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Distributed Energy Bank Optimization Towards
Outage Aware Sustainable Cellular Networks
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Abstract—Grid connected and solar powered base stations (BSs) acting as distributed energy sources are increasingly becoming a
popular solution to mobile operators. These networks experience double stochasticity due to the space-time variations in energy
harvest and BS traffic. Hence, accurate and efficient green energy outage estimation in such networks is a challenging task. In this
work, we propose a complutationally efficient cooperative energy transfer based distributed energy bank strategy to alleviate green
energy outage and design energy sustainable networks. We first develop low-complexity Markovian frameworks to estimate green
energy outage in a standalone BS without energy cooperation (WEC) and a multi-BS energy-cooperative (EC) setting, respectively. For
the WEC system, we present a computationally efficient three-state discrete time Markovian statistical model, while the multi-BS EC
framework is characterized by a two-state Markov model. The energy outage is studied as a function of capital expenditure (CAPEX),
manifesting engineering insights from a service provider’s perspective. Subsequently for the EC framework, we formulate a CAPEX
optimization problem by jointly optimizing the BS cluster size and solar provisioning on individual BSs. Our results demonstrate that the
proposed EC framework alleviates the green energy outage significantly, providing computational efficiency gains and CAPEX savings
over the state-of-art approaches.

Index Terms—Cooperative energy transfer, computation efficiency, energy sustainability, solar powered base station, traffic-energy
imbalance
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1 INTRODUCTION

THE advent of Internet of Things (IoT), powered by
the rise of 5G and beyond communications (B5G) [1],

is expected to significantly increase the number of base
stations (BS) in the communication network to cater to
the increased user service demands [2]. Since BS is the
most energy intensive system in a communication network
[3], B5G communications are expected to contribute signif-
icantly to an increased network energy consumption and
hence carbon footprint [4].

Solar powered and grid connected BSs are becoming
attractive to mobile network operators as a cost effective and
energy efficient solution [5], [6]. However, the intermittent
nature green energy harvest in these networks result in
occurrence of random energy outages. Due to the inherent
double stochasticity in cellular traffic and energy harvest,
this outage analysis is nontrivial [7]–[10]. Hence, accurate
and computationally efficient estimation of green energy
outage is of great interest.

1.1 Related work and motivation

Traditionally, BS clustering is performed depending on the
frequency reuse factor [11]. Modern B5G communication
systems generally use unity frequency reuse factor, i.e., full-
frequency reuse [12], thus removing the need for frequency
allocation based BS clustering.
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The existing works pertaining to estimation of energy
outage have relied on computationally intensive Markovian
frameworks [7], [8]. For instance, the framework in [7],
which considers a purely solar provisioned standalone BS,
modeled the traffic arrival as well as energy harvest as
separate discrete time Markov chains (DTMC) comprising
of a large number of states. The framework in [9] proposes a
Markov chain based solar energy harvest model, decompos-
ing the energy harvest into numerous states for a residential
framework. The authors in [10] propose a markov chain
based strategy to dimension the energy harvesting system
in a cellular framework. Additionally, the frameworks in [7],
[8] also decompose the battery level into a large number of
states, thereby further increasing the system computational
complexity. The authors in [13] have proposed a Markovian
framework to design a green residential framework.

It is notable that, in a grid connected solar powered sys-
tem green energy outage needs to be estimated at every time
index (depending on the time granularity, it is usually at
every hour) [14]. Thus, a Markovian framework comprising
of a large number of states, as in [7], is computationally too
intensive. Furthermore, since this computation is typically
performed in the cloud data-center, it eventually leads to a
higher energy consumption [15], [16]. The authors in [17]
proposed a framework to optimally dimension an energy
efficient standalone solar powered BS.

In contrast to the prior art [11], [12], we consider BS
clustering from energy sharing perspective. Grid connected
and solar powered networks experience randomness in en-
ergy harvest as well as BS load, resulting in spatio-temporal
traffic-energy imbalances [18], [19]. These imbalances are
generally inhomogeneous, depending on the skewness of
user traffic and energy harvest of a BS relative to other BSs
in the network. By modeling the traffic skewness which
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Figure 1: Illustration of (a) traffic-energy imbalance prone grid con-
nected and solar powered multi BS network and (b) the average traffic
profile.

can be experienced at a BS, we explore cooperative green
energy transfer amongst the networked solar powered BSs
using the smart grid infrastructure. The cooperative energy
transfer based distributed energy bank strategy among the
BSs aims to take advantage of the space-time varying traffic-
energy imbalances, thus improving the temporal green
energy utilization, alleviating green energy outages, and
eventually attaining energy sustainability without drawing
energy from the power grid. To the best of our knowledge, this
is the first work to study BS clustering depending on the degree of
traffic-energy imbalance, from an energy sustainability viewpoint.

Unlike the approaches in [7], [8], as an advance, we pro-
pose a three-state Markov model characterizing the battery
level of a standalone solar powered BS. We argue that since
the battery level is a function of energy harvest and cellular
traffic, it is redundant to decompose them into separate
Markovian states. In contrast to the current state of the art
frameworks that rely on data-driven models, our proposed
model does not rely on the assumption that the accurate
future cellular traffic and energy harvest information is
known beforehand. Instead, we consider a general scenario

where the cellular traffic and energy harvest are randomly
distributed, and further statistically characterize the green
energy storage of a BS. In a multi-BS distributed energy
bank setting, we argue that modeling the system of BSs
using a combined Markovian framework is expected to
provide significantly higher computational resource saving,
compared to Markovian modeling of the individual BSs
separately.

1.2 Contributions

The key contributions in this work are as follows:

1) We present a stochastic analysis of green energy
storage in a grid connected and solar powered cellu-
lar network with traffic-energy imbalance at the BSs,
and derive the probability density function (PDF) of
battery level.

2) For a standalone grid connected solar powered BS,
i.e., without energy cooperation (WEC), we model
the BS battery energy storage level using a three
state DTMC and show its reduced computational
overhead with respect to the existing competitive
approaches. This Markov model is used to compute
the optimal solar provisioning (capital expenditure
or CAPEX) required to achieve a sustainable WEC
system.

3) Considering multi-BS scenario, we propose a com-
putationally efficient distributed energy bank based
energy cooperation (EC) strategy, and the system of
BSs net energy state is modeled using a two-state
DTMC. Optimal CAPEX is computed for the system
of BSs, and the cooperating BS cluster size and solar
provisioning required at each BS is jointly optimized
to achieve grid energy independence.

4) The probability of consecutive hour energy outage is
derived and its general expression for k consecutive
hours is presented for WEC as well as EC system.

5) The energy outage performance of the EC system
is compared with the WEC system and the existing
competitive frameworks under varied traffic skew-
ness. Our results demonstrate that the EC model
significantly improves energy outage in addition to
reduced computational overhead as well as CAPEX.

1.3 Organization

Section 2 outlines the system model along with the traffic
and energy profiles. Section 3 presents the analysis of WEC
framework for a standalone grid connected and solar pow-
ered BS. The analysis of multi-BS distributed energy bank
based EC model is presented in Section 4. The system simu-
lation based performance results are presented in Section 5.
Section 6 concludes the paper.

2 SYSTEM MODEL

We consider a smart-grid connected and solar powered cel-
lular communication network, having B BSs, as illustrated
in Fig. 1(a). The BSs are individually solar provisioned,
i.e., equipped with photo voltaic (PV) panels and storage
batteries, as well as connected to the power grid for energy
sharing when needed. The BSs are connected to the core
network using optic fibre wired links. The BSs send regular
data like traffic/ energy harvest to the Operations and
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Table 1: Parameter notations used in the paper
Notation Parameter

B Number of networked BSs
L BS load ∼ N (µL(t), σ

2
L)

H BS energy harvest ∼ N (µH(t), σ2
H)

γb Skewed traffic fraction subjected on BS b
ζ Traffic skewness parameter
P Power consumption of a BS

Ntrx Number of transceivers in a BS
Pmax BS maximum downlink transmit power level
P◦ BS static power consumption
B(t) Hourly battery level indicator
Bmax Battery upper storage capacity
Bcr Battery critical threshold
NB Number of batteries equipped with a BS
δ Battery depth of discharge
Pij Transition probability from state i → j

TWEC Transition matrix for the WEC framework
πWEC Steady state matrix for WEC framework
Pk Probability of k consecutive hour energy outage
Ha Average energy harvest
Ea Average BS load
η PV panel efficiency

RPV PV panel rating
C(k) CAPEX as a function of k hour energy outage
ES Amount of transferable green energy
D Amount of deficit energy
T Length of time horizon
S Number of states in the Markovian framework

G(b, t) Amount of grid energy purchased by a BS b at t
CPV Cost of unit PV panel
CB Cost of unit storage battery
LPV Lifetime of unit PV panel
LB Lifetime of unit battery

Energy Management Center (OEMC) implemented at the
core network using these backhaul links. In the upcoming
subsections, we delineate the probabilistic traffic, energy
harvest, BS power consumption, and green energy storage
profiles. The parameters used in this paper and their nota-
tions are provided in Table 1.

2.1 Traffic and energy harvest profile

The traffic arrivals at the grid connected solar powered
BS are considered to be distributed as a truncated Gaus-
sian, with hourly varying mean µL(t) and variance σ2

L.
Mathematically, the hourly BS load L(t) ∼ N (µL(t), σ

2
L).

The mean of the hourly varying traffic is shown in Fig.
1(b) [20]. It is assumed that the users can displace within
the network but no new user can enter the network. The
hourly energy harvest at the BS is modeled as a truncated
Gaussian distribution with hourly varying mean µH(t) and
variance σ2

H . Mathematically, H(t) ∼ N (µH(t), σ2
H). The

hourly energy harvest H(t) and hourly BS load L(t) are
assumed to be uncorrelated and independent to each other.

The solar powered cellular network is prone to traffic-
energy imbalances due to the space-time variation of energy
harvest and BS load. For a multi-BS network, the BSs are
considered subjected to skewed traffic load Lb(t) resulting
in traffic-energy imbalance in some of the BSs [6], such that
at any time, a random BS is significantly heavily loaded as
compared to other BSs in the network. We model the skewed

traffic framework [21] as shown below for analysis.

γb(t) =
eζ×b∑B
b=1 e

ζ×b
(1)

s.t.
B∑

b=1

γb(t) = 1 and Lb(t) = γb(t)× L(t). (2)

Here, γb(t) represents the skewed traffic fraction subjected
on to BS b and ζ ∈ [0,∞) refers to traffic skewness pa-
rameter capturing the degree of traffic imbalance among the
networked BSs. It may be noted that ζ = 0 corresponds to a
homogeneous load scenario, whereas ζ > 0 corresponds to
higher traffic inhomogeneity.

2.2 BS power and battery profile

The hourly power consumption of a BS is computed as [3]

P (t) = NtrxP◦ +NtrxPmax∆L(t) = Θ1 +Θ2L(t) (3)

where Θ1 = NtrxP0 and Θ2 = NtrxPmax∆ are constants.
Ntrx is the number of transceiver antennas per BS, P◦ is
the static power consumption, ∆ is the power amplifier
efficiency, and Pmax is the maximum BS downlink power as
mandated by Federal Communications Commission (FCC).

Lemma 1. The BS power consumption P (t), is Gaussian dis-
tributed as P (t) ∼ N (Θ1 +Θ2µL(t),Θ

2
2σ

2
L).

Proof. Since L(t) ∼ N (µL(t), σ
2
L), E[L2(t)] = σ2

L + µ2
L(t)

[22]. Further,

E[P (t)] = E[Θ1 +Θ2L(t)] = Θ1 +Θ2µL(t).

Also, E[P 2(t)] = Θ2
1 +Θ2

2σ
2
L +Θ2

2µ
2
L + 2Θ1Θ2µL(t).

Hence, var[P (t)] = E[P 2(t)]− E[P (t)]2 = Θ2
2σ

2
L.

(4)

Depending on the hourly energy harvest H(t) and BS
power consumption P (t), the hourly battery level is com-
puted as follows:

B′(t) = B(t− 1) +H(t)− P (t)︸ ︷︷ ︸
Z(t)

(5)

where, Z(t) ∼ N (µH(t)−Θ1 −Θ2µL(t)︸ ︷︷ ︸
µZ(t)

, σ2
H +Θ2

2σ
2
L︸ ︷︷ ︸

σ2
Z

).

(6)
Thus, the hourly battery level can be considered as the
difference of two random variables (H(t) − L(t)), with
B(t− 1) being a constant scalar at hour t. The battery level,
B′(t), is distributed as

B′(t) ∼ N (B(t− 1) + µZ(t), σ
2
Z). (7)

The battery level is constrained between the upper stor-
age capacity denoted as Bmax = NB × Bcap and the lower
critical threshold denoted as Bcr = δ × NB × Bcap. Here,
NB is the number of batteries equipped with a BS, Bcap

is the capacity of individual battery, and δ is the depth of
discharge. The battery level constrained between Bcr and
Bmax is given as

B(t) = min{max{B′(t), Bcr}, Bmax}. (8)
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Figure 2: Markovian model of green energy storage in the grid con-
nected solar powered (a) WEC framework (b) EC framework.

In the upcoming sections, we consider two distinct net-
work operation strategies, namely, the WEC based stan-
dalone BS systems and the EC framework in a multi-BS
cluster setting.

3 STANDALONE SOLAR POWERED WEC FRAME-
WORK

In WEC mode of operation the BSs trade energy with the
power grid without having the flexibility to share energy
amongst the BSs. First we discuss the Markovian state mod-
eling, followed by a probabilistic analysis of the framework.

3.1 Markov modeling and probabilistic analysis

The green energy storage battery level is characterized
by a Markov model with three-states, namely, deficit (D),
intermediate (I), and surplus (S), as shown in Fig. 2(a). A
BS is termed to be in deficit, intermediate, or surplus state
if, B′(t) < Bcr , Bcr ≤ B′(t) ≤ Bmax, or B′(t) > Bmax,
respectively. The state transition matrix corresponding to the
three states is represented below as

TWEC =

PDD PDI PDS

PID PII PIS

PSD PSI PSS

 (9)

where Pij is the probability of transition from state i →
j ∀ i, j ∈ {D, I, S}. Below we derive closed form expres-
sions for each of the transition probability element in the
matrix, TWEC .

1) Transition from deficit state to deficit state:

PDD = P(B′(t) ≤ Bcr | B(t− 1) ≤ Bcr)

= P(B(t−1)+H(t)−L(t) ≤ Bcr | B(t−1) ≤ Bcr)

= P(H(t)− L(t) ≤ Bcr −B(t− 1))×
P(B(t− 1) ≤ Bcr)

= P(Z(t) ≤ Bcr −B(t− 1))×
P(Z(t− 1) ≤ Bcr −B(t− 2))

= P
(
Z(t)− µZ(t)

σZ
≤ Bcr −B(t− 1)− µZ(t)

σZ

)
×

P
(
Z(t− 1)− µZ(t− 1)

σZ
≤ Bcr −B(t− 2)− µZ(t− 1)

σZ

)
= Q

(−Bcr +B(t− 1) + µZ(t)

σZ

)
×Q

(−Bcr +B(t− 2) + µZ(t− 1)

σZ

)
.

(10)

2) Transition from deficit state to surplus state:

PDS = P(B′(t) ≥ Bmax | B′(t− 1) ≤ Bcr)

= P(Z(t) ≥ Bmax −B(t− 1))×
P(Z(t− 1) ≤ Bcr −B(t− 2))

= P
(
Z(t)− µZ(t)

σZ
≥ Bmax −B(t− 1)− µZ(t)

σZ

)
×

P
(
Z(t− 1)− µZ(t− 1)

σZ
≤ Bcr −B(t− 2)− µZ(t− 1)

σZ

)

= Q
(
Bmax −B(t− 1)− µZ(t)

σZ

)
×

Q
(−Bcr +B(t− 2) + µZ(t− 1)

σZ

)
.

(11)
3) Transition from deficit state to intermediate state:

PDI = P(Bcr ≤ B′(t) ≤ Bmax | B′(t− 1) ≤ Bcr)

= P(Bcr −B(t− 1) ≤ Z(t) ≤ Bmax −B(t− 1))×
P(Z(t− 1) ≤ Bcr −B(t− 2))

= P
(
Bcr −B(t− 1)− µZ(t)

σZ
≤ Z(t)− µZ(t)

σZ
≤

Bmax −B(t− 1)− µZ(t)

σZ

)
× P

(
Z(t− 1)− µZ(t− 1)

σZ
≤ Bcr −B(t− 2)− µZ(t− 1)

σZ

)
=

(
Q
(
Bcr −B(t− 1)− µZ(t)

σZ

)
−

Q
(
Bmax −B(t− 1)− µZ(t)

σZ

))
×

Q
(−Bcr +B(t− 2) + µZ(t− 1)

σZ

)
.

(12)
4) Transition from intermediate state to deficit state:

PID = P(B′(t) ≤ Bcr | Bcr ≤ B′(t− 1) ≤ Bmax)

= Q
(−Bcr +B(t− 1) + µZ(t)

σZ

)
×(

Q
(
Bcr −B(t− 2)− µZ(t− 1)

σZ

)
−

Q
(
Bmax −B(t− 2)− µZ(t− 1)

σZ

))
.

(13)
5) Transition from intermediate state to intermediate state:

PII = P (Bcr ≤ B′(t) ≤ Bmax |
Bcr ≤ B′(t− 1) ≤ Bmax)

=

(
Q
(
Bcr −B(t− 1)− µZ(t)

σZ

)
−

Q
(
Bmax −B(t− 1)− µZ(t)

σZ

))
×(

Q
(
Bcr −B(t− 2)− µZ(t− 1)

σZ

)
−

Q
(
Bmax −B(t− 2)− µZ(t− 1)

σZ

))
.

(14)
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6) Transition from intermediate state to surplus state:

PIS = P(B′(t) ≥ Bmax | Bcr ≤ B′(t− 1) ≤ Bmax)

= Q
(
Bmax −B(t− 1)− µZ(t)

σZ

)
×(

Q
(
Bcr −B(t− 2)− µZ(t− 1)

σZ

)
−

Q
(
Bmax −B(t− 2)− µZ(t− 1)

σZ

))
.

(15)
7) Transition from surplus state to deficit state:

PSD = P(B′(t) ≤ Bcr | B′(t− 1) ≥ Bmax)

= Q
(−Bcr +B(t− 1) + µZ(t)

σZ

)
×

Q
(
Bmax −B(t− 2)− µZ(t− 1)

σZ

)
.

(16)

8) Transition from surplus state to intermediate state:

PSI = P(Bcr ≤ B′(t) ≤ Bmax | B′(t− 1) ≥ Bmax)

=

(
Q
(
Bcr −B(t− 1)− µZ(t)

σZ

)
−

Q
(
Bmax −B(t− 1)− µZ(t)

σZ

))
×Q

(
Bmax −B(t− 2)− µZ(t− 1)

σZ

)
.

(17)
9) Transition from surplus state to surplus state:

PSS = P(B′(t) ≥ Bmax | B′(t− 1) ≥ Bmax)

= Q
(
Bmax −B(t− 1)− µZ(t)

σZ

)
×

Q
(
Bmax −B(t− 2)− µZ(t− 1)

σZ

)
.

(18)

Using these transition probabilities, the steady state
long-term averaged probabilities are computed from the
system of equations given below.

πWEC = πWECTWEC , and
∑
i

πi = 1 (19)

where πWEC = {πD, πI , πS} and i ∈ {D, I, S}.
3.2 Probability of consecutive hour energy outage

In this subsection we will derive the closed form probabilis-
tic expression for consecutive k hour green energy outage in
a WEC framework.

Theorem 1. The probability of k consecutive hour green energy
outage or blackout for the WEC model is given as

Pk = Pk−1
DD (PDI + PDS)× (πSPSD + πIPID). (20)

Proof. The probability that the WEC model will transit to
a deficit state D in the next k = 1 consecutive time slots,
irrespective of the current state is given by

P1 = πSPSDPDS + πSPSDPDI + πIPIDPDI + πIPIDPDS

= πSPSD(PDS + PDI) + πIPID(PDI + PDS)

= (PDI + PDS)× (πSPSD + πIPID).
(21)

Similarly, the probability that the WEC model will transit
to state D in the next two time slots, irrespective of the
current state is given by

P2 = πSPSDPDDPDS + πSPSDPDDPDI

+ πIPIDPDDPDI + πIPIDPDDPDS

= PDD(PDI + PDS)× (πSPSD + πIPID).

(22)

By mathematical induction, the probability that the state
will remain in deficit state D for k consecutive time slots
(hours) is derived as

Pk = πSPSDPk−1
DD PDS + πSPSDPk−1

DD PDI

+ πIPIDPk−1
DD PDI + πIPIDPk−1

DD PDS

= Pk−1
DD (PDI + PDS)× (πSPSD + πIPID).

(23)

Next, we compute the CAPEX in the WEC framework as
a function of consecutive hour energy outage probability.

3.3 Outage aware CAPEX planning in WEC Model

In this section we aim to compute the optimal CAPEX in
the WEC framework as a function of the consecutive hour
energy outage. CAPEX is defined as the capital expenditure
incurred to the mobile operator in solar provisioning the
networked BSs. Considering the unit cost of NPV PV panels
CPV [23] having a life expectancy LPV and unit cost of
NB storage batteries CB [24] having a life expectancy LB ,
CAPEX is computed as

C = CPV NPV /LPV + CBNB/LB . (24)

The life expectancy of a PV panel (LPV = 25 years [25])
is generally much larger than that of a storage battery. The
lifetime of storage battery LB is a function of the number
of charging-discharging cycles it operates, in addition to the
operating temperature and depth of discharge δ [17].

Let the average energy harvest in a day over an annual
time frame be denoted as Ha and the average daily load
subjected on a grid connected solar BS be given as Ea.
Let us assume, in general Ea ≥ Ha. Therefore, the mean
storage capacity needed per day is (Ea − Ha). Further, on
an average, the minimum number of storage batteries with
individual capacity Bcap needed per day is,

NB = ⌈(Ea −Ha)/Bcap⌉ . (25)

Considering the battery depth of discharge δ, the minimum
number of batteries needed per day is

NB = ⌈((Ea −Ha)(1 + δ)) /Bcap⌉ . (26)

We obtained the probability of outage in terms of con-
secutive number of hours (k) as Pk in (20). Therefore, on
an average, the number of days in a year, that the BS will
experience green energy outage is computed as

Do(k) = 365× 24× Pk. (27)

Hence, on an average, the minimum number of batteries
needed to serve the outage days is calculated as

NB(k) =

⌈
(Ea −Ha)(1 + δ)

Bcap

⌉
Do(k) (28)
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Figure 3: Proposed energy cooperation based communication network.

with LB representing the battery lifetime (in days). Thus,
the optimum average number of storage batteries required
annually in a WEC framework will be computed as NO

B =∑
k Pk × NB(k). Similarly, the optimal average number of

PV panels required to be provisioned with a standalone
WEC BS for an annual time frame is

NO
PV = (Ha × 365)/(η ×RPV ). (29)

Here, (Ha × 365) denotes the average annual energy har-
vested by a RPV rated PV panel, with an efficiency η.
Hence, the net optimal CAPEX incurred as a function of
the consecutive hour green energy outage probability (i.e.,
f(Pk)) is given as

CO = CBN
O
B /LB + CPV N

O
PV /LPV = f(Pk). (30)

In the upcoming section, we extend the analysis to a multi-
BS model and invoke the flexibility of energy cooperation
among the BSs.

4 DISTRIBUTED ENERGY BANK BASED EC
FRAMEWORK

This section presents a computationally efficient multi-BS
EC framework, wherein the networked solar powered BSs
have the additional flexibility to share/transfer the green
energy stored in individual batteries amongst each other
using the existing power grid infrastructure as in Fig. 3.
In the upcoming sections we first present the Markovian
EC framework followed by CAPEX planning and operator
revenue analysis.

4.1 Markov modeling

For a set of B BSs, each BS in the EC framework is
hourly classified as energy-sufficient if B′(t) ≥ Bcr , or
energy-deficient if B′(t) < Bcr . The energy-sufficient BSs
are proposed to have transferable green energy of quanta
ES(t) = B′(t)−Bcr and the energy-deficient BSs require to
be supplied deficit energy of quanta D(t) = Bcr −B′(t).

Let the energy-sufficient BSs at each hour be indexed by
b′, s.t., 1 ≤ b′ ≤ J . Similarly let the energy-deficient BSs be
hourly indexed by b, s.t., 1 ≤ b ≤ I . It is notable that a BS
can be either energy sufficient or energy deficient, hence the
sets of BSs are disjoint to each other, with I + J = B.

The system of BSs operating in the proposed EC frame-
work is modeled as a DTMC such that at a given hour, the
set of B BSs are in either of the two distinct states, namely,
energy deficit (D) and non-deficit (D) state, as shown in Fig.
2(b). The multi-BS EC system is said to be in state D if the net
surplus green energy with the energy-sufficient BSs is less
than the net energy deficit required by the energy-deficient
BSs. Mathematically,

J∑
b′

ES(b′, t) <
I∑
b

D(b, t). (31)

The EC system is in state D if the net surplus green energy
with the networked BSs is greater than the energy deficit
experienced by energy-deficient BSs. Mathematically,

J∑
b′

ES(b′, t) ≥
I∑
b

D(b, t). (32)

Therefore, instead of modeling each BS as a three state
DTMC, we consider the entire set of BSs as a two state
Markov process, thus considerably decreasing the compu-
tational space. The corresponding transition matrix for the
EC framework is given as

TEC =

(
PDD PDD
PDD PDD

)
. (33)

Here, Pij refers to the probability of transition from state
i→ j ∀ i, j ∈ {D,D}. The transition probabilities in matrix
TEC in (33) are defined as follows:

1) Transition from deficit state to deficit state:

PDD =P

(
J∑
b′

ES(b′, t) <
I∑
b

D(b, t)

∣∣∣∣∣
J∑
b′

ES(b′, t− 1) <
I∑
b

D(b, t− 1)

)
(34)

2) Transition from deficit state to non-deficit state:

PDD =P

(
J∑
b′

ES(b′, t) ≥
I∑
b

D(b, t)

∣∣∣∣∣
J∑
b′

ES(b′, t− 1) <
I∑
b

D(b, t− 1)

)
(35)

3) Transition from non-deficit state to deficit state:

PDD =P

(
J∑
b′

ES(b′, t) <
I∑
b

D(b, t)

∣∣∣∣∣
J∑
b′

ES(b′, t− 1) ≥
I∑
b

D(b, t− 1)

)
(36)

4) Transition from non-deficit state to non-deficit state:

PDD =P

(
J∑
b′

ES(b′, t) ≥
I∑
b

D(b, t)

∣∣∣∣∣
J∑
b′

ES(b′, t− 1) ≥
I∑
b

D(b, t− 1)

)
(37)
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Algorithm 1: Transition probability computation in
EC framework

Result: PDD,PDD,PDD,PDD, πD, πD
1 Input: B, H(b, t), L(b, t), Bcr, Bmax

2 Initialize: PDD = 0,PDD = 0,PDD = 0,PDD = 0
3 Compute B′(b, t) ∀b ∈ B using (5)
4 for b=1 to B do
5 for t=1 to T do
6 Compute ES(b, t) = B′(b, t)−Bcr,∀b
7 Compute D(b, t) = Bcr −B′(b, t),∀b
8 if condition in (34) then
9 PDD ← PDD + 1 ;

10 else if condition in (35) then
11 PDD ← PDD + 1;
12 else if Condition in (36) then
13 PDD ← PDD + 1;
14 else
15 PDD ← PDD + 1;
16 end
17 end
18 PDD = PDD/T,PDD = PDD/T,PDD =

PDD/T,PDD = PDD/T
19 Compute πEC ←− πECTEC such that

∑
πEC = 1.

Below, we present the method used to compute these
transition probabilities.

4.2 Probabilistic and complexity analysis

For the multi-BS EC model, the transition are computed
as shown in Algorithm 1. The protocol takes as input the
number of BSs, the energy harvest at each BS, the load at
each BS depending on the degree of skewness [21], and
the critical and upper limit of green energy storage. The
transition probabilities are initially assigned with value zero
(in Step 2). The amount of energy which can be shared by a
energy sufficient BS is computed in Step 6, while the amount
of deficit energy with an energy deficient BS is computed in
Step 7. Steps 8 - 17 illustrate the computation of transition
probabilities for the proposed EC model.

It can be inferred from Algorithm 1 that the complexity
of the proposed EC model is O(B × T × S2), where, B, T, S
represent the number of BSs, length of time horizon, and the
number of states in the Markovian framework, respectively.
Thus, the computation complexity is directly proportional
to the number of states and the number of BSs.

The steady state probabilities can be computed for the
EC model using the system of equations given below.

πEC = πECTEC∑
πi = 1.

(38)

Here, πEC = {πD, πD} & i ∈ {D,D}. In the upcoming
subsection, we derive the probability of consecutive hour
energy outage for a EC model.

Theorem 2. The probability of k consecutive hour energy outage
or blackout for the EC model is given as

Pk = πDPDDPk−1
DD PDD (39)

Proof. The probability that the system will transit to the
deficit state (D) from any state in the next time slot is given
as

P1 = πDPDDPDD. (40)

Similarly, the probability that the system will transit to
state D in the next two and three consecutive time slots,
respectively is

P2 = πDPDDPDDPDD

P3 = πDPDDP2
DDPDD

(41)

Thus, the probability that the EC system will transit to state
D in the next k consecutive time slots is

Pk = πDPDDPk−1
DD PDD (42)

4.3 Optimal EC cluster size and CAPEX planning for
sustainability

In this subsection, we compute the optimal BS cluster size
and the CAPEX required in a multi-BS cluster to achieve
grid energy independence or self-sustainability. It may be
noted that an energy-deficient BS can meet its energy deficit
either by cooperative energy transfer from the energy-
sufficient BSs (S(b, t)) or procure energy from the power
grid (G(b, t)). Hence,

D(b, t) = S(b, t) +G(b, t). (43)

The net energy which can be cooperatively shared among
the grid connected solar powered BSs is

I∑
b

S(b, t) = min

(
I∑
b

D(b, t),
J∑
b′

ES(b′, t)

)
,

with,
I∑
b

G(b, t) =
I∑
b

D(b, t)−
I∑
b

S(b, t).

(44)

To eliminate grid energy procurement, the net transfer-
able green energy among the energy-sufficient BSs should
be at least equal to the net deficit energy in the network.
This condition can be mathematically written as,

T∑
t=1

I∑
b=1

D(b, t) ≤
T∑

t=1

J∑
b′=1

ES(b′, t). (45)

From an energy sustainable viewpoint, the joint optimal
BS cluster and CAPEX computation optimization is shown
below.

P1 : min
B,NPV ,NB

B × (CBNB/LB + CPV NPV /LPV )

s.t., C1 : NO
B ≥ NB ≥ 0 ∈ Z+, NO

PV ≥ NPV ≥ 0 ∈ Z+

C2 : B = I + J ≥ 2 ∈ Z+

C3 : πD = 0.
(46)

The optimization problem P1 jointly optimizes the number
of networked BSs B along with the solar provisioning re-
quired at each BS, for energy sustainability. Since all the
variables being optimized in P1 are integers (Z+), P1 is an
integer programming problem. C1 constrains the number
of number of PV panels and storage batteries, while C2
captures the minimum required BSs for EC. Constraint C3
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represents the fulfillment of (45), i.e., grid energy indepen-
dence achieved by the cluster of B BSs, with the steady
state probability of deficit becoming zero. P1 is solved using
exhaustive search in MATLAB.

It may be noted that each BS is equipped with a finite
number of storage batteries. Further, a BS is mandated
to radiate up to Pmax power as per the FCC guidelines,
thereby limiting its coverage [3]. Thus the proposed energy
transfer based EC framework is physically limited by two
key physical system parameters, namely, battery storage
capacity and BS power radiation limit. We perform the com-
plexity analysis of the proposed framework in the upcoming
subsection.

4.3.1 Complexity analysis

Referring to the CAPEX optimization problem in (46), Con-
straints C1 and C2 have a complexity of O(B×NO

B ×NO
PV ),

where NO
B and NO

PV denote the optimal bounds on solar
provisioning derived in Section 3.3. Constraint C3 has a
complexity of O(B × T × S2) as shown in Section 4.2. Thus
the overall complexity of P1 is O(B×(NO

B ×NO
PV +T×S2)),

that is the complexity is linear with respect to the number of
BSs, time, and solar provisioning per BS, but is quadratic
with respect to the number of Markovian states in the
framework.

4.4 Operator revenue analysis

Operator cost profitability has been used as a basis to
study scalability of a framework [26]. In this subsection,
we discuss the revenue aspects associated with operating
a grid connected and energy harvesting enabled communi-
cation network. The key revenue components associated are
provided below.

1) Capital expenditure, CAPEX (C): As discussed in
Section 3.3, CAPEX refers to the expenditure in-
curred by the operator in solar provisioning the
networked BSs and is defined by (24).

2) Operational expenditure, OPEX: It refers to the ex-
penditure incurred to the mobile operator in day
to day operations of the network. It primarily com-
prises of revenue earned from selling energy back
to the grid, cost incurred in energy transfer, and
the cost incurred in procuring energy from the grid.
In the current framework, since the network has
been designed for sustainability (in Section 4.3), cost
incurred in procuring energy from the grid does not
arise to the operator.

• Cost of energy transfer, CT =∑
t

∑
b c1S(b, t), where c1 refers to the

price of transferring unit energy using the
grid infrastructure.

• Cost of energy purchase from grid, CB =∑
t

∑
b c2G(b, t), where c2 refers to the cost

of purchasing from the grid. In the current
analysis since πD = 0, it implies that G(b, t) =
0 ∀ b ∀ t.

• Revenue earned from selling energy back
to the grid, RS(t) = c3(

∑J
b′ E

S(b′, t) −∑I
b D(b, t)), where c3 is the unit energy sell-

ing price. It denotes the surplus green energy

sold back to the grid after performing energy
transfer operation.

It may be noted that the energy transfer among the BSs
through the power grid infrastructure is not free of cost. In
other words, the mobile operator incurs some operational
expenditure to transfer energy among the networked BSs
towards grid maintenance. It is observed that the unit price
of selling energy to the grid (c3) is always much lesser
than the price of buying energy (c2) from the grid, i.e.,
c2 > c3 [27], [28]. Accordingly, the price of unit energy
transfer among the BSs (c1) is proposed to be greater than
the unit energy selling price but lower than the unit energy
procurement price i.e., c3 < c1 < c2. Maintaining such
relative pricing ensures that, instead of selling the energy at
a cheaper price, the energy-sufficient BSs are incentivized to
transfer surplus green energy to the needy BSs. Similarly, the
energy-deficient BSs are also incentivized to procure energy
from the networked BSs at a lower price, rather than procur-
ing energy from the grid at a much higher price. Thus, the
proposed energy transfer price ensures better green energy
utilization in the network in addition to minimizing the
carbon emission through grid energy procurement.

The total revenue of the operator is thus R = RS−CB−
CT − C + K(ζ). Here, K(ζ) refers to the revenue earned
by the operator in serving network users as a function of
the traffic-energy imbalance skewness factor [19]. In the
upcoming section, we present the key results and inferences
of our proposed framework.

5 RESULTS AND DISCUSSION

In this section, we discuss the simulation results along with
the observations and inferences. The simulations have been
performed in MATLAB R2020a, with the following proces-
sor specifications: 10th generation core i9 having speed 3.7
GHz to 5.3 GHz, core count 10, and thread count 20. The
mean of hourly varying energy harvest has been taken from
the open source annual solar harvesting data available in
[29], of Jaipur city in India. The parameter values used
in simulations are, Ntrx = 6 [17], Po = 118.7 W [19],
Pmax = 40 W [3], Bcap = 2460 Wh [17], δ = 0.3 [17],
CPV = 1300 USD [23], CB = 216 USD [24], ∆ = 4.7 [3],
RPV = 1KW [17], c1 = 0.057 USD, c2 = 0.079 USD [28],
c3 = 0.015 USD [27], and η = 0.5 [17]. In the following, we
study the WEC and EC modeling and system performance
in terms of computation efficiency, outage performance,
CAPEX, and operator profitability towards sustainable op-
eration with green energy resource.

It may be noted that the cooperating BSs are assumed
to be in the same local area or city. While the proposed
framework is generalized and tractable, for simulation pur-
pose the energy harvest at each BS is assumed to be equal.
The traffic-energy imbalances arise in the network due to
the traffic dynamics, affecting the green energy storage
levels of the BSs. The traffic dynamics are captured and
modeled through the skewness intensity factor ζ which is
analytically modeled through (1). It represents the fraction
of traffic inhomogeneity experienced by a BS as compared
to the homogeneous traffic scenario (i.e., when ζ = 0). With
increasing ζ , any random BS in the network experiences
a higher skewed fraction of traffic. In this paper, we have



9

(a) (b)

Figure 4: (a) PDFs of BS energy harvest and energy load at a random
time instant (4 PM); (b) PDF of battery level at a random time instant
(4 PM).

Table 2: Comparison of number of Markovian states
State of the
art

Number of Markovian states, S

TCOMM 2016
[7]

For single BS: 3 (energy harvest) × 2 (BS load)
× 36 (Battery level states) = 216

TSE 2015 [8] For single BS: 4 (energy harvest) × 2 (BS load)
× 24 (hour of day) = 192

Proposed
WEC

For single BS: 3

Proposed EC For the BS cluster: 2

simulated the system up to ζ = 2.0, which corresponds
to around 90% higher traffic with respect to the balanced
homogeneous scenario. While ζ can take further higher
values, we restricted our studies with up to 90% traffic
imbalance as skewness levels higher than ζ = 2.0 are not
practical and have a low probability of occurrence in reality.

5.1 Computational overhead analysis

Through Figs. 4(a) and 4(b) we illustrate the PDFs of the
energy harvest, BS load, and the corresponding battery level
at an arbitrary time instant. It can be observed that all the
individual PDFs are Gaussian in nature.

Table 2 captures the number of Markov states in our
proposed approaches in contrast with the number of states
in the state-of-art [7], [8]. The Markov modeling in [8] was
aimed at computing the green energy outage occurring in
standalone solar powered BS, wherein a day was character-
ized as good/bad depending on the solar energy harvest
and a day was further quantized into four time windows.
The study in [7] extended the work in [8] by additionally
characterizing the BS load along with solar harvest, and
battery storage was modeled by multiple Markov states.
The total number of Markov states required in [8] was 192
for battery energy state characterization for a standalone BS,
whereas in [7] it required 324 Markov states. In contrast, our
proposed WEC framework characterizes a standalone solar
powered BS by a three-state Markov model, whereas our
multi-BS EC system (with ≥ 2 BSs) characterizes the entire
cluster of BSs into two states, to compute the desired green
energy outage.

In Fig. 5, we illustrate the computational efficiency gains
achieved at the OEMC for green energy outage estimation
and resource provisioning in the proposed EC framework.
It is noted that when the BSs do not have flexibility to share
energy amongst each other, the proposed WEC modeling
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Figure 5: Computation efficiency gain in EC framework over state-of-
art.
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Figure 6: (a) Consecutive hour green energy outage probability in
a standalone solar powered BS; (b) green energy outage dependent
CAPEX and cumulative CAPEX for a standalone solar powered BS.

is computationally efficient in estimating green energy out-
ages as compared to the state of art. In a 2-BS network,
the proposed WEC modeling framework is about 30% more
computationally efficient compared to the approaches in [7]
and [8]. As the number of BSs in the network is increased to
7, the gain with the WEC model is about 10%.

Fig 5 further reveals that, for energy outage estimation
in a cluster of BSs with EC, modeling the energy state of
the distributed energy bank is significantly computationally
efficient compared to modeling the individual BS battery
state. The computational efficiency gain over the techniques
in [7] and [8] is over 99%. The gain with respect to the
proposed WEC model is also significant, respectively about
60% and 90% for a 2-BS cluster and a 7-BS cluster.

Remark 1. To capture the battery state of a standalone solar
powered BS three-state Markov model is sufficient. Individual
modeling of energy harvest and BS load are not required, as these
information are embedded in the battery level.

Remark 2. For standalone solar powered BSs, the proposed WEC
model for outage estimation significantly reduces the computation
complexity over the state of art non-energy cooperative frame-
works.

Remark 3. In an EC system with a network of grid connected
solar powered BSs, green energy storage in the cluster of BSs can
be characterized together using a two-state model, which is also
significantly computationally efficient.
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Figure 7: (a) Average outage probability and reduction in green energy outage in a cluster of 7 BSs operating through the WEC and EC frameworks,
with NPV = 5, NB = 5 per BS; (b) consecutive hour green energy outage probability for various degrees of traffic skewness in a 7 BS EC
framework with NPV = 5, NB = 5 per BS; (c) CAPEX required to achieve green energy sustainability in WEC and EC frameworks.

5.2 Outage performance and CAPEX analysis in WEC
system

We now discuss the outage performance and CAPEX re-
quired in standalone solar powered BSs. Fig. 6(a) shows
the variation of consecutive hour energy outage probability
in the proposed WEC framework along with that in the
data-driven framework in [7]. We show the variation of the
number of consecutive hour k that the WEC framework
transits in the deficit state, for 72 hours or 3 days. It is
observed that the WEC modeled standalone BS outage per-
formance closely matches with that in [7]. This also verifies
the accuracy of the proposed three-state WEC model to
characterize the energy outage. This observation along with
the low computation overhead of WEC model, as discussed
in Section 5.1, establishes the importance of this simplified
energy characterization model.

Fig. 6(b) shows the CAPEX provisioning required in
a standalone BS. Since Fig. 6(a) captures that the outage
probability is close to zero after 24 hours, we show the
energy outage dependent CAPEX along with the cumulative
CAPEX in the WEC framework over 24 hours duration.
The value of cumulative CAPEX at k = 24 represents the
sustainable point of CAPEX at which the standalone BS can
operate without procuring energy from the grid.

5.3 Relative performance of WEC and EC for sustain-
able operation with green energy

To compare and observe the benefits of the distributed
energy bank based EC strategy over the WEC mode, we
subject a cluster of 7 BSs, that are solar provisioned and grid
connected, to varying levels of traffic skewness and operate
the network through the two strategies. Through Fig. 7(a),
we illustrate the variation of the long term average steady
state energy outage probability when the system operates
through both the strategies under the influence of skewed
inhomogeneous traffic. It can be observed that the WEC
model consistently attains a significantly higher steady state
outage probability as compared to the multi-BS EC model.
The percentage reduction in outage probability achieved
with the EC model over the WEC model is also depicted
in Fig. 7(a). As a general trend, we infer that with increasing
skewed nature of traffic, the percentage reduction in energy
outage with the EC framework increases significantly over
the WEC model, indicating the advantage of cooperative

energy transfer.
Fig. 7(b) shows the variation of consecutive hour energy

outage in an under-provisioned solar powered multi-BS EC
system under different traffic skewness. We observe that in
general, the probability for all skewed traffic levels tend
to zero as k increases. Additionally it is inferred that at a
moderate skewed traffic, ζ = 0.3, the EC system experi-
ences highest probability of consecutive hour green energy
outage. As the system is subjected to more skewed traffic
(ζ = 0.7, 0.9, 1.2, 2)) the probability is relatively lesser. It is
also inferred that when the system is subjected to homoge-
neous traffic (ζ = 0), then the initial probability of consec-
utive hour energy outage is lower than moderately skewed
traffic, but higher than extremely skewed traffic (ζ = 2) .
The nature of the plots in Fig. 7 for all ζ are inferred to be
exponentially decreasing and converging in nature. Hence,
Pk proposed through (39) in Theorem 2 can be inferred as
convex and converging in nature. Since (39) is based on the
transition and steady-state probabilities computed through
Algorithm 1, hence, transition probabilities in TEC and πD

converge over long run, thus guaranteeing convergence of
the proposed framework.

Figs. 7(c) and 7(d) show the optimal CAPEX required
to attain sustainability in the WEC and EC models, respec-
tively. Fig. 7(c) illustrates the variation of CAPEX required to
achieve sustainability in the WEC and EC systems, when the
network is subjected to skewed traffic of varying degrees.
We observe that at a homogeneous traffic scenario, the EC
obtains a negative gain over the WEC, but as the degree
of skewness increases, the EC performs significantly better
than the WEC, obtaining a CAPEX saving up to 40%. This
is mainly due to the advantage that EC takes over WEC by
improving the temporal network energy and exploiting the
inherent imbalances.

Remark 4. The proposed EC framework is able to exploit the
traffic-energy imbalances occurring in a grid connected solar
powered network to improve the temporal green energy utilization,
thereby reducing the CAPEX incurred.

Through Figs. 8(a) and (b) we show the effect of energy
sharing in a clustered multi-BS EC sytem, towards attaining
energy sustainability. It may be noted that a grid connected
solar powered BS requires to procure energy from the power
grid, if its energy harvest is unable to meet the load require-
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Figure 8: Green energy sustainability in EC framework: (a) required
BS cluster size; (b) optimum BS cluster size as a function of traffic
skewness; (c) quantum of energy shared among the networked BSs;
(d) operator network profit variation with skewness intensity levels.

ments. The proposed EC model provides flexibility to an
energy deficit BS to meet its deficit via the unused green
energy present with energy-sufficient BSs, thus exploiting
the space-time imbalance in green energy harvest and BS
traffic. Once the networked BSs, through collaborative en-
ergy transfer achieve energy sustainability, then the grid
infrastructure is used purely for sharing energy amongst the
BSs and selling the excess energy to the power grid rather
than energy procurement.

Fig. 8(a) illustrates that in general, the grid energy con-
sumption reduces in the network as the BS cluster size keeps
increasing. Further, it is inferred that higher levels of traffic
inhomogeneity tend to require larger BS cluster size. It is
observed from Fig. 8(b) that at a balanced/homogeneous
load (ζ = 0), around 10 BSs collaborate with each other
through the proposed EC framework to achieve grid energy
independence, whereas a much increased traffic inhomo-
geneity (ζ = 2.0) requires a cooperative effort from around
22 BSs to achieve energy sustainability.

Through Fig. 8(c) and (d) we illustrate the convergence
and scalability of the proposed EC framework. Fig. 8(c) de-
picts the energy sharing capability of a networked system of
BSs. It is inferred that with increasing traffic inhomogeneity,
a larger cluster of BSs are involved in attaining a energy
sustainability. It is also observed that the energy transferring
requirement of the networked BSs saturates after a certain
number of BSs, indicating sustainable network operation
point. Thus for a given skewness level, a finite number of
BSs are involved in the proposed EC framework, illustrating
convergence of the proposed framework. It can also be
clearly inferred that the convergence is faster at lower skew-
ness levels. Through Fig. 8(d), we illustrate the variation of
operator revenue for varying levels of traffic inhomogeneity.
It can be clearly seen that the operator achieves significant

revenue gains (up to 87% at ζ = 2.0) through the proposed
EC framework with increasing inhomogeneity. Hence, indi-
cating that the proposed EC framework is scalable to the
network operator, as it is profitable in addition to realizing
a carbon free green communication network.

Remark 5. The proposed EC framework is very significant in
facilitating cooperative green energy transfer in the network,
resulting in energy sustainable solar provisioned BS clusters.

Remark 6. Subjecting the network to increasing levels of traffic
inhomogeneity results in larger BS clustering in order to minimize
the grid energy procurement.

Remark 7. The mobile service provider gains significant operator
revenue in addition to achieving energy sustainability through
the proposed EC framework, thereby indicating scalability and
industrial applicability of the proposed framework.

6 CONCLUSION

The paper has presented a cooperative energy transfer based
distributed energy bank network operation strategy in grid
connected and solar powered cellular networks. The pro-
posed framework aimed at optimized green energy shar-
ing ability among networked BS clusters towards attaining
green energy sustainability under different traffic-energy
imbalances. To this end, the battery energy availability of the
standalone BSs (i.e., without energy cooperation or WEC) as
well as networked BSs have been modeled using respec-
tively 3-state and 2-state Markov models, which are shown
to be significantly computationally efficient compared to the
available techniques in the literature. Further, the proposed
energy cooperative (EC) BS clustering has been demon-
strated to be much higher CAPEX-efficient compared to
the WEC mode of operation. Finally, this study has also
captured the optimum required EC BS cluster size as a
function of cellular traffic skewness for grid energy free
operation. The study is expected to pave the way towards
carbon free energy sustainable cellular networks, achieving
significant savings in computational resource as well as
CAPEX to the mobile service provider.
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