐 formed for different BSN population 𝑁 . We compare

the proposed mABC clustering algorithm, which prioritizes clusters with 𝑁𝐵𝑖=𝑁
∗
𝐵

BSNs, with

two existing BSNs clustering algorithms: modified social group optimization (mSGO) clustering

[40] and modified 𝑘-means (m𝑘-means) clustering [41]. Here, the mSGO clustering algorithm

also employs a hybrid approach, where the search space is reduced based on the given method

[42]. In m𝑘-means, the BSNs are initially clustered into 𝑁𝑐=⌈𝑁/𝑁∗𝐵⌉ clusters using the 𝑘-

means clustering. If any cluster violates the constraints, 𝑁𝑐 is incremented by one, and the

BSNs are re-clustered. This process is repeated until all clusters satisfy the constraints. As

observed from Fig. 5, there is a positive correlation between the BSN count and the number of

clusters formed. Notably, the mABC algorithm consistently generates the least number of clusters,

3 4 5 6 7 8

1.28

1.32

1.36

1.4

Figure 4: Energy efficiency versus number of beams 𝑁𝐵.
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followed by mSGO, while m𝑘-means results in the highest number of clusters. These differences

in performance arise from the distinctive strategies employed by each algorithm. Balanced

exploration-exploitation approach and adaptiveness of the mABC algorithm based on solution

fitness values facilitates swift convergence towards optimal regions within the search space. In

contrast, mSGO leans more towards exploitation, which limits its ability to escape local optima.

Additionally, mABC and mSGO, with their population-based methodologies, demonstrate greater

resilience in accommodating outlying BSNs compared to the more rigid mk-means approach.

Consequently, irrespective of the BSN population, the mABC algorithm consistently forms

clusters with the minimum number of BSNs, underscoring its efficacy in cluster formation.

100 150 200 250
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Figure 5: Clustering optimization performance.
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Figure 6: BSN service quality as a function of UAV

total energy budget. Total number of BSNs 𝑁=150.

To this end, we focused on minimizing 𝑁𝑐 by solving (P2) and optimizing the cluster visiting

sequence to minimize inter-cluster maneuvering distance. However, these steps did not consider

the UAV energy budget. The UAV energy is utilized for BSC, WET, hovering, and inter-cluster

movement. It is important to note that there may be situations where the UAV’s available energy

budget is insufficient to support all 𝑁𝑐 clusters. To analyze such scenarios, Fig. 6 illustrates the

variation in the fraction of served BSNs as a function of UAV energy budget under different

clustering algorithms for a total of 𝑁=150 BSNs. With an increase in the energy capacity of

the UAV, the ratio of serviced BSNs experiences a consistent rise across all clustering schemes.

However, a notable distinction arises in the mABC clustering scheme, where the formation of

the least number of clusters (as shown in Fig. 5) leads to a high average BSN count per cluster.

Remark 1. It can be noticed that the power consumption in UAV hovering and movement

exceeds the communication power for BSC and WET operation. Consequently, when the value
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of 𝑁𝑐 increases for a given UAV energy budget, BSN count, and deployment scenario, the total

hovering time also increases, resulting in a reduced fraction of covered BSNs.

Therefore, with mABC algorithm, which forms the fewest number of clusters among the given

𝑁 BSNs, the UAV serves a larger proportion of BSNs.

C. Performance Analysis of the Proposed BSC and WET Scheme in a Cluster

Here, we compare the performance of the proposed UAV-aided monostatic BSC and WET

scheme over two other closely related works: HTSimOP [15] and HTSeqOP [14]. However, it is

important to note that [14], [15] considered IoT nodes operating in half-duplex communication

mode. Therefore, for a fair comparison, we incorporate the HTSimOP and HTSeqOP protocols

in a BSC framework while employing mABC clustering, which is elaborated as follows.

1) HTSimOP scheme: In this scheme, the 𝜏th time interval is divided into two slots: 𝛼𝐸,𝐷̄𝜏

for WET phase and (1 − 𝛼𝐸,𝐷̄)𝜏 for BSC phase, where 𝛼𝐸,𝐷̄ ∈ [0, 1]. During the WET

phase, all BSNs simultaneously harvest energy from an individual beam. In the BSC phase,

all BSNs simultaneously offload the data via a dedicated beam. As a result, due to the

simultaneous data offloading by all 𝑁𝐵𝑖 (=𝑁𝐵) BSNs, each data beam experiences RSI and

inter-backscatter node interference as well. Moreover, the UAV requires 2𝑁𝐵 RF chains for

simultaneous data collection and WET operation. Therefore, the total energy consumed by

the UAV’s transceiver hardware is

𝐸𝐻𝑇𝑆𝑖𝑚𝑂𝑃𝑐 =𝜏

(
2𝑁𝐵 (𝑃DAC + 𝑃M + 𝑃LPF) + 𝑃LO +

𝑃𝑡𝑜𝑡

𝜂PA

+(1 − 𝛼𝐸,𝐷̄)𝑁B (𝑃LNA𝑁t + 2𝑃ADC + 𝑃LPF + 𝑃M)
)
. (28)

2) HTSeqOP scheme: Similar to the HTSimOP scheme, the 𝜏th time interval is divided into

two slots: 𝛼𝐸,𝐷̄𝜏 for WET phase and (1 − 𝛼𝐸,𝐷̄)𝜏 for BSC phase. Unlike HTSimOP, the

data from all the BSNs in the BSC phase is collected sequentially, resulting in zero RSI.

As data is collected from one BSN at a time, UAV uses two RF chain during the BSC

phase and 𝑁𝐵 RF chains during the WET phase. Therefore, the total energy consumed by

the UAV’s transceiver hardware is

𝐸
𝐻𝑇𝑆𝑒𝑞𝑂𝑃
𝑐 =𝜏 (2(𝛼(𝑁𝐵 − 1) + 1) (𝑃DAC + 𝑃M + 𝑃LPF) + 𝑃LO

+𝑃𝑡𝑜𝑡
𝜂PA
+ (1 − 𝛼𝐸,𝐷̄) (𝑃LNA𝑁t + 2𝑃ADC + 𝑃LPF + 𝑃M)

)
. (29)
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Figure 7: Mean RF hardware power consumption as a function of the number of beams 𝑁𝐵 with 𝑃𝑡𝑜𝑡=5 W.

Fig. 7 illustrates the relationship between the mean RF hardware power consumption and

the number of beams. Notably, as the number of beams increases, the mean hardware power

consumption consistently remains constant in the proposed scheme. However, it is essential to

note that among different schemes considered, HTSimOP stands out with the highest power

consumption. On the other hand, HTSeqOP initially exhibits slightly lower power consumption,

but this difference becomes less significant as the cluster size increases. This implies that while

HTSeqOP may initially offer a slight advantage in terms of hardware power consumption, its

impact diminishes as cluster size increases. Following clustering and using the knowledge about

the location of BSNs, BSN’s cluster association, and CSI, Algorithm 3 is initiated with equal

data offloading time, unity backscatter coefficients, and equal power allocation to each BSN.

10 12 14 16 18 20
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2

Figure 8: Mean data rate as a function of communi-

cation power for BSN cluster size 𝑁𝑐=7, for the same

energy harvested in all schemes.
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Figure 9: Mean energy harvested as a function of

communication power for BSN cluster size 𝑁𝑐=7, for

the same data rate in all schemes.

Figs. 8 and 9 provide a comprehensive comparison of performance of the proposed joint
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BSC and WET scheme with HTSeqOP and HTSimOP. In Fig. 8, the achievable mean data rate

of a cluster are evaluated with respect to the available communication power at the UAV. In

the proposed BSC and WET scheme, the data collection and energy harvesting were jointly

maximized. For a fair comparison, we maintained the same amount of harvested energy in the

HTSeqOP and HTSimOP schemes as achieved in our proposed scheme during each Monte

Carlo iteration. Subsequently, the mean collected data rates of HTSimOP and HTSeqOP were

maximized accordingly. Similarly, Fig. 9 provides insights into the mean energy harvested per

unit time by the BSNs of a cluster for different schemes. For a fair comparison the mean data

rate was kept identical across all schemes.

Remark 2. The results demonstrate that the proposed scheme outperforms HTSimOP in terms

of both mean data rate and harvested energy. This improvement can be attributed to the efficient

utilization of UAV energy, which would have otherwise been wasted in the RF circuitry of

HTSimOP (as shown in Fig. 7). Furthermore, though HTSeqOP, uses less RF power (Fig. 7),

collects less data due to its sequential data collection approach during the BSC phase (Fig. 8).

D. Impact of Scaling Weights on Mean Data Collected and Energy Harvested

1 2 3 4 5 6 7

1

2

3

4

5

1

2

Figure 10: Mean data rate and energy harvesting performance as a function of scaling ratio for different BSN

cluster sizes.

So far, we have optimized the resources per cluster considering fixed values of the scaling

weights 𝜍1 and 𝜍2. However, the priority between collecting additional data and harvesting

energy can vary due to spatio-temporal variations. Fig. 10 provides insight into the impact of

adjusting the scaling ratio Γ= log10 (𝜍2/𝜍1) on both the mean data rate and harvested energy

across different cluster sizes. In general, as the value of Γ increases, there is a noticeable trend

for all cluster sizes where the data rate decreases while the energy harvesting rate increases.
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This relationship underscores the importance of balancing these competing objectives to achieve

optimal performance based on specific system requirements and constraints. when placing a

higher priority on energy harvesting (achieved with larger values of Γ), the system tends to

allocate more resources towards harvesting energy while meeting the minimum data collection

threshold 𝐷th. constraints. Conversely, when prioritizing data rate (indicated by lower values of

Γ), the BSNs harvest energy close to the minimum energy threshold 𝐸th and focus more on

maximizing data transmission capabilities. While optimal values of 𝜍1 and 𝜍2 can be determined

and substituted into the problem (P1) according to specific system requirements, the precise

determination of these values lies beyond the scope of the current study.

E. Total Data Collected and Energy Harvested with 𝑁 BSNs versus UAV Energy Budget
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Figure 11: Total data collected by UAV as a function

of UAV energy budget with 𝑁=150 BSNs.

0.5 1 1.5 2 2.5 3

0

50

100

150

200

250

Figure 12: Total energy harvested by BSNs as a

function of UAV energy budget with 𝑁=150 BSNs.

Fig. 11 shows the total data collected from 𝑁 BSNs using the proposed joint BSC and WET

system, HTSimOP, and HTSeqOP, when BSNs are clustered using mABC algorithm. Here also,

for a fair comparison the energy harvested by all schemes is kept the same. As explained in

Section V-C, in HTSimOP, due to simultaneous data offloading from all the BSNs in a cluster,

there is RSI which degrades the performance of data offloading. In HTSeqOP there is no RSI,

since only one BSN is catered at a time during BSC phase. However, zero RSI is achieved

at the cost of reduced time availability for data offloading per BSN. Due to this, the overall

performance of HTSeqOP deteriorates more in comparison to HTSimOP.

Similarly, Fig. 12 presents the total energy harvested for a given UAV energy budget in the

proposed scheme and the benchmark schemes under the condition that the total data collected in

all schemes are the same. In Figs. 11 and 12, two contrasting Γ values are considered to capture

data-centric optimization and energy-centric optimization. While the data-centric approach yields

a higher total data collected, the energy-centric approach results in more harvested energy.
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VI. CONCLUSION AND FUTURE WORKS

This work has presented a UAV-aided joint data collection and charging framework in BSC

networks. To remove the dependencies from terrestrial cellular infrastructure, monostatic BSC

based architecture has been adopted. The proposed UAV transceiver utilizes a hybrid beamform-

ing architecture with only 3 RF chains, resulting in a reduced RF circuit power consumption.

This provides relatively more transmission power under a fixed communication power budget.

To improve the UAV energy efficiency, multiple BSNs are served simultaneously instead of

sequentially. To deal with the performance trade-off due to residual self interference in full

duplex BSC and WET operation, an optimal number of BSNs in a cluster has been computed

offline. Accordingly, the BSNs deployed in a region of interest are clustered while considering the

desired optimal number of BSNs per cluster and other UAV-based cluster dimension constraints.

While serving a particular cluster with a given UAV communication power budget, a joint

charging and communication data rate maximization problem has been formulated considering

minimum energy harvesting and data rate constraints. Backscatter reflection coefficients, data

offloading time, power allocation to BSN has been obtained using alternating optimization

approach. Simulation results have demonstrated that the proposed joint BSC and WET scheme

exhibits superior performance in terms of mean data rate and harvested energy compared to the

competitive benchmarks. Efficient utilization of UAV energy in the proposed scheme provides

significantly improved system performance. The presented framework motivates an integrated

transceiver design, deployment, and optimal access parameter selection problem, for optimizing

the system performance.

Further studies on distributed multi-UAV scenarios for BSC would be of future interest. In

addition, exploring heterogeneous powered BSNs with dedicated cluster-head nodes to improve

BSC network performance is an interesting direction.
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