Optimal Time Partitioning in Integrated Sensing and Communication Systems LINCS Seminar

Ashutosh Balakrishnan

Post-doctoral fellow, Telecom paris

Ack: Abhilash Gaur, Prof. Swades De, Prof. Seshan Srirangarajan

Oct. 30, 2024

- 2 System Model
- Proposed optimal time partitioning (OTP) framework
- Performance Evaluation

Conclusion

æ

< □ > < □ > < □ > < □ > < □ >

Introduction

- Platooning is a popular driving strategy for autonomous vehicles¹
 - Platooning ensures line-of-sight communication
 - Useful in traffic planning and developing vehicle-to-vehicle (V2V) infrastructure
 - Equipping the platooned vehicles with object sensing and communication hardware is essential for their smooth movement
- Integrated sensing and communication (ISAC) is emerging as a popular strategy in autonomous V2V systems.

¹P. Wang, B. Di, H. Zhang, K. Bian, and L. Song, "Platoon cooperation in cellular V2X networks for 5G and beyond," IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 3919–3932, 2019.

Motivation

- Object sensing and data communication operations are influenced by multiple design parameters:
 - Transmit power
 - Communication channel gain
 - Range and velocity of target
 - Time duration for sensing and communication
- Aim to quantify the optimality of the sensing and communication time duration
- Analyze the influence of sensing and communication design parameters on the time duration
- Study of coupling between the sensing and communication parameters

Contributions

- Propose an optimal time partitioning (OTP) framework for ISAC systems
- Incorporating and study the tradeoffs among all the sensing and communication design parameters involved.
- Propose a sensing measure to model and quantify the radar sensing performance as a function of maximum detectable range and velocity of the target object.
- Formulate a convex optimal time partitioning problem, wherein the problem is constrained by performance guarantees of both sensing and communication.
- Derive optimal bounds on the sensing and communication time duration, providing insights about the coupling of the performance measures.

System Model

System Model

• An ISAC based V2V platooning system wherein a vehicle **A** senses and communicates with another vehicle **B** in the platoon, as illustrated in figure below.

Figure: Illustrating ISAC based V2V system model and timing structure.

• The ISAC system operates in a half duplex fashion: no interference between communication and sensing operations.

Ashutosh Balakrishnan

Optimal Time Partitioning in ISAC Systems

LINCS seminar, Oct. 30, 2024

6/22

System Model

System model contd...

- The vehicle ${\bf B}$ is at a distance R and moving with velocity V
- Vehicle **A** has an ISAC transceiver, comprising of a transmitter (Tx) capable of performing object sensing as well as data communication.
- Vehicle **A** transmits an FMCW signal to vehicle **B** at the beginning of each time frame.
- Vehicle A senses vehicle B through the echo signal captured at the receiver (Rx) of A, while data communication occurs at the receiver of vehicle B.
- The sensing and communication operations are carried out in a time division multiplexed manner.
- The ISAC system is assumed to have a coherent processing interval (CPI) of duration T, which is partitioned into a sensing duration T_s followed by a communication duration T_c

7/22

Sensing Model

Proposition

We define a sensing measure for an FMCW radar as

(

$$\mathcal{L}_{S} = \log_{2} \left(1 + \frac{8B_{s} T_{s} R_{m} V_{m}}{c\lambda} \right). \tag{1}$$

- B_s denotes the sensing bandwidth,
- *R_m* denotes the maximum sensing range,
- V_m represents the maximum detectable velocity by the radar,
- T_s denotes the sensing time duration,
- $\lambda = \frac{c}{f_r}$ represents the wavelength of the radar having center frequency f_r ,
- c denotes the speed of propagation

- At the receiver of an FMCW radar, the received signal is de-chirped and sampled with a sampling frequency to obtain range-Doppler matrix for parameter estimation.
- To obtain a sensing measure for radar, each cell in the range-Doppler matrix is assumed to contain a binary value,
 - 1 representing the presence of target
 - 0 indicating an unoccupied cell.
- This assumption allows us to define the maximum capacity of an FMCW radar for one CPI with *N* chirps as

$$C_S = \log_2(\mathbf{\Gamma}),\tag{2}$$

- $\Gamma = MN$ is the total number of independent resolution cells in the range-Doppler matrix, with M being the number of range bins and N the number of velocity bins.
- $M = (2R_m B_s/c)$ (maximum range bins)
- $N = (4V_m T_s / \lambda)$ (maximum doppler bins)

- 3

イロト イボト イヨト イヨト

System Model

- We simplify (1) as $C_S = K \ln(1 + K_s T_s)$, where $K = 1/\ln(2)$ and $K_s = (8B_s R_m V_m/c\lambda)$.
- The concave nature of the proposed sensing measure for variations in R_m and V_m is shown below

э

10/22

System Model: Communication Model

• Vehicle A is assumed to communicate with vehicle B over a Rayleigh fading channel ², the corresponding achievable data rate is given as

$$R_c = \frac{B_c}{\ln 2} \ln \left(1 + \frac{|h|^2 P_c^T}{N_0 B_c R^2} \right),$$

= $B_c K \ln(K_c).$ (3)

- Channel gain is exponentially distributed with unit mean, i.e., $g = |h|^2 \sim \exp(1)$.
- The data rate expression can be further simplified as $R_c = B_c K \ln(K_c)$, with $K = 1/\ln 2$ and $K_c = (1 + gP_c^T/N_0B_cR^2)$.

²P. Wang, B. Di, H. Zhang, K. Bian, and L. Song, "Platoon cooperation in cellular V2X networks for 5G and beyond," IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 3919–3932, 2019 • (2) • (

Performance guarantees

- To ensure radar sensing performance in terms of false alarm rate and detection probability, the SNR of the received echo of an FMCW radar must be considered.
- For an FMCW radar, echo SNR is defined as

$$SNR_{s} = \left(\frac{\sigma P_{Ts} G^{2} \lambda^{2} T_{s}}{(4\pi)^{3} R^{4} k T_{temp} B_{s}}\right),\tag{4}$$

where

- σ is radar cross section (RCS) of the target,
- P_{Ts} is the transmit power of each antenna element of the radar,
- G is antenna gain (assumed equal for transmit and receive antenna),
- k is the Boltzmann constant,
- and T_{temp} is the operating temperature of the radar.

• The optimal radar sensing performance in terms of range and velocity detection, as well as false alarm and detection probability is guaranteed if

$$T_{s} \geq \left(\frac{SNR_{req}(4\pi)^{3}R_{m}^{4}kT_{temp}B_{s}}{\sigma_{min}P_{Ts}G^{2}\lambda^{2}}\right) = \tau.$$
(5)

- SNR_{req}: the required echo SNR
- σ_{min} : the minimum RCS requirement
- The communication QoS is guaranteed with respect to the communication throughput achieved through the framework.

$$T_c R_c \ge \alpha,$$
 (6)

< ロ > < 同 > < 回 > < 回 >

where α denotes the minimum data required to be transmitted in the V2V ISAC framework.

OTP Formulation and Solution

• The OTP formulation by considering the total capacity of sensing, communication and timing constraint to obtain an optimal time allocation strategy is

$$P1: \max_{T_s} K \ln(1 + K_s T_s)$$

$$s.t., C_1: T_s \ge \tau$$

$$C_2: T_c B_c K \ln K_c = (T - T_s) B_c K \ln K_c \ge \alpha,$$
where $\tau = \left(\frac{SNR_{req}(4\pi)^3 R^4 k T_{temp} B_s}{\sigma P_{T_s} G^2 \lambda^2}\right).$
(7)

Theorem

and $T_c^* =$

The optimal sensing and communication time duration, considering the sensing and communication performance guarantees, is given as

$$T_{s}^{*} = \begin{cases} \tau, & \text{if } \alpha = (T - \tau)B_{c}K \ln K_{c} \\ \left(\frac{TK_{s}B_{c}K \ln K_{c} + B_{c}K \ln K_{c} - K_{s}\alpha}{K_{s}B_{c}K \ln K_{c}}\right) - \frac{1}{K_{s}}, & \text{if } \alpha < (T - \tau)B_{c}K \ln K_{c}, \end{cases}$$

$$T - T_{s}^{*}.$$
(8)

Ashutosh Balakrishnan

The lagrangian

- The objective function in (7) is observed to be concave while the constraints are affine.
- The Lagrangian of P1 is defined as,

$$\mathcal{L}(T_s,\gamma,\beta) = K \ln(1+K_sT_s) + \gamma(T_s-\tau) + \beta \left((T-T_s)B_cK\ln K_c-\alpha\right).$$
(9)

• Solving $\partial \mathcal{L} / \partial T_s = 0$, we can obtain

$$\frac{KK_s}{1+K_sT_s} + \gamma - \beta B_c K \ln K_c = 0$$
resulting in, $T_s = \frac{K}{(\beta B_c K \ln K_c - \gamma)} - \frac{1}{K_s}$. (10)

э

The Dual

- The dual is formed by substituting the primal solution (10) in (9).
- The resulting dual is given as

$$\mathcal{G}(\gamma,\beta) = K \ln\left(\frac{KK_s}{\beta B_c K \ln K_c - \gamma}\right) + \frac{\gamma K}{\beta B_c K \ln K_c - \gamma} - \frac{\gamma}{K_s} - \gamma\tau + \beta T B_c K \ln K_c - \frac{\beta B_c K \ln K}{\beta B_c K \ln K_c - \gamma} + \frac{\beta B_c K \ln K_c}{K_s} - \beta\alpha.$$
(11)

• Solving $\partial \mathcal{G}/\partial \gamma = 0$ and substituting in (10), we obtain

$$\beta B_c K \ln K_c - \gamma = \frac{KK_s}{1 + K_s \tau},$$
resulting in, $T_s = \tau.$
(12)

• Solving $\partial \mathcal{G}/\partial \beta =$ 0, and substituting in (10), we get

$$\beta B_c K \ln K_c - \gamma = \frac{B_c K K K_s \ln K_c}{T B_c K K_s \ln K_c + B_c K \ln K_c - K_s \alpha},$$
resulting in, $T_s = \left(\frac{T K_s B_c K \ln K_c + B_c K \ln K_c - K_s \alpha}{B_c K K_s \ln K_c}\right) - \frac{1}{K_s}.$
(13)

Ashutosh Balakrishnan

Sensing Influence on Communication Rate

- \bullet Analyzing the constraints ${\it C}_1$ and ${\it C}_2$ of the primal problem in P1,
 - observe that $T_s \ge \tau$ and $T_s \le T \alpha/(B_c K \ln K_c)$.
- Hence the feasible region for optimal T_s is

$$\tau \le T_s \le T - \frac{\alpha}{B_c K \ln K_c}.$$
(14)

 \bullet Using the lower and upper bounds in (14), we obtain

$$\alpha \le (T - \tau) B_c K \ln K_c. \tag{15}$$

Corollary

The maximum data that can be communicated in a JRC based ISAC system, is a function of the sensing performance guarantee τ in addition to the communication design parameters, i.e., B_c and K_c , and is given by

$$\alpha \leq (T-\tau)B_c K \ln K_c.$$

Performance Evaluation

• The parameters adopted in simulations are: T = 1 ms, $P_c^T = 1$ mW, $P_r^T = 15$ mW, $\sigma = 1 m^2$, G = 8 dB, $B_s = 240$ MHz, $B_c = 180$ kHz, $f_r = 77$ GHz, $SNR_{req} = 15$ dB, $\alpha = 1.5 \times 10^3$ bits/frame, $T_{temp} = 300$ K.

Figure: Illustration of optimal (a) communication and (b) sensing duration with distance at various velocities (m/s).

- optimal communication time increases with distance, as well as with increasing velocity for a fixed distance, to achieve a given data rate.
- The sensing time reduces adaptively but is greater than the sensing guarantee threshold.

Performance Evaluation

• Optimal sensing and communication duration for varying average channel gain and communication transmit power for various target distances is shown below.

Figure: variation of sensing and communication time duration with (a) average channel gain (b) communication transmit power.

- observed from Fig. 4(a) that the optimal communication time decreases with increasing average channel gain and increasing transmit power (Fig. 4(b))
- inferred from Fig. 4(b) that the sensing duration decreases with increasing distance, which is consistent with the variation of sensing time shown in Fig. 3(b).

• Communication throughput wrt distance for various channel gains

Figure: Comparison of communication throughput variation with distance.

- The proposed OTP framework is compared with an ISAC system considering equal time partitioning (ETP).
- It is observed that with poor channel gain (g = 0.1, 0.5) the proposed OTP framework achieves a significant gain, up to 12.6%, over the ETP framework.
- for shorter distances R < 30 m, throughput with the OTP framework is marginally lower than the ETP framework when g = 1.
 - This is because, at shorter distances the optimal communication time computed via the OTP framework to satisfy the QoS is lower resulting in lower throughput

- Presented an optimal time partitioning (OTP) framework for V2V ISAC systems.
- Proposed a novel radar sensing measure as a function of maximum detectable range and velocity.
- Constrained by sensing and communication performance guarantees, the OTP framework has derived the optimal duration for sensing and communication.
- Provided insight into the maximum achievable communication throughput as a function of sensing guarantee.

Thank You

Questions, Suggestions?

Ashutosh Balakrishnan (balakrishnan@telecom-paris.fr)

æ