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Abstract—This paper proposes a novel approach for optimal
placement of phasor measurement units (PMUs) targeting smart
grid controllability under perturbed system conditions while
ensuring system observability. In determining the optimal num-
ber of required PMUs, as a practical consideration, PMUs are
considered to have limited number of input channels. To achieve
this optimality objective, a weighted least square optimization
problem with a continuous relaxation is considered for the
discrete binary constraint. An information-theoretic viewpoint
is taken for characterizing the robustness of grid estimation at
the phasor data concentrator. A perturbation-robust algorithm
is developed for a global optimal solution for PMU placement.
The efficacy of the proposed smart grid monitoring approach is
validated on IEEE 6, 14, 30, 57, and 118-bus systems. The results
demonstrate that, unlike the conventional system observability
aware PMU deployment, the proposed strategy ensures sys-
tem controllability under generic perturbation conditions while
maintaining the grid observability at ~ 100%, a minimum
mean squared error ~ 1073, and mutual information between
estimated and measured attributes close to 1 in all test cases.

Index Terms—Grid controllability, limited input current chan-
nels, optimal PMU placement, perturbation, phasor measurement
unit (PMU)

I. INTRODUCTION

Due to the increased interfacing of power electronic devices
in the grid (for the purpose of voltage regulation and stability,
power flow control, dynamic reactive power compensation,
integration of renewable energy sources, improving system
reliability and flexibility, fault current limitation, load balanc-
ing and power flow optimization, etc.) and the increasingly
deregulated electricity market, modern electric power grids are
forced to operate closer to their stability and thermal limits [1].
Proliferation of power electronic switching based loads and
sources have also led to manifold increase of sustained as well
as sporadic perturbations in the recent years [2]. Prevalence of
such perturbed system states motivates the need for a revised
instrumentation for real-time monitoring and estimation in the
modern power system for its reliable operation and control [3].

The advanced instrumentation of the power grid includes the
integration of phasor measurement units (PMUs), which pro-
vide real-time measurements of critical grid attributes across
different nodes for enhanced monitoring and control [4], [5].
These devices communicate their measurements to a local
phasor data concentrator (PDC), for monitoring and control
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by running estimations and predictions under various system
conditions. System state estimation at the PDC is compounded
by the errors due to electromagnetic noise from power lines
during PMU data transmission [6]. Therefore, owing to high
installation and maintenance costs of the PMUs along with
the requirement of accurate system state estimation, optimal
PMU placement strategy is highly important for providing an
economic and effective monitoring solution. Moreover, PMU
deployment strategy also needs to ensure accurate system state
estimation at the PDC under perturbed grid conditions.

In the scope of this work, controllability is defined as the
ability of the optimally deployed PMUs with limited input
current channels to estimate a perturbed grid health at the
PDC within acceptable error bounds. We intend to pursue this
optimal PMU placement aiming to achieve grid controllability
under perturbation while ensuring robust observability.

A. Literature Review and Motivation

The related work on smart grid monitoring instrumentation
can be broadly divided into three sets. The first set [7]-
[10] present various strategies for optimal PMU placement
at minimized deployment cost while maintaining a basic grid
observability. These studies did not consider the practical
constraint of limited input current channels of the PMUs. The
research in [11]-[13] proposed the aspect of grid observability
and fault visibility using optimally deployed limited current
channel PMUs. They did not consider the notion of grid
controllability owing to proper system state reconstruction at
the PDC under perturbed system conditions. The work in [14]
demonstrated the impact of erroneous system state measure-
ment/reconstruction after pruning, on the observability attained
using the PMU placement optimization, while limiting the
current channel capacity per PMU. However, the system states
arising from perturbed grid conditions were not considered. As
a consequence, the applicability of such approaches is limited
in modern grids, where renewable penetration causes sustained
oscillations. Therefore, optimized PMU deployment solutions
rendered by these existing approaches need to be revisited to
address the practical system and placement constraints.

The second set of work employ different statistical ap-
proaches [15]-[19], and evolutionary algorithms [20]-[22], for
optimal PMU placement in various grid topologies. They aim
at devising unique placement solutions with time constraints.
Though time complexity reduction in optimal PMU placement
is an important objective, the key practical aspects, namely,
realistic PMU capabilities, accounting for grid perturbation,
and grid controllability beyond only observability, require fur-



ther research attention. The research in [23] employed a judi-
cious combination of branch and bound algorithm, successive
quadratic programming, and interior point methods for finding
optimal PMU placement solution ensuring maximum mea-
surement redundancy in reduced number of PMUs. However,
optimal PMU placement for controllability of perturbed power
networks has not been discussed thus far in the literature. Also,
the consideration of efficient state estimation at the PDC in the
optimization formulation for the placement of single current
channel PMUs in perturbed power networks has remained
unaddressed. Such aspect becomes crucial for providing an
accurate data-based control in perturbed grids [24].

The final set [25]-[28] look into the optimal PMU place-
ment considering different system adversities. These works
analyze the PMU placement variations under different line and
PMU outages. The studies in [29] and [30] analyze a multi-
stage PMU installation process for co-phasing while ensuring
complete system observability. The works in [31], [32] further
analyze the use of the installed PMUs in outage detection
in power networks. Though these studies demonstrate some
variability on the optimal placement by considering a revised
grid connectivity, such outage scenarios may not occur fre-
quently in the grid. Moreover, the objective of wide area
monitoring systems is to avoid such outages. Additionally,
with the notion of micro-grid, perturbed grid states are more
predominant now-a-days. Therefore, understanding the per-
turbed grid states, between the two extreme states, namely,
ideal and grid outage states, is of current interest. This allows
wideband stability analysis and appropriate control in ensuring
the operational stability of perturbed power networks [33].

In our recent preliminary studies [34], we considered op-
timal PMU placement under perturbed grid states for vari-
ous standard IEEE test systems and analyzed the involved
optimization problem. However, the impact of limited input
current channels in practical PMUs on the estimation accuracy
of real power networks under perturbation was not considered.
In other words, an analysis of optimum placement of PMUs
with limited input current channels for monitoring perturbed
grid conditions and thus ensuring controllability is yet to be
reported in the literature.

B. Contributions and Significance

As an advance, this paper utilizes the perturbation-immune
optimal placement of PMUs with limited input current chan-
nels from a redefined notion of grid controllability developed
in [34], and augments it with an approach for optimal estima-
tion of the perturbed grid states at the data collector. This
study assumes additional importance due to rapid increase
in grid non-linearity, arising from the incorporation of power
electronic devices. In view of the lacuna in the literature on
practical instrumentation of smart grid for monitoring and
controllability under perturbations, we revisit the optimum
PMU deployment strategy. The key contributions of this work
are as follows:

1) The notion of line observability reward and node weight
vector are proposed for efficient grid health characteriza-
tion under random perturbations.

2) A minimum cost constrained quadratic objective problem
over a bounded decision domain is formulated, which
employs a polynomial grid observability constraint while
considering the presence or absence of zero injection bus
(ZIB), for ensuring grid controllability under perturba-
tions.

3) For ensuring an accurate estimation of grid states at
the PDC using data from optimally deployed PMUs
in perturbed power networks, an information theoretic
measure is considered in the PMU placement optimiza-
tion. Further, a penalty-aware perturbation-robust optimal
PMU placement algorithm is presented to solve the final
non-convex optimization problem.

4) The two-stage optimization problem is solved for per-
turbed grid scenarios in an IEEE 6-bus system, to
highlight the trade-off from relaxing the assumption of
sufficient input channels, and a revised PMU placement
vector is obtained to deal with perturbations. IEEE 14,
30, 57, and 118-bus systems are considered for further
validation, establishing the importance of the proposed
perturbation-robust PMU placement strategy.

Simulation results demonstrate that the proposed grid
controllability-aware PMU deployment is able to capture the
grid health under perturbations, which is otherwise not pos-
sible in the existing conventional deployment strategy. With
the proposed approach, a robust grid estimation at the PDC
is demonstrated with a significantly reduced minimum mean
squared error (MMSE) in the estimated values of the grid
health attributes at pseudo-monitored nodes. Also, using the
proposed deployment strategy, mutual information between the
estimated and measured attribute vectors increases to unity,
thus ensuring sufficient grid observability under perturbed
grid scenarios. Furthermore, the contingency analysis assures
reinforced controllability and observability rendered by the
proposed strategy under PMU outage and line loss conditions.

Remark 1. It is notable that, consideration of faults or
loss of a PMU alone does not model the real operating
conditions of the grid, which are majorly attributed to the
wideband perturbations that are present in the power network,
arising by the virtue of high renewable penetration. One of
the core contributions of this research is in establishing an
optimal PMU deployment policy for ensuring PMU data-based
controllability of perturbed power networks.

C. Industry Relevance of the Proposed Controllability-Aware
PMU Placement Optimization

According to North American Electric Reliability Corpora-
tion’s (NERC) ‘Reliability Guideline for PMU Placement and
Installation’ [35], the installation of PMU follows ‘standard
utility practice’ for planning, design, and commissioning. The
planning stage involves determination of measurements to be
considered, signals required to achieve those measurements,
and the signal sources for the PMUs. Therefore, PMU installa-
tion, commissioning, and maintenance guidelines in [36], [37],
efficient deployment of optimum number for PMUs is consid-
ered a practical concern in all electric grids, utility providers,



(b)
Fig. 1: (a) N-node smart grid network graph, (b) incidence diagram
for node ¢ with k incident lines.

and electricity regulatory bodies, such as Federal Energy Reg-
ulatory Commission (United States), Canadian Electricity As-
sociation, Central Electricity Regulatory Commission (India),
State Grid Corporation of China, National Electric System
Operator (Brazil), Eskom (South Africa), Australian Energy
Market Operator, European Network of Transmission System
Operators for Electricity,Tokyo Electric Power Company, etc.
Also, it is worth mentioning that optimum state estimation of
future grids under perturbed system states is still a challenging
aspect in robust grid operation and monitoring.

As outlined by NERC, more than 90% of the real-time as
well as non-real time PMU aspects involve grid observability
and state estimation under perturbed conditions using PMUs
[35], which has not been discussed in the present state-of-
the-art. Further, one of the key aspects involved in signal
monitoring as well as equipment design is concerned with
the number of input channels in the PMU. Based on ‘NASPI
Synchrophasor Starter Kit’ [38], limited input channels may
lead to multiple PMU installation at one bus for complete
monitoring of the situation. This strengthens the importance
of the issue of limited input channels presented in this work.

From the above discussion, it is established that optimal
deployment of PMUs with limited input current channels is
a pertinent problem considered by the utilities. Moreover, it
is specifically discussed under ‘Some Additional Myths and
Misconceptions’ subsection of [38], synchrophasor visualiza-
tion in conventional power grids is far from mature. In other
words, the domain is not yet sufficiently explored industrially.

D. Paper Organization

The paper layout is as follows: Section II presents the
system model, Section III contains the optimization problem
formulation for the proposed grid perturbation-robust PMU
placement strategy and definitions of the involved parameters,
followed by the results and conclusion in Sections IV and V.

II. SYSTEM MODEL FOR OPTIMAL PMU PLACEMENT

Consider a power grid with a set of buses indexed by
A :={1,2,--- ,N}. The buses are connected through a set
of transmission lines . C A x4, i.e., bus 7 is connected to
bus j iff (i,j) € £. Accordingly, A, is the set of buses inci-
dent to bus ¢, with the element j represented as Ag , such that
lA;|| = k; is its incidence order as shown in Fig. 1(b). Further,
let us define the grid incidence matrix A = [a; j|i,j € A,
such that a; ; = 1, iff nodes 7 and j are connected, and 0
otherwise. Controllability in this work implies the ability to

reconstruct the system image at the PDC for monitoring under
perturbed system conditions. We consider voltage and current
phasor perturbations while proposing the perturbation-robust
optimal PMU placement strategy. Perturbations amounting to
Awv;, Ag;, Ai; 5, and Ad; ; against the i-th node’s steady state
voltage magnitude v;, voltage phase ¢;, current magnitude ; ;,
and current phase d; ; is considered in the mentioned order, as
shown in Fig. 1(a), and propagation through all incident lines
to node 7 is considered.

All PMUs are considered to have a limited number of input
current channels, typically 1, that is less than the minimum
node order of the grid. This consideration ensures to critically
base the estimation error metric on the robustness of the
proposed PMU placement and estimation approach without
gaining any measurement aid from the PMUs with multiple
input current channels. It may be noted that, our formulations
do not restrict the use of PMUs with multiple input current
channels, as they do not change the idea contribution in our
research. A 50 Hz grid is considered, where the input voltage
and current readings are recorded at 19,200 samples per
second and reported at 200 fps to the PDC [39]. The PMUs
monitor 3-phase voltages, 3-phase currents, corresponding
voltage and current phasors, neutral and positive sequence
voltages, frequency, and rate of change of frequency. It is
expected that PDC along with supervisory control and data
acquisition take necessary control actions based on the PMU
data at the local and central data center.

Remark 2. The notion of controllability posed in this work
relates in a modified way with the known definition of control-
lability. For a system to be controllable, it must be estimated
correctly at the data center first. This is because, in control
engineering, the error between the output of the actual system
and the response of its image system, after applying the control
signal, is used as a measure. This error signal is fed back to
the controller to ensure robust control of the system. Thus,
without proper system information, owing to imperfect system
reconstruction, accurate control action would not be possible.

III. OpTIMAL PMU PLACEMENT ANALYSIS

This section presents the prerequisites for the
controllability-aware optimal PMU placement problem,
followed by the optimization problem formulation. The
optimal solution to the problem is achieved using our
proposed Algorithms 1 and 2, as detailed subsequently.
A broad overview of the steps involved in the proposed
framework is depicted in Fig. 2. The subsequent formulations
model the power network perturbations using ‘small-signal
perturbation modeling’ and employs an information theoretic
viewpoint in evaluating efficient grid health estimation using
the data from optimally deployed PMUs. For completeness,
we propose an efficient approach to attain an optimal solution
for the PMU placement in perturbed power networks.

A. Line Observability Reward Formulation

Let us define a variable z; s.t, z; = 1 or 0 implies the
presence or absence of PMU at the i-th bus respectively. Let
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Fig. 2: Work flow of grid controllability-aware PMU placement.

R out of N grid nodes have a PMU, with the PMU installed at
the i-th node having [; input channels with node order k;, s.t.
l; < k;. If Pr(L; ;) signifies the probability that link i-j gets
monitored, then we have Pr(L; ;) = I(Li; = 1)(zxi + zzj),
where I(L; ; = 1) is a binary indicator function that takes 1 iff
node ¢ and j are connected and z; denotes the random variable
representing the probability of link ¢-j getting monitored by
the PMU installed at node i. The randomness results from
random selection of lines to be monitored using a PMU with
limited input channels, as there is no defined norm for such
a selection. Therefore, the average reward for observing the
link ’L-_] is defined as Hij = Cz'_’jE[PI'(Li’j)] = CZ‘JE[I(LLJ' =
1)(zizi+2z;x;)], where ¢; ; is the reward for observing link -7,
and relates to the importance of that node. Ideally, the desired
probability of a line getting monitored is 1. Further, the order
of installation also plays a role in defining this probability. For
instance, if an input current channel from the PMU installed
at node ¢ is used, the channel availability for other incident
lines to node ¢ decreases to {; — 1, and so on. Considering all
such orders, the average line observability reward is

pij =¢cij1(Li; = 1)(2E[xi] + z;E[z;])
:ci,jI(Li,j = 1)(2257, + Zij)

where S; = E[z;] = Zi:lxikﬁ(l{.—mi)

1
. ki—1l;+1 +
2 i . . .
7—i75 T+ % Onsimplifying, we get
;-1

L1 1 (ks — 1)
= e N T
S ki+ki—1+ +ki—li+1 Z k/'i_]

. = (D
1’»77 (kl — ll) lz -1
~1-— -_— =1- i — bg 1 1-— .
/O T dx (ki — 1) In < T )
S; denotes the average number of input current channels
monitoring the link ¢-j using a PMU installed at node ¢. Thus,
the average line observability reward matrix is given as

M1,1 H1,2 H1,N

A= =coAod (2

UN,1 N2 UN,N

where ® denotes a Hadamard product, A is the grid incidence
matrix, c¢ is the reward matrix with the (¢,7) entry defined
as ¢;j, and d = vI'1 + Iv such that 1 = [1,1,--- ,1]JTV,
I = diag (11,19, -+ ,1y) is a matrix of dimension N x N
with its ¢-th diagonal entry 1; being a vector of ones having
a zero only at ¢-th position. Using the above formulations in
2), weget Ay =cOAQG (le —|—Iv). Further, v = Sz is
defined for the sake of concise representation, such that S is

diagonal, and the (¢,%) entry in S is defined as S;, as in (1).
Let the node weight vector be defined as w with w; the weight
for the i-th node. Then, the aggregate grid observability index
(AGOI) is defined as wc® A® (zTSTl + ISz) w.

Remark 3. It is worth noting here that, the node selection
for PMU placement renders different node incidence order
resulting from different number of lines incident to a node,
consequently it affects the AGOL.

Further, the importance of observing the link i-5 stems from
the Thevenin equivalent impedance between the nodes. The
Thevenin equivalent impedance between node i-j Vi, j € A
given by Z; ; is calculated using the Z bus matrix algorithm
in [40]. It gives a sense into the ability of a node pair
to destabilize the network under perturbation, as can be
inferred from (A6). In the scope of this work, we define
Cij = ﬁ, as the reward for observing link ¢-5. Further,
controllal:l)ﬁity for the i-th node is defined as o; = > JeAs Mijs
with the controllability vector defined by O7". The definition of
node weight vector by considering perturbations in the voltage
magnitude of the concerned node is proposed in Lemma 1.

Lemma 1. The weight of the j-th node is defined as

k; kj -1

wj = | sin(wt + ¢;) Z 2;13 Z sin(wt + ¢>jr)zjfjah

r=1 r=1

where Av;, = o Avg, where Avy is the instability grid node

voltage change and o, is a constant of multiplication, w =

2w f is the angular grid frequency, t represents time, z; ; =
r7; a7 is the impedance of link i-j, with r; j, and x;

enoting the link resistance and reactance, respectively.

Proof. See Appendix A. O

In the scope of this work, we consider time-limited complex
voltage perturbations to obtain the wideband perturbed system
conditions, which are then modeled using the average line
observability reward and the node weight vector, as defined
above. The introduction of complex voltage perturbation in
the network equations is detailed in the proof presented in
Appendix A.

Remark 4. Lemma I captures the node weight based on the
proximity of its operating voltage to instability. Intuitively, for
a node with operating voltage closer to instability, a direct
PMU monitoring is necessary.

B. Formulation of Optimal PMU Placement Problem

A quadratic minimization problem is formulated in F;
which aims at making the grid observable with minimum
number of PMUs, and optimum network controllability based
on maximizing the grid controllability under perturbation is

ensured by maximizing Fs in (3) as follows
F; : Min {z7 Cpz + G(2)" VG(z)} 3)
Fy: Max OTcO st. Cy:z € P

where constraint C; refers to the first constraint outlining the
possibility space of the variable z representing the presence of



PMU at N nodes, s.t. Zr = {z e {0,1}" | > ien 2 = R},
Cp = cly, with ¢ denoting the per PMU cost, G(z) =
[91(2), -, g2(2)]", V = v O Iy, with v = [v1,- -+, on]"
denoting the unobservability cost for the nodes 7 &
{1, s 7N}, O = [01,02,- .. ,ON}, with 0; = ZjEAi ,ui,j,
and ¢ = [cijlijeq1,.. N}, With ¢ 5 = N77z’ where
Z; ; denotes the Thevenin equivalent impedaﬁée of link -
7. This cost is set high to ensure a binary (0 or 1) PMU
assignment to the respective buses. Motivated by the research
in [41], in this work we define a polynomial observability
function ¢;(z) € {9, 775(2),9i,z15(2)} for node i, with
the two functions capturing the aspect of not considering or
considering the impact of zero injection bus (ZIB) respectively.
Neglecting ZIB we have

>z Viefl, -, N}

JEA;

“4)

9i,715(2) = 0i = zi —

where o; is the redundancy order for the i-th node, denoting
total PMUs monitoring that node, and A; is the set containing
nodes incident to node :. A joint weighted optimization
problem from (3) can be formulated as

(P1) : Min I(z) = F; — AF; s.t. C; (5)

where A € {0,1} is a binary weight, outlining the choice
seeking either a controllability-aware optimal PMU placement
solution with A = 1, or conventional optimality with A = 0. It
is notable that the controllability-aware optimization perspec-
tive dwells on optimum grid observability and control under
perturbed grid conditions using limited number of practical
PMUs with one input channel. Furthermore, ZIBs are the
nodes that cause no current injection into the system. Thus,
if all buses incident to a ZIB are observable except one, the
unobserved bus can be made observable by applying KCL at
the ZIB. Further, if all buses incident to the ZIB are observable
except the ZIB, it can be made observable by applying KCL at
the ZIB. Let ¢; be a binary parameter taking 1 iff bus ¢ is a ZIB,
and y; ; be an auxiliary binary variable corresponding to bus ¢
and j, such that j € A;. IfY; = {y; ,;}, then || Y;|| = || A;||+t;.
Therefore, the observability constraint defined in (4) modifies
to (6) under the considerations of ZIB

> (2 +tig) (6

JEA;

9iz1B(2) =05 — 7 — tiyi;i —
with all notations as defined previously. Thus, the proposed
PMU placement problem including ZIB can be given by
updating g¢;(z) in (3) and substituting in (5).

The idea of robust grid health estimation at the PDC using
PMU data is proposed next. Information theoretic metrics,
such as MMSE in the estimated data at data collector and nor-
malized mutual information about the pseudo-monitored nodes
using the data from direct monitored nodes are quantified as
the measures of robustness of the proposed strategy.

The optimization problem formulations in (3) target
minimum-cost placement of PMUs in the power grid while si-
multaneously ensuring optimum network controllability under
perturbation. The expressions (4) and (6) define polynomial
observability functions in absence and presence of ZIBs,

respectively, and (5) proposes the weighted joint optimization
problem. All these formulations follow the first principles of
mathematics, thus can be verified for correctness. Furthermore,
the dimensional compatibility of all these formulations vali-
dates the mathematical correctness.

Remark 5. It is worth highlighting that the quadratic formu-
lation in (3) is different from any regression process of the form
y = f(x) + ¢ where f(-) is found by minimizing the error .
The formulation is in the quadratic form that achieves a unique
optimal solution as a consequence of its convex structure.

C. PMU Data Based Grid Estimation Under Perturbation

Under the established power system model, the power
injection at bus k is approximated by

P; = B;i0; + Z B; ;0;
JEA;

(7

where P; is the power injection at bus ¢ and 6; is the
voltage phasor angle at bus j, while B;; is the imaginary
part of the (i,j)-entry of the grid’s admittance matrix. Let
P := (P, --,Py)T € RY be the power injection vector
and 0 := (01,--- ,0n) € RY be the voltage phasor vector.
Then (7) can be re-written as P = Bf, where B € RN*N is
the susceptance matrix with the entries B(i,i) = B;; and
B(i,j) = By;, if j € A;, and 0 otherwise. Since, P ~
N (up,%p), we have 6 ~ ,/V(B_lup,B_lzp (B_l)T>,
where .4"(-) denotes a normal distribution. The measurement
equation of a PMU installed at bus ¢ is given by [42]

Xi =t +v;

8
Xi,j :0i—0j+vi’j,i€A,j€Ai ( )

with v; ~ A7(0,7;), and v; j ~ A47(0, p;) are the estimation
uncertainties resulting from the perturbed grid conditions. The
measurement vector m; := [x1,- - ,Xj|a,)" is of dimension
D; = ||A;]| + 1. For brevity, (8) is written in the regression
form as m; = H;0 + w;, where H; € RP:*N g the
associated regression matrix, w; := [v;, Vi1, - - ,v“A(i)‘]T
A(0, Ry,;) with diagonal covariance. Let us define Ry, ;) =
diag [RWij]j:17'~~7R’ m(z) = [ma,, - mig)Ts w(z) = [w,,
wig]Y, and H(z) = [Hyy, -, H;,|". Thus, the multi-
input multi-output PMU measurement equation is given as

m(z) = H(z)0 + w(z). )

Using (9), we have R,,,0 = H(z)Ry, while Rz =
H(z)RgH(z)" + Ry(s). Further, let us define 0|m(z) as a
random variable 6 conditioned on the random variable m(z).
Therefore, we have 0|m(z) ~ .4 (0, Re(z)).

~

Remark 6. It is notable that the above analysis is different
from the existing Kalman filter (KF)-based and allied for-
mulation. KF only discusses process (estimation) noise, and
not system perturbations. Therefore, although the analysis is
on the similar lines, the optimized metric and the underlying
process are different.

Lemma 2. The minimum mean squared error estimate of
0 based on PMU output m(z) given by 0 is 6 = 6 +



RoH(z)"(H(2)RoH (2)" + Ryy(s)) " (m(z) — H(2)0) with
the covariance matrix given by

1
RE(Z) = <BTEI—318 =+ Z ZlH,LTquHZ> .

ieN

Proof. See Appendix B. O

Optimal PMU placement under perturbation must ensure
grid estimation ability at the PDC. This is achieved by mini-
mizing the mean squared error (MSE) given by E(||6 — 6]2).
Therefore, an optimization problem is formulated as

(P2): f(z) = mzin J(z) + €fe(z) st. Cy (10)

where € is the estimation trade-off implying the importance
of grid estimation using PMU data at the PDC, f.(z) :=
Trace(R.(z)), is a convex function by construction. The next
lemma provides a continuous relaxation for the constraint Cj.

Lemma 3. For a polytope Poly(9g), the discrete con-
straint Cy is equivalent to the continuous constraint z €

Poly (Zr),¢(z) > R for ¢(z) == ,c 4 zf with 3 > 1.
Proof. See Appendix C. O

Since, ¢(z) is convex in z, the constraint ¢(z) > R is
a reverse convex constraint. As such, it is a difference of
two convex sets, Poly(Zr) and {z|¢(z) < R}. Also, as 3
decreases, ¢(z) tends to a linear function. However, as 5 — 1,
the function ¢(z) — R approaches zero very quickly.

Proposition 1. ¢(z) = ﬁ -+

degree of satisfaction of the discrete constraint Cy in the sense

that ¢(z) > 0 Yz € Poly(Zr) and ¢(z) =0 iff z € Dx.

can be used to measure the

Further, we define the mutual information between random
variable 0 and m(z), I(6;m(z)) = H#(0) — S (0|m(z)) as

1
= 515 ([ Ro| = In | R.(2))
where J7°(-) is the logarithmic entropy function leading to
(11). This acts as a pointer to ambient grid estimation under
perturbation at PDC. Relevant results using these parameters
are given in Section IV.

It is notable that the expressions (7) and (8) are also
based on the network equations, relating the dependence
between multiple network parameters, leading to (9). Since all
subsequent equations are mathematical manipulations of these
representations, the appropriate lemmas and proofs ensure that
the presented mathematics appropriately represents the system
as described in Section II.

1(0;m(z)) (11)

D. Solution to Optimal PMU Placement Problem

This subsection details the analysis of optimal solution to
(P>) based on the mathematical simplifications in the previous
subsection. Using Lemma 3 and Proposition 1 in (P3), we
formulate a penalized optimization problem, which penalizes
every non-zero instance of the relaxed constraint é(z):

mzin Fs(z) :=f(z) 4+ 6¢(z) s.t. z € Poly(ZR) (12)

Algorithm 1: Penalty-aware Perturbation Robust Op-
timal PMU Placement Algorithm
1 : Initialization: Set x = 0. Choose a feasible point
29 € (0,1)N for (10) using Algorithm 2
2 : Find § s.t. f(z(°)) and (%
significance.

3:Setk = K+ 1.

4 :(Solv;} (14) using Algorithm 2 to generate the next feasible point
z(F+1),

5 : Until convergence.

— m achieve equal

Algorithm 2: Feasible Point Generation Algorithm

1 : Fetch generation counter ¢t = K

2: If t = 0, create initial population of P vectors PO = {z(l)7

29, ,2%} C DR, s.t. |PY| = P vt
Otherwise, Use P+ generated in previous iteration

: Compute fitness value o of each vector in P*

: Choose z(%) — z! having maximum ! and set t — ¢ + 1

: pb = no. of vectors in P* with o; > normax

: Vi, := set of those pf vectors from P?

: Set p’i =2, p’é = 1; generate crossover and mutation vectors

using steps 8-9

8 : Crossover vectors: VL, = C (VL pt)

9 : Mutation vectors: V4, = M (Vi p)

10 : Calculate fitness for these vectors, increment pﬁ — pﬁ + 1 and
ph = ph+1

11 : Repeat 8-11 till fitness for all new vectors > nounax

12 : Choose best P vectors from these based on fitness

13 : Update: P* — P**1 using the selected P vectors.

N OOt W

where § > 0 is a penalty parameter. This penalized opti-
mization problem is exact with a sufficiently large §. It is
notable that (12) is a minimization of a non-convex function
over a convex set. However, by achieving the minimum for
Fs(z), an efficient PMU deployment strategy can be obtained
under perturbed grid conditions with efficient grid estimation
at the PDC. The pseudo-code for the proposed computational
procedure used in finding the optimal solution to (Ps) is given
in Algorithms 1 and 2. However, as ¢(z) is convex, we have

#(z) 6" (2) = 6(z")) + (Vo(2"), 2 — 2
== (B-1) @)+ 8 @) e

ieN €N

13)

where (u,v) denotes the inner product between the vectors

u and v. Therefore, an approximate upper bound for ﬁ at
ﬁ(z) over the trust region
qb(”)(z) > 0. Thus, at the k-th iteration, following convex

optimization needs to be solved to generate z(~*1)

<P9:@nﬂ”@*:ﬂ”+5(35@5‘%)

s.t. z € Poly(Zgr), ¢\ (z) > 0.

z(®) can be obtained as ﬁ <

(14)

(P3) is solved using Algorithm 2 to generate the next feasible
point. We compute the fitness of the i-th vector in P! as the
normalized value of f(z) in (P3), given by a; = ZPL})(ZU
After selecting the set of vectors Vi from P?, we pass
them through the function C(-,-) and M(-,-) to generate
crossover and mutation vectors, respectively. Partially matched
crossover and simple inversion mutation are used respectively
in crossover and mutation operations, owing to their capability



as a couple in achieving swift and best optimal solution [43].
To solve the optimization (P3), the approach in Algorithm
1 involves finding an appropriate penalty parameter J that
balances the original objective function f(z) and the inverse
of the convex function ¢(z) (c.f. Lemma 3), thus integrating
responsiveness to system conditions. Therefore, the optimiza-
tion problem formulated for the x-th iteration is as follows:

f(zm)“5<¢<$<z>‘%)" (13)

Subsequently, based on the above penalty parameter §, Algo-
rithm 2 generates new feasible points that approximate the so-
lution to the overall optimization more accurately. To achieve
this objective, following optimization problem is solved:

(Py4) : s argmain

. . . 1 1
(Ps) : z(*tD — arg min {F(;( >(z) = f(z) + 6" (¢>("”")(z) - E)}
st. z € Poly(Zg), ¢\*)(z) > 0.

We start with an initial guess z(*) and use Algorithm 2 to solve
the optimization problem (P5). Then, for each iteration x, we
use above-generated outcome z(*) to solve the optimization
in (P4) and adjust 5(®) . Next, with the updated %) we re-
solve the optimization (P5) to obtain the next feasible point
z("t1)_ This process is repeated until the changes in z and §
meet the plateau convergence criteria, i.e., do not exhibit any
further change. In this work, 17 = 0.9 is utilized in generating
the successive feasible points using Algorithm 2.

Remark 7. Please note that, Algorithm 2 starts with a binary
decision variable z, i.e., z\%). Consequently, the subsequent
vectors generated using selection, crossover, and mutation are
all binary, ensuring a final solution in the 0/1 structure.

Remark 8. It is worth highlighting here that, Algorithm 2
can be modified as per the convenience of the implementer.
Since the PMU placement optimization is a planning problem
(making the run time inconsequential) the key metrics defining
the choice of any such algorithmic framework are, the assur-
ance of convergence to a binary vector and processor space
complexity, i.e., the available storage on the device. Further, in
case one could opt for a system with a decent storage capacity,
the constraint on space complexity can be relaxed.

E. Convergence and Complexity Analysis of the Algorithms

Proof of convergence: For Algorithm 1, with the simplifi-
cations from the previous subsection, the algorithm starts with
an initial feasible solution z() and an initial penalty parameter
0, at iteration x = 0. At each iteration, ¢ ensures that constraint
violations are increasingly penalized to discourage sub-optimal
solutions. The ?enalized objective function at iteration s is
defined as F(s("C (z(")). It is notable that Fs(z) < Fé(ﬁ) (z)
Vz, and F5(z®)) = F{")(2(). Also, since z("*+1) and z(*)
are respectively the optimal solution and a feasible point
for (14), we have F(;(K’)(z("””“)) < F(S(K’)(z(’“”)). Therefore,
Fy(zr+)) < B (z04D)) < F (2 = Fy(z®), ie.,
z("t1) is a better feasible point than z*) for (12), which
proves the efficacy of Algorithm 2. Further, for sufficiently
large 0 > 0, (z(%)) — 0, yielding an optimal solution of the
binary non-linear optimization in (10).

Since the convergence and optimality of Algorithm 1 de-
pends on the convergence and the generation of the subsequent
feasible point by the embedded algorithm, i.e., Algorithm
2. For Algorithm 2, genetic operations such as, selection,
crossover, and mutation, preserve and potentially improve
fitness, with mechanisms like elitism ensuring that the best so-
lutions are carried forward. Starting with a diverse population,
the algorithm evaluates the fitness of each individual instance
of z based on the function al. A subset of the population
is then selected for reproduction based on fitness, favoring
individuals with better fitness scores. Genetic operations are
applied to produce a new generation, designed to explore the
solution space while preserving high-quality solutions. In the
process, elitism and diversity maintenance prevent premature
convergence [44]. Under these conditions, assuming sufficient
population size and generations, which is the case in NP-
hard problems, the algorithm is guaranteed to converge in
probability to the global optimum of the fitness function, with
a near unity MI and sufficiently reduced MMSE.

Remark 9. The zeroth generation’s population PO generated
in Algorithm 2 should preferably encompass diversity, for the
future estimates to converge quickly towards optimality. The
diversity within vectors in P° could simply be ensured by
measuring Hamming distance between them.

Complexity of the Algorithms: It is notable that the
initialization step of Algorithm 1 possesses ¢'(1) complexity.
Since the choice of the penalty parameter is done step-wise,
the rest of the steps involve no floating point operations per
second. Next, for Algorithm 2, if each solution’s feasibility
check involves evaluating f(z), and if there are P such
solutions, the resultant complexity is &(P) x @5, where
©'t(z) denotes the complexity of evaluating f(z). Finally, if
Algorithm 2 runs for G generations, the total complexity % is

€ = ﬁ(l) + GP x %f(z) ~ GP x %f(z)- (16)

Next, we evaluate the complexity of operating f(z). Since in
the evaluation of f(z) = min, J(z)+e¢f.(z), matrix inversion,
summation, and multiplication operations are involved, the
total algebraic complexity is O(N3) + O(N + ||z||), where
||z|| represents the cardinality operation on the PMU placement
vector z. Thus, the total complexity is written as:

Gt = O(N?) + O(N + ||z||) + O(optimization)  (17)

where ¢'(optimization) is the complexity involved in the op-
timization aiming at reducing the search space of 2V feasible
vectors using the genetic search approach in Algorithm 2. If
we assume a heuristic method where each iteration involves
evaluating f(z) for P candidates and runs for G genera-
tions, the complexity of optimization could be represented as
O(G x P x N3), leading to a total complexity of

Cia) =O(N?) + O(N + |lz]|) + O(G x P x N?)
=0(N + |z])) + O((1 + G x P) x N®).



TABLE I: IEEE standard transmission networks specifications.

TABLE III: Optimal PMU placement in perturbed IEEE 6-bus

Test system Loc. of ZIB Loc. of radial buses system; Conv.: conventional, Rev.: revised, CC: current channels
IEEE 14-bus 7 3 No. of CC per | Conv. opt. PMU place- | Rev. opt. PMU
IEEE 30-bus 6, 9, 22, 25, 27, 28 1,13, 26 PMU (rev.) ment (suff. CC) placement
] 4,7,11, 21,22, 24,26, 34, 1 4,5 1,35
[EEE 57bus | 36, 37, 39, 40, 45, 46, 48 | *3 5 1E 76
5,9, 30, 37, 38,63, 64, 68, | 10, 73, 87, 111, 112, : >
IEEE 118-bus 71, 81 116, 117 3 4,5 4,5

TABLE II: Optimal hyper-parameter settings and convergence details
of Algorithm 1; c.t.: convergence time.

Test system
IEEE 6-bus
IEEE 14-bus
IEEE 30-bus
IEEE 57-bus
IEEE 118-bus

5 ct. (s) (A = 1)
0.09 43.12

0.10 62.94

0.10 79.14

1.00 80.47

1.00 216.31

ct. (8) (A = 0)
43.37
60.77
76.53
80.37
216.19

€
0.27
0.36
0.57
1.00
1.20

Therefore, the overall algorithmic complexity is as follows:

¢ =GP [0(N + |z|)) + O((1 + G x P) x N*)]

=0 ({N + |zl + [1 + GPIN®} GP). e

Based on the above analysis, the convergence time is
mentioned in Table II, while the rest of the PMU placement
and allied results are presented in the next section.

IV. RESULTS AND DISCUSSION

The proposed grid controllability aware practical PMU
deployment strategy was tested on standard IEEE test systems
without as well as with considering perturbations. The impact
of ZIB was considered to see the variation of perturbation on
different grid topologies. No direct redundancy was offered to
any node by setting o; = 1, Vi.

The proposed optimal PMU placement strategy is compared
with the conventional approaches with sufficient input current
channels, as in [7], [10], and with limited input current
channels, as in [16], [17], [26]. Further, for completeness of
analysis considering all extreme power grid situations, we test
the effectiveness of the proposed controllability-aware optimal
deployment of PMUs with limited input current channels using
% observability, % controllability, numerical redundancy, and
redundancy overhead metrics in single PMU loss (SPL) and
single line loss (SLL) conditions. Such conditions do not
represent the loss of one out of the three phases, rather a
loss of all phases. Therefore, such events do not lead to
any grid asymmetry. Further, the situations arising from any
grid asymmetry is accurately monitored by the estimation
algorithms embedded in the state-of-the-art PMUs [45].

The results are verified for IEEE 6, 14, 30, 57, and 118-bus
systems. The network specifications are given in Table I. Algo-
rithm 1 was implemented on E3-1285 v6 CPU (@4.10 GHz);
the optimal hyper-parameters are listed in Table II. During
simulation, § = 1.45 was found for fastest convergence.

Remark 10. It is observed that the convergence rate for
Algorithm 1 is almost same irrespective of the choice of con-
trollability or observability based PMU deployment strategy,
as shown using c.t. in Table II. Thus, from an algorithmic
viewpoint, no significant performance reduction occurs.

A. Test Case: Demonstration of Optimal Placement of PMUs
with Limited Input Current Channels in IEEE 6-Bus System

For an IEEE 6-bus system, by setting A = 0 we get the
optimal PMU placement considering grid observability only,
as given in Table III. However, when a perturbed system is
considered, line observability gains significance over node-
based grid observability. From the updated solution using (12),
the optimum PMU placement changes, both in number and
locations. This proves that the conventional placement strategy
is insufficient to monitor actual power grids, considering its
perturbations. In contrast, with the notion of controllability-
aware PMU placement strategy as proposed in this paper, it
is able to provide better line observability with increased grid
observability index, as observed from Fig. 4(b).

From Table III we infer that, for a perturbed system the
optimal PMU deployment locations and the number of PMUs
depend on the number of input current channels in a PMU.
Typically the number of input current channels is considered
unlimited thus far in literature. In the simulations, it was
noted that, for a 6-bus system optimum controllability is
attained when PMUs are installed at bus {2,4, 6}, with 1 input
current channel per PMU, while the vector updates to {3,6}
considering 2 input current channels. However, as the number
of input current channels per PMU reach 3, the maximum node
incidence order equals the input current channels available per
PMU. In such a case, the optimal PMU placement vector
reorients to {4,5}, which is the same as that rendered by
the conventional placement strategy, owing to fulfilling the
sufficiency assumption on the input current channels per PMU.
These results demonstrate that optimal PMU placement vector
changes with limited number of input current channels per
PMU, which is the case in practical PMUs.

The incidence matrix for the 6-bus system is given as [46]

1 0 1 0 0 O
0O 1 0 0 0 O
0O 1 1 0 0 O
Ag =
11 00 1 0 0 (20)
1 0 0 0 1 O
1 0 0 0 0 1
Again, based on the data in [32], we have A;q =

[14i,5)ijeq1, 6}> as given in (19).We use this data to find
O = [0y, -+ ,06), where the i-th vector entry is given by
0; =y, jeA, Mij- Here, the summation over j is evaluated on
the node incidence vector of node 7, defined as A; in Section
II. With these definitions, our proposed Algorithms 1 and 2
are used to find the optimum PMU placement in the IEEE 6-
bus system, considering the deployment of PMUs with 1 input
current channel, i.e. [; =1, Vi € {1,--- ,6}, as mentioned in
Table III. Using the optimal PMU placement result, Table IV



0 0.1064 0 00532 00851 0 221 0 21423 0 0 0
0 0 00532 00532 01064 0.0745 0 229 0 0o 0 0
0 0 0.1277  0.0213 0 23422 223 0 0 0
= A g = 1
““lo o 0 0 02128 0 =0 L 0 0 2 0 0 (19)
0 0 0 0 0 0.1064 4210 0 0 25 0
0 0 0 0 0 0 6421 0 0 0 0 2

TABLE IV: Demonstration of controllability-aware optimal PMU
placement on IEEE 6-bus system, at base MVA = 100.

Bus True Estimated bus voltage (p.u.) Estimation error (%)

voltage (p.u.) Normal SPL SLL Normal SPL SLL
1 1.05 1.0497 1.0492 1.0496 0.0286 0.0762 0.0381
2 1.05 1.0495 1.0492 1.0494 0.0476 0.0762 0.0571
3 1.07 1.0694 1.0693 1.0694 0.0561 0.0654 0.0561
4 1.02 1.0193 1.0189 1.0191 0.0686 0.1078 0.0882
5 1.002 1.0019 1.0018 1.0019 0.01 0.02 0.01
6 0.982 0.9814 0.9812 0.9813 0.0611 0.0815 0.0713

Command Window
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Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

GA completed with the following results:

GA Status : GA optimization completed [optimal solution found]
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Fig. 3: MATLAB output log file of optimal PMU location in IEEE
14-bus system.

demonstrates the ability of the proposed controllability-aware
optimal placement of PMUs in reconstruction of the complete
grid network in a standard IEEE 6-bus test system. From Table
IV we note that error in the estimated value of the node voltage
is very small (< 10~3), which is explained further in Section
IV-D from an information theoretic perspective, for various
generic grid systems. We further observe that this estimation
is equally robust under grid adversities, such as SPL and SLL.

B. Variation of Optimal Placement Policy with PMU'’s Input
Current Channel Limitations in Perturbed Power Networks

Table V shows the optimal PMU placement for standard
IEEE test systems suggested by the proposed strategy under
normal and perturbed grid conditions while neglecting the
presence of ZIBs. It can be seen that, with the proposed
perturbation-robust optimal PMU deployment, the location

as well as the number of minimum required PMUs change.
Further, contrasting the proposed controllability-aware optimal
PMU placement solution with the optimal placement of PMUs
with 1 input current channel, it can be noted that the proposed
strategy is able to achieve optimum grid observability and
controllability at a lesser number of PMUs, placed strategically
at different nodes. This reduction in the optimal PMU number
results from harnessing spatial correlation in PMU data during
grid reconstruction and estimation at PDC, as given by (9).
Therefore, since the final PMU placement optimization is
sensitive to robust grid estimation at the data collector, the
optimal placement strategy obtained in this paper not only
ensures grid observability, but also takes into consideration the
correlation among the various grid nodes. Consequently, the
optimal placement changes in terms of the optimal number of
PMUs and the nodes where they are to be deployed. Naturally,
grids showing higher correlation of parameters among its
constituent nodes can ensure optimal system controllability
(which ensures numerical observability by definition) even at
a reduced number of PMUSs, such as in IEEE 14-bus network.

Table VI shows the change in optimal PMU deployment
considering a perturbed grid in the presence of ZIBs. It
was observed that the number of PMUs for optimal grid
monitoring drop in this case. However, the optimal deployment
vector still differs from the conventional placement scenario.
Again, comparing the proposed PMU placement with the
conventional deployment of single channel PMUs, it can be
inferred that the proposed PMU deployment vector provides
superior deployment strategy with reduced number of PMUs
and robust grid monitoring under perturbations.

Further, for verifying the convergence, solution time, nu-
merical redundancy, and the optimal solution, we present the
output log file generated by MATLAB (for brevity, we only
present for the IEEE 14-bus system). From Fig. 3, we note that,
in case of the IEEE 14-bus system, the constraint violation
is ensured below a sufficiently small threshold in every gen-
eration of the proposed solution algorithm. The convergence
can be noted by the continuously decreasing duality gap and
almost negligible change in the fitness score, which has been
used as a stopping criterion (note the ‘optimization terminated’
line in the figure). Furthermore, the ‘best solution’ generated
by the algorithm can be noted to match the one in the first
row of Table V, within the run-time mentioned in Table
II, and the numerical redundancy mentioned in Table X for
controllability-aware optimal PMU deployment in the IEEE
14-bus system.

Next subsections establish this fact in further details using
MMSE, mutual information, and contingency analysis for
various deployment scenarios.



TABLE V: Controllability-aware optimal PMU placement (OPP) for different IEEE test systems under perturbation without considering ZIB

Test Conventional OPP (A = 0) Controllability-aware OPP (A = 1)
system Sufficient current channels [7], [10] 1 current channel [16], [17], [26] (1 current channel)
14-bus 2,6,7,9 1,3,4,6,9, 11, 12, 14 2,4,6,7,9,13
30-bus 1,7, 8,10, 11, 12, 18, 23, 26, 30 ;;92’ 4,5,6,10, 12,13, 15, 16, 18, 19, 24, 27, 1,5, 6,9, 10, 12, 17, 19, 22, 24, 25, 27, 29
1, 3,5, 6,9, 11, 12, 14, 15, 17, 19, 20, 21, 24, | 1, 2,4, 6, 9, 12, 15, 19, 20, 22, 24, 26, 29, 30,
57-bus 35611%0;1;2%;9:,)?2’535’ 27, 32, 36, 41, 25, 28, 29, 30, 32, 35, 38, 41, 43, 45, 49, 50, | 31, 32, 35, 36, 41, 45, 46, 50, 51, 53, 54, 56,
PO T T T 51, 53, 54, 56 57
2,5,9,11,12,17, 21, 24, 25, 28, 34, 37, ;’83’28’ ??é 1??4’1 1315’ 1426 1451’ 1473’ 1195’ i% i; gg’ gz’ 1, 2, 5,9, 10, 11, 12, 15, 17, 21, 22, 25, 26,
118- 40, 45, 49, 52, 56, 62, 63, 68, 73, 75, 52’ 54’ 56’ 60’ 62’ 65’ 66’ 70’ 72’ 75’ 76’ 77’ 78’ 28, 29, 34, 35, 37, 40, 45, 46, 49, 52, 53, 56,
bus 77, 80, 85, 86, 90, 94, 101, 105, 110, T a ok on am e an oo aron o |62, 63, 68, 72, 75, 76, 77, 80, 84, 85, 87, 89,
114 80, 83, 85, 86, 87, 89, 90, 92, 94, 96, 100, 101, 92, 94 96. 100. 105. 107. 110. 114
105, 106, 108, 110, 111, 112, 114, 117 TUm e ’ ? ’ ’
TABLE VI: Controllability-aware OPP for different IEEE test systems under perturbation considering ZIB
Test Conventional OPP (A = 0) Controllability-aware OPP (A = 1)
system Sufficient current channels [7], [10] 1 current channel [16], [17], [26] (1 current channel)
14-bus 2,6,9 1,4,9, 11, 13 2,4,6,9, 13
30-bus 2,4,12,17, 19, 24 1,3,5,9, 11, 12, 17, 19, 23, 24, 29 1,2,4,6,7, 12,17, 19, 24
1, 3, 6,9, 12, 15, 19, 20, 25, 28, 29, 30, 32, 35, | 1, 3, 5, 9, 12, 15, 19, 20, 25, 29, 31, 32, 42,
5T-bus 1, 6,9, 19, 29, 30, 32, 38, 51, 54, 56 38, 41, 49, 50, 51, 53, 54, 56 49, 50, 51, 53, 54, 56
1, 3, 6, 11, 12, 15, 17, 19, 21, 22, 24, 26, 27,
118 2,11, 12, 17, 21, 23, 28, 34, 40, 45, 49, 29, 31, 32, 34, 36, 40, 42, 43, 45, 46, 49, 50, 51, 411’02’426’ ié’ ié’ ig’ 2?1)’ gg’ 623;, 351;’ 3;’ 3:31’ gg’
bus 52, 56, 62, 71, 75, 77, 80, 85, 87, 90, | 52, 54, 56, 59, 62, 66, 70, 75, 76, 77, 79, 80, 83, 79’ 80’84’85 ’87 ’89 ’90 5’32 é4 S;G 1’00 ’102’
) 94, 102, 105, 110, 115 85, 86, 89, 90, 92, 94, 96, 100, 101, 105, 107, (i ira st ’ ’
109. 110. 114 105, 107, 109, 110, 115

Remark 11. It is notable that, the objective of our anal-
ysis is different as compared to the state-of-the-art PMU
placement approach which consider single current channel
or multiple current channel PMUs. Our PMU placement
strategy aims to jointly optimize PMU cost, wideband system
monitoring through line observability reward and node weight,
MI, MMSE, and grid estimation at PDC. As a consequence,
it provides clear advantage over the methods proposed in
literature [19], [23], which do not jointly address all these
system performance parameters in their optimization goals.

C. Variation of Grid Observability with Controllability-Aware
Optimal PMU Placement

Fig. 4(a) shows the variation of normalized node observabil-

el for various TEEE
. i=1Lajen; I . .
standard test systems, with the total lines monitored in the grid.

It provides a very important observation with the number of
lines being monitored by the PMUs. It has been considered
thus far in literature that all PMUs have sufficient current
cards to monitor all incident lines to the nodes on which they
are installed. However, with the increase in grid size, such
an assumption is not practical. It can be seen from Fig. 4(a)
that an optimum normalized node observability reward can
be attained with a limited number of direct monitored lines,
which translates to limited current cards per PMU. As we
try to monitor more than optimal number of lines, the cost of
installation increases, thus resulting in a decrease in the reward
against observing a node. Thus, a revised PMU placement
vector with limited current cards is proposed in the previous
subsection. This also highlights the assumption insufficiency
in the conventional deployment strategy.

Fig. 4(b) shows the aggregate grid observability index
wlc®A® (zTSTl + ISz) w for different IEEE standard test

ity reward defined as &; =

@ 6-bus .
22, 4 14-bus EPRS
2\ 30-bus =
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Z 1 7]
g ’ 504
H e E 02
= o L <}
=] e’ H i
= BRI ) o T 0
100 177 6-bus 14-bus 30-bus 57-bus 118-bus
Total monitored lines Standard IEEE test systems
() (b)

Fig. 4: (a) Normalized node observability versus total monitored
lines, (b) aggregate grid observability for different IEEE test systems.

systems, and contrasts the different optimal PMU deployment
scenario. It can be observed that, for conventional PMU
deployment, as achieved with A = 0 in this work, a normalized
aggregate grid observability index of unity is achieved for all
grid sizes. It can also be observed that as the assumption is
relaxed to achieve the practical device constraint, we observe
a significant drop in the grid observability index. This, results
in an inefficient grid estimation at the PDC under perturbed
system state, as detailed in the next subsection. However, it
can be noted that, for the proposed controllability-aware opti-
mal PMU deployment, a normalized grid observability index
tending to unity is achieved for all standard grid topologies.

D. MMSE and Mutual Information for Controllability-Aware
Optimal PMU Placement

Table VII shows the comparison of MMSE and mutual
information between the conventional deployment and the
proposed controllability-aware optimal PMU deployment for
different IEEE test systems. It can be observed that MMSE
decreases with the proposed controllability-aware deployment,
implying a robust grid reconstruction at the PDC using the
data from optimally deployed PMUs with single input cur-
rent channel in perturbed network conditions. Further, the



TABLE VII: Comparison of MMSE and mutual information (MI) for
conventional versus controllability-aware optimal PMU deployment
ignoring ZIB; syst.: system

Conventional Controllability-aware
Test syst. Normalized Normalized
MMSE | M1 (bit) MMSE MI (bit)
14-bus 1.0123 0.1 3x 1073 1
30-bus 1.0155 0.2 2.9 x 1073 1
57-bus 1.0193 0.6 2.5 x 1073 1
118-bus 1.0605 0.6 2.7 x 1073 1

TABLE VIII: Comparison of MMSE and MI for conventional versus
controllability-aware optimal PMU deployment considering ZIB

. Conventional Controllability-aware
Test syst. Normalized Normalized
MMSE | MI (bit) MMSE MI (bit)
14-bus 1.0216 0.1 4.7 x 1073 0.96
30-bus 1.0127 0.1 49 %1073 | 0.96
57-bus 1.0181 0.52 43x10°3 [ 0.99
118-bus 1.07 0.5 4.4 %1073 1

MI I (0, 2(x)) is very less for the conventional deployment
strategy; thus, for a perturbed grid, mutual information content
at the direct monitored nodes about the pseudo-monitored
nodes is inadequate. In contrast, the controllability-aware
optimization formulation achieves the mutual information to
unity for the estimation of direct and pseudo-monitored nodes
in perturbed power networks. This ensures proper grid esti-
mation at the PDC under any perturbation state, thus ensuring
controllability as defined in the scope of this paper.

Table VIII shows a similar comparison between the two
deployment scenarios while considering the presence of ZIBs.
It can be seen that under conventional PMU deployment,
MMSE increases while mutual information decreases further,
owing to a drop in PMU numbers. However, with the proposed
PMU deployment, grid estimation at the PDC using PMU data
becomes robust with a decrease in MMSE while the mutual
information tends to unity, even with the consideration of ZIB.

Remark 12. Marginal drop in MI observed while considering
the presence of ZIB can be attributed to the lesser requirement
of PMUs to achieve the same MMSE as before, while the value
of the correlation between the grid nodes drops at the PDC.

E. Performance of Controllabilty-Aware Optimal PMU Place-
ment under Grid Perturbations

This subsection presents the robustness of the proposed op-
timal PMU placement strategy under various grid adversities.
The key performance indices used in this work are defined as
follows: 1) Observability (Obs.) is defined as the percentage
of grid nodes connected directly to a PMU or at a distance of
1-hop from a node having PMU; 2) Controllability (Control.)
is defined as percentage of nodes correctly estimated within
a tolerable error threshold using the PMU data at the data
collector; 3) Grid controllability cost (GCC) is defined as the
ratio of total installation cost to the per unit grid controllability.
Cost of installing a PMU is proportional to the number of input
current channels in the device.

From Tables VII and VIII, we have already established that
the MMSE and mutual information provided by the conven-

tional PMU deployment policy is unsatisfactory when com-
pared to the proposed controllability-aware PMU placement.
This metric directly translates to an inferior observability and
controllability using the data from PMUSs under conventional
deployment strategy in perturbed power networks. Following
this observation, we detail the aspects of grid adversities,
such as line loss and PMU loss in Table IX. It is worth
noting that, the optimization (P3) is different from the ones
noted in references [19] and [23]. The key difference lies in
the mathematical structure as well as the logical design of
the involved objective function. (P3) focuses on optimal grid
observability while ensuring a minimized (bounded) attribute
estimation error for all the nodes, especially the pseudo-
monitored nodes, using the data from the optimally placed
single current channel PMUs in the perturbed power network.
Since the objective function is logically as well as structurally
different from the formulations in the state-of-the-art, the
obtained results in terms of the number of PMUs and their
locations are different from the ones that are achieved in the
conventional optimal PMU placement literature.

From Table IX we observe that, in conventional optimal
placement (A = 0) for PMUs with sufficient input channels,
SPL or SLL leads to a drop in observability as well as
controllability, owing to the loss in the number of observed
nodes, which then manifests to an erroneous estimation of
grid nodes at the PDC. For the realistic deployment case,
considering PMUSs with 1 input current channel, we note that
the drop in observability and controllability under SPL and
SLL is severer. Contrasting the GCC values in both these
cases, it is inferred that though an increased observability and
controllability is achieved considering a hypothetical case of
PMUs with sufficient input channels, the corresponding cost is
also higher. Furthermore, this cost increases with the grid size.
Considering the impact of ZIB, the number of PMUs that need
to be deployed decreases. This directly translates to a reduced
grid observability and controllability under SPL and SLL.
Also, as the number of PMUs and total grid controllability
has dropped simultaneously, a similar GCC is noted.

From the contingency analysis for controllability-aware
PMU deployment (A = 1) we observe that, as a result of
the proposed PDC-end estimation approach with optimized
MI and MMSE values, the proposed strategy renders superior
performance under grid adversities resulting from SPL and
SLL. Further, from the GCC values we note that, the control-
lability cost is substantially lower than the GCC in case of
conventional optimal PMU deployment. A similar inference
can be drawn for the case when ZIB is considered. For the
case of IEEE 118-bus system, considering SPL, we achieve a
gain of =~ 19% (for PMUs with sufficient input channel) and
~ 49% (for PMUs with 1 input channel) using the proposed
controllability-aware PMU placement policy. Similarly, under
SLL, these values change to =~ 16% and ~ 43%, respectively.
Furthermore, =~ 77% and =~ 76% decrease in GCC is noted
for SPL and SLL adversities, respectively.

Remark 13. The optimality of the solutions obtained for the
PMU placement optimization in (3) can be noted using the
high MI (= 1, i.e., close to saturation) and reduced MMSE,



TABLE IX: Comparison of conventional OPP and controllability-aware OPP under various grid adversities

Conventional OPP (\ = 0) Controllability-aware OPP (A = 1)
Bus Sufficient current channels [7], [10] 1 current channel [16], [17], [26] (1 current channel)
syst. Obs. (%) Control. (%) | GCC Obs. (%) Control. (%) | GCC Obs. (%) Control. (%) | GCC
SPL SLL SPL SLL | SPL SLL SPL SLL SPL SLL | SPL SLL SPL SLL | SPL | SLL | SPL | SLL
14 71.12 | 78.87 | 53.12 | 57 32 29.82 45 50.22 | 33.33 | 35 24 22.88 100 100 100 | 100 8 8
No | 30 75.47 | 79.11 | 55 57.13 | 56.36 54.26 46.16 | 53.12 | 37.16 | 40 40.36 37.5 100 100 100 | 100 15 15
ZIB | 57 77.63 | 81.14 | 56.17 | 58.5 85.45 82.05 49.32 | 54.04 | 44 47.9 68.18 62.63 100 100 100 | 100 30 30
118 | 81.19 | 84.01 | 60 63.47 | 260 245.79 | 51.11 | 57 45.12 | 50.02 | 132.98 | 119.95 | 100 100 100 | 100 60 60
14 66.67 | 69.12 | 47.34 | 51.01 | 31.69 29.41 40.01 | 45.8 32.13 | 34.15 | 15.56 14.64 98.96 | 99.73 | 100 | 100 5 5
ZIB 30 67.76 | 68.33 | 49.11 | 53.4 50.91 46.82 41 47.16 | 36.5 38.25 | 30.14 28.76 98.73 | 99.51 | 100 | 100 11 11
57 71.32 | 73.73 | 50.07 | 55.12 | 65.91 59.87 43 50 39.01 | 41 56.4 53.66 99 100 100 | 100 22 22
118 | 75.32 | 77.89 | 53.63 | 56.66 | 259.18 | 245.32 | 47.77 | 53.07 | 43.12 | 47.77 | 122.91 | 110.95 | 100 100 100 | 100 53 53
TABLE X: Numerical observability in controllability-aware optimal PMU placement solution
Test Neglecting ZIB Considering ZIB
bus Numerical Numerical
syst. Numerical redundancy Redundancy overhead observability Numerical redundancy Redundancy overhead observability
(Y/N) (Y/N)
Normal SPL SLL Normal SPL SLL Normal | SPL | SLL | Normal SPL SLL Normal SPL SLL Normal | SPL | SLL
14 15 14.571 14.833 1 0.571 0.833 Y Y Y 15 14.571 14.833 1 0.571 0.833 Y Y Y
30 37 34.692 | 36.373 7 4.692 | 6.373 Y Y Y 42 39.5 41.288 12 9.5 11.288 Y Y Y
57 82 79.519 81.274 25 22.519 | 24.274 Y Y Y 85 82.912 84.284 28 25.912 | 27.284 Y Y Y
118 162 158.956 | 161.314 44 40.956 | 43.314 Y Y Y 168 165.255 | 167.288 50 47.255 | 49.288 Y Y Y

as presented in Tables VII and VIII. Further assurance on the
optimality of the presented solutions can be gained from the
bounded estimation error for the node voltage of IEEE 6-bus
system mentioned in Table IV.

Remark 14. Validity of the mathematics behind Algorithms 1
and 2 follow from the finite-time convergence results shown
in Table Il of the manuscript. Furthermore, the optimality of
these algorithms is observed through the solution achieved for
the proposed formulations (F1) and (Fs), tabulated in Tables
V and VI. The optimality is demonstrated through substantially
reduced MMSE, near-unity mutual information, and near-unity
grid observability rewards achieved through the solutions, and
presented in Tables VII, VIII, and Fig. 4(b).

F. Numerical Observability in Controllability-Aware Optimal
PMU Placement

Numerical observability ensures the ability of estimating the
entire grid at the PDC using optimal PMU placement positions
[47]. This aspect of analysis is detailed from an information
theoretic viewpoint in Tables VII and VIII, using MMSE
and MI metrics for different standard IEEE test systems and
considering the presence as well of absence of ZIBs. This
subsection aims to relook at this aspect from redundancy view
point. To this end, we define redundancy overhead to quantify
observability in the proposed controllability-aware optimal
PMU placement strategy. Numerical redundancy quantifies
the total measurement redundancy achieved using a given
PMU placement solution. This is a baseline measure, which
is a necessary condition for guaranteeing a bounded state
estimation for all grid nodes at the PDC. To suffice this
necessity, the value of measurement redundancy must be more
than the total number of nodes in the power network. It
is notable that, non-information theoretic measure can never
make for a sufficient condition for bounded estimation. As a
result, in this work, beyond ensuring measurement redundancy,

we aim to maximize MI and minimize MMSE as a joint
objective in our PMU placement optimization in (12).

Numerical redundancy for an N-node grid is defined as
v = zT AT Az. Further, numerical observability under SLL is
defined as v = Zfil Z;V=1 z" AT, A, jz, where A, ; is
the grid incidence matrix achieved by the loss of connection
between node ¢ and j. Similarly, numerical observability under
SPL is defined as v = & SN 2T AT Az, where z; is
achieved by the loss of PMU placed at the i-th grid node.
Redundancy overhead ¢ for all these cases is calculated as
¢ = N —~, while the binary numerical observability is given
as sign(y), where sign(-) denotes the signum function. The
numerical observability is attained, represented by ‘Yes’ (Y),
when ¢ > 0, whereas it evaluates to ‘No’ (N), when ¢ < 0.

From Table X we note that the numerical observability for
all IEEE test systems under the considered grid situations, i.e.,
‘Normal’, ‘SPL’, and ‘SLL’, increases with the network size.
This implies that the proposed controllability-aware optimal
PMU placement strategy imparts higher redundancy with the
increase in system size even considering system adversities.
This can be attributed to the considered estimation approach
in the optimal PMU placement viewpoint, rendering efficient
grid estimation under system perturbation and adversities. This
ensures a robust system monitoring for networks of different
size. Further, it is notable that the redundancy overhead is
always greater than zero, which increases as the network size
grows. This translates to the signum function evaluating to 1
for all the considered test systems under all system conditions.
This also ensures that the system is always numerically
observable, even under grid adversities, such as SPL and SLL,
as demonstrated in cells mentioning ‘Y’ in Table X. Therefore,
the proposed controlability-aware optimization strategy does
not violate the numerical observability of the test systems
under a wide variety of system conditions. Moreover, positive
numerical observability, represented in Table X, reinforces the
stability of the proposed PMU placement strategy and solution



from the standpoint of being able to observe every grid node.

Remark 15. It is notable that, the aspect of numerical
observability is specific to the state estimation model employed
in an analysis. Since the research in this manuscript discusses
a novel case of controllability in perturbed power networks
(unreported thus far in the literature) using data from the
optimally deployed PMUs having single input current channel,
the numerical observability presented in the manuscript is
based on this estimation model, i.e., (9).

V. CONCLUDING REMARKS

This paper proposed a novel power grid monitoring in-
strumentation strategy for grid controllability under perturbed
conditions, wherein for optimal PMU deployment estimation
practical constraint of limited number of input current channels
was considered. Line observability reward, node weight vec-
tor, and polynomial observability constraint were separately
defined that capture a generic grid situation, wherein the
grid controllability feature in the optimization was presented
through a binary multiplier. An information-theoretic approach
to robust grid estimation at PDC was used for a joint opti-
mization formulation, resulting in perturbation-robust optimal
PMU placement solution with a decrease in MMSE, and
near-unity mutual information. The proposed grid monitoring
instrumentation strategy gives a handle to define system node
weights based on their degree of instability. Simulation of
perturbation in different IEEE bus systems of varied size
demonstrated that the minimum number of PMUs increases
and their optimal PMU placement location vary to deal with
the perturbed system conditions. It was also demonstrated
that optimal PMU placement based on observability constraint
alone is not sufficient to capture grid health under perturbation,
i.e., in ensuring an error-bounded estimation of the grid
attributes at the data collector in perturbed power networks.

APPENDIX

A. Proof of Lemma 1

Applying energy balance on link j-j,., where j € A;, r €
[1,---,k;], we have

vy sin(wt + ¢;) =vj, sin(wt + ¢;, ) (AD)
— 44,,j%),5 Sin (Wt + 85,5 + 0;, ;)

where w = 27 f is the grid frequency, z; ; = /77, + 27 is
the impedance of link i-j, 6;; is the load angle, and 6; ; =

tan~! ( Zd 7) with 7; j, and z; ; denoting the link resistance
and reactance, respectively. Dividing (A1) by z;, ; and adding

it for all incident nodes we have

i vj sin(wt + ¢;) _ kzj vj,. sin(wt + ¢;,.)

f— o f—y rsd
kj (A2)
= gy sin (wt+ 85,5+ 05,5) -
r=1

Applym% Kirchoff’s current law (KCL) at node j in (A2) we

have Y7 “J“Z(w = 257:1 ””s";(w Introducing
sJ Jrsd
perturbation we get
k .
~ (v 4 Avy) sin(wt + ¢, + Ad;)
r=1 Zjrd
(A3)

kj
Z (vj, + Avy,.) Sm(Wt + ¢4, +Adj,.)

Zj

77

Under small voltage perturbations [48], (A3) is linearized as

kj

1
{Avj sin(wt + ¢;) +v; cos(wt + ¢;)A¢; } Z
. r=1 Rijrsd (A4)
Q5 Av, st +05,) | v, cos(et + 65,) A0,
—1 Zjr.j Zjr.j .
Re-arranging (A4), we get
k.
Av; ! Av 1
o] St
! A¢] ; ” A¢ ZT‘ 1 % ( )
where D; = [sin(wt + ¢;), v; cos(wt—i—gbj)]T and E] =

31n(wt+¢J, ) COs(wt-i-th )

. From the idea of small signal
stablhty, we know that the voltage angle change relates to the
machine rotor inertia, which is very small owing to high inertia
in rotating parts. Therefore, from (AS) we get

5 sin(wt + ¢5,)2; ) A,

r=1 Sln(Wt + d)]) Zr 1 Zj:lj

Let the instability grid node voltage change be Awy, such that
Awvj, = oy, Avg, where o, is a constant of multiplication.
Substituting this in (A6), we get
L) v R
Zr:l sin(wt + ¢;,.)2 jT,jajr

Note. The expressions (Al) and (A2) are based on the theory
of energy and charge balance, i.e., Kirchoff’s voltage and
current law, respectively. Since all physical systems must
follow these properties, adhering to these principles provides
guarantee of their physical realizability. Further, mathematical
validity of the usage of perturbation theory in (A3)-(A7) stems
from the utilization of Taylor’s series.

Avj = (A6)

_ A’Uo
- A’Uj

B. Proof of Lemma 2

Using (9), we formulate the performance metric as V' (z) =

1w(z)"w(z). Differentiating V' with respect to 6 we have
0= (H (2)H(2))"" H(z)"m(z) (B1)
Re-substituting m(z) in (B1) we get
o=b+E [(HT<z>H<z>>*1H<z>T] (m(@) -H@0)

Expanding (B2) we get 6 = 0 + RoH(z)" (H(z)RoH (2)"
+Ruz) ' (m(z) — H(z)0). Using the definition for MSE as



defined before, and following (B2) we get

Re(2) =Ry — Rl(x)o R (3 Rax)0

=Ry — RoH(x)" (H(x)Rgﬁ(x)T + Rw(x)) ' H(x)Ro

—1

(Aa) [ o1 | 55 15
2 (R + HO) Ry Hx)")

S -1
- <351+ZH,@R;;ijj) .

=1

where equality (Aa) results from Woodbury matrix identity.

C. Proof of Lemma 3

It is notable that zf < z ¥V oz € [0,1], so ¢(z) <
Yicy 2k = S Vz € Poly(Zr). Therefore, constraint C;
forces ¢(z) = R, which is possible iff zf = z,1 € N,

i.e.,

[1]
[2]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

zr € {0,1}, i € A, implying z € Pg.
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