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Abstract—Wireless sensor networks (WSNs) offer a broad
range of applications in the Consumer Internet of Things (CIoT).
The sensor nodes in a WSN are equipped with an array of
sensors that often encounter limited energy availability. Thus,
a joint Long Short-Term Memory (LSTM) and reinforcement-
learning-based edge intelligence framework is proposed in this
article for a multi-sensing node. This novel strategy aims to
estimate an optimal set of active sensors during a measurement
cycle by solving the trade-off between the cross-correlation
between sensing signals and sensors’ energy consumption using
a Q-learning-based optimization function at the edge node. A
prediction model based on LSTM is employed to predict the
sensing signals monitored by the inactive sensors from the cross-
correlated sensing signals monitored by the active sensors. To
assess the performance of the proposed framework in CloT
nodes, the algorithm is simulated on an air pollution monitoring
dataset. The simulation results confirm the effectiveness and
efficiency of the proposed framework. In comparison to the
current state-of-the-art approach, the proposed algorithm shows
a 13% improvement in error performance and up to 27%
improvement in sensing energy consumption, while maintaining a
lower bound of cross-correlation coefficient between the inactive
and active sensor set.

Index Terms—Consumer Internet of Things (ClIoT), Edge
intelligence framework, Temporal correlation, long and short-
term memory (LSTM), cross-correlation, Q-learning, adaptive
sensing.

I. INTRODUCTION

Wireless sensor networks (WSNs) offer multitude of appli-
cations in Consumer Internet of Things (CIoT) devices, such
as smart wearables [1], smart healthcare systems [2], smart
agriculture [3], Environmental monitoring devices [4], etc.
with improved functionality, efficiency, and convenience. Such
WSNs comprise numerous sensor nodes, primarily powered
by batteries, which impose restrictions on the network’s oper-
ational lifespan. The primary energy-intensive aspects within
WSNs are the processes of sensing and data transmission. A
sensor node encompasses a collection of sensors tasked with
monitoring diverse environmental parameters. For instance,
an air quality monitoring node incorporates sensors to mon-
itor various aspects such as temperature, relative humidity,
particulate matter (PM), and potentially harmful gases. It is
important to highlight that the power consumption of these
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high-performance sensors can exceed the power consumption
of the transmission module. To tackle the challenge of short
battery capacity, these sensor nodes are equipped with energy-
harvesting mechanisms to replenish their batteries. To mini-
mize energy usage during sensing, an ideal sampling interval
can be calculated for each parameter without compromising
the data quality of data [5]. Despite the extension of WSN
lifetimes through such mechanisms, the development of a sus-
tainable wireless sensor node capable of efficiently monitoring
multiple sensing signals with reduced energy consumption and
high sensing quality remains a significant ongoing challenge.

In numerous WSNs, the field data is regularly transmitted
to a nearby collection point, facilitating the analysis and
establishment of a feedback mechanism for system parameter
adaptation [6]. If multiple parameters of interest are sensing
within an environment, even if the individual sensing elements
differ significantly in their composition, these parameters fre-
quently exhibit interrelationships or cross-correlations among
them. This inherent connection can be leveraged to estimate
the value of one parameter using data from one or more
other parameters. Consequently, by carefully selecting the
appropriate number of active sensors, it becomes possible to
design an energy-efficient sensing strategy for the field node.

Within densely deployed WSNs, the monitored parameters
often exhibit spatio-temporal correlations, which can be effec-
tively utilised to eliminate redundancy. In such scenarios, it is
possible to strategically activate only a few sensor nodes to
monitor slowly changing signals [7]. Conversely, in sparsely
deployed WSNs, commonly found in controlled smart city
deployments, spatial data correlation is relatively minimal.
In these cases, redundancy primarily occurs at the level of
individual nodes due to the temporal correlation of the sensing
signals and cross-correlation among such time series sensing
signals. Consequently, the optimization of sensing in such
scenarios is limited to the node level. This research specifically
concentrates on such sparse deployment scenarios, to eliminate
sensing redundancy at the node level.

Since the spatio-temporal and cross-correlation exploitation
mechanism is computationally intensive, the complex algo-
rithm can be programmed at the edge node. The edge node
can transmit the output of the algorithm to the end nodes
in the WSN to optimally operate the sensors. The battery
operated field deployed sensor nodes have limited energy
capacity. In contrast, the edge node is typically a high-end
computing node, powered from the grid. Therefore, to reduce
the energy consumption and thereby increase the lifetime of
the field deployed sensor nodes, the processing complexity can
be shifted to the edge node.



A. Related Work

A few studies in the existing literature have explored the
concept of energy-efficient sensing in CloT applications. In
one instance, an adaptive sampling method was introduced for
a snow monitoring application [8]. This algorithm dynamically
determines the optimal sampling frequencies for sensors by
employing the fast Fourier transform on a large dataset to
compute the maximum detectable frequency of the sensed
signal. The optimal sampling interval is decided from the
Nyquist sampling rate, which is computed from the maximum
frequency of the signal. After a specified number of samples
have been collected, the sampling rate is updated/recalculated
based on the change in the frequency.

Another study [5] presented three distinct data collection
approaches for temperature and humidity sensing, each tai-
lored to adapt the sampling rate to changing environmental
conditions. The first method involved calculating the T-statistic
value (which is the ratio of the variance determined from the
collected temporal samples) using Bartlett test and one-way
Anova model. This value is then used in a behavior function to
adapt the sampling rate. The second and third models utilised
the Jaccard similarity function and the Euclidean distance
function, respectively, to assess dissimilarities between the
consecutive data sets. Subsequently, these methods yielded
new parameter values that were incorporated into the behavior
function to calculate updated sampling rates for both models.

Furthermore, a decentralised approach to adaptive sampling
was introduced in [9], employing a Kalman Filtering-based
estimation technique. This approach autonomously adjusts the
sampling periodicity within a specified range based on the
estimation error derived from the Kalman Filter. The work
in [10], proposed a learning-based adaptive sensing strategy
for a multi-parameter sensor hub. Few optimal sensors are
selected to turn on for a limited period to collect data based on
the Upper Confidence Bound (UCB) algorithm. The inactive
sensing parameter values are predicted from the data collected
by the active sensors using the Gaussian process regression
(GPR)-based prediction models.

In a large network, the edge node has to serve multiple
end nodes. However, due to high processing complexity at
the edge node and delay constraints of the end user packets,
several packets may be dropped when the deadline of the
packets is expired. To improve the QoS of the end users,
model-free deep reinforcement learning-based task-offloading
schemes were presented in [11], [12]. Similar to [11], [12], in
[13], a deep-reinforcement learning-based joint task-offloading
and resource allocation scheme was presented considering the
long-term energy constraints of edge computing nodes while
maintaining the QoE of end users.

In [14]-[17], several machine learning and deep learning-
based methodologies were introduced. An IDW-BLSTM-based
sensor data prediction model was presented in [16] for pre-
dicting the air pollution parameters, specifically PM2.5 and
PM10, by leveraging their spatio-temporal correlations with
meteorological factors such as temperature, wind speed, and
humidity.

Although a few adaptive sensing frameworks exploit the

cross-correlation among various parameters of a node in the
WSN, the sensor data prediction performance and energy
efficiency of the network need to be improved.

B. Motivation

A comparison of the state-of-the-art literature is presented in
Table I, which shows the research gap that has been addressed
in the proposed framework. While the above mentioned ap-
proaches help to significantly decrease energy consumption
in devices like wireless sensor nodes, there remains a critical
limitation due to the finite battery capacity of the small sensor
hubs, especially in extensive deployments. Moreover, imple-
menting complex adaptive sensing algorithms significantly
increases the processing energy consumption of the sensor
node. This constraint imposes restrictions on the overall lifes-
pan of these networks. Furthermore, as high-quality sensors
continue to evolve, their cost and energy requirements have
been on the rise. Additionally, the trend is toward equipping
a single node with an increasing number of sensing elements.
As a result, this expansion in the number of sensors per
node leads to higher data volumes and, subsequently, elevated
energy consumption for the sensor nodes themselves. Thus,
an adaptive sensing framework can be developed at the edge
node to shift the computational complexity of the sensor node
and minimize the energy requirement of the sensor node.

In [5], [8], and [9], the adaptations at the node level pri-
marily focus on individual sensing parameters, without taking
advantage of the potential cross-correlations between multiple
parameters. Consequently, each sensor within the network is
required to collect samples independently, regardless of the
status of other sensors. Conversely, the research presented
in [6], [20] pertains to densely deployed WSNs aimed at
monitoring the same parameter. In this context, a subset
of sensor nodes is strategically chosen from various sensor
nodes in the sensor network for sampling during specific
time intervals. The selection process is based on the spatio-
temporal correlations observed among the sensing signals and
the energy consumption patterns exhibited by the sensors at
different time periods. This approach is suitable because the
data collected in densely deployed WSN5s are often sparse due
to the spatio-temporal correlations. In contrast, the dynamics
of multi-parameter sensing within a sensor hub are anticipated
to be distinct from those in the scenarios studied in [7], [19].

Although an adaptive sensing strategy for a multi-parameter
sensor hub was presented in [10], the error performance could
be improved by including the past temporal samples of the
inactive sensing parameter (as presented in [16]) along with
the present cross-correlated samples of the other parameters, as
the time series samples exhibit a strong temporal correlation.
Moreover, neural networks can perform better than machine
learning models in order to predict the cross-correlated inactive
sensing parameters [21].

It appears that the studies mentioned in [14]-[17], and
[22] have different primary objectives than energy efficiency
of a multi-parameter sensor node. In [14]-[17], the focus is
on weather forecasting, while in [22], the emphasis is on
sensor selection in densely-deployed networks for monitoring



TABLE I: Comparison with the state-of-the-art

State-of-the- System Sensing Pa- | Correlation exploited Learning-based Reinforcement Sampling

art model rameters prediction model learning interval

8], [5], [9] node level single not exploited not used not used adaptive

[18] network single spatio-temporal corre- | Sparse Bayesian | not used fixed
level lation Learning

[19] network multiple spatio-temporal and | Sparse Bayesian | not used fixed
level cross-correlation Learning

[10] node level multiple cross-correlation Gaussian Process Re- | UCB algorithm fixed

gressor
Proposed node level multiple temporal and cross- | LSTM Q-learning adaptive
framework correlation

a single parameter. Indeed, it seems that the specific chal-
lenge of energy-efficient quality sensing while considering
the variations of process dynamics of sensor hub has not
been thoroughly investigated in the existing literature. This
represents a scope where further research and exploration are
needed.

When dealing with a single node equipped with multiple
sensors for capturing environment parameters that exhibit ran-
dom variations, the previous approaches may not be accurate
in selecting the optimal set of sensors for that node. In
such cases, it is beneficial to consider not only data from
the immediate past measurement cycle but also historical
data from previous cycles. To address this, a reinforcement
learning model can be developed, allowing the system to learn
and make informed decisions through experience. The sensor
selection problem can be formulated as a multi-armed bandit
(MAB) problem based on the system’s dynamics [23]. Finding
the best set of sensors to activate in the next measurement
cycle is analogous to selecting the optimal “arm” in the MAB
framework. MAB problems are well-established in the field of
reinforcement learning and find extensive application in real-
time systems for the purpose of online decision-making. Sev-
eral algorithms, such as Q-learning, epsilon-greedy, Thompson
sampling, UCB, etc. have been employed to solve MAB prob-
lems [23]. UCB is a deterministic algorithm that is based on
the exploration policy and hence takes more time to estimate
the probability function of rewards associated with each arm.
Whereas, Q-learning is a model-less Reinforcement learning
method, where a model of the environment is not required. It
can handle problems by estimating the stochastic transitions
and rewards automatically without requiring adaptations [23].
Moreover, the Q-learning algorithm settles faster than UCB.
Thus, the Q-learning algorithm is adopted in the proposed
framework to address the sensor selection challenge. This
approach enables the system to iteratively improve its sensor
selection strategy over time, enhancing the efficiency of sensor
data collection.

Although a few sensing signal recovery schemes, such as
Sparse Bayesian Learning (SBL) [18], [19] and GPR [10],
[24], are reported in the literature, LSTM has better prediction
performance [21]. SBL method is used to reconstruct the spa-
tially varying sparse signal in a densely deployed WSN [18],
[19]. In contrast, the proposed system model considers a single
sensor hub with an array of sensors deployed in a geographical
location, which is unaware of spatial variations of the sensing
signals. Although GPR-based prediction model performs better

than SBL, as discussed in [24], the prediction accuracy can be
improved further using neural networks such as LSTM [16]. A
cross-correlation based sensor selection model was presented
in [19] for a multi-sensing node, however, the optimality of
choosing the sensor set was not studied in that framework.
An UCB-based sensor selection framework was proposed in
[24], however, the reward achieved with the UCB-algorithm is
lower than Q-learning. Therefore, as an advance an efficient
deep learning-based prediction model to achieve better sensing
accuracy with Q-learning-based sensor selection strategy is
proposed in this framework.

C. Contributions

In this research endeavor, a novel edge intelligence-based
approach to sensor data collection is introduced for appli-
cations, leveraging deep learning techniques for a compact
sensor hub equipped with multiple sensors monitoring diverse
environmental parameters. The inspiration for this approach
stems from the impressive predictive capabilities of Long
Short-Term Memory (LSTM) models [16]. The proposed
method investigates an energy-aware sensing mechanism that
dynamically activates a specific set of sensors in real time.
This strategy is designed to optimize the utilisation of the
sensor resources, thereby conserving energy while maintaining
accurate data collection. This approach is comprehensively
examined at the node level, and its applicability extends to
distributed networks, offering potential benefits in terms of
energy efficiency and data accuracy across a broader system.

The main features and contributions of this study are:

o The proposed edge intelligence-based sensor selection
framework is conceptualised as an MAB problem. It
leverages the interconnections and cross-correlations ob-
served among the diverse sensing parameters within a
node to intelligently activate a few optimal sensors to
sense the environment. This decision-making process is
adapted to account for the dynamic and non-stationary
nature of the environment being monitored.

e The Q-learning algorithm is implemented to determine
the activation of the optimal sensor set. In this process,
rewards are calculated during each measurement cycle by
taking into account several factors. These factors include
the cross-correlation among various sensing parameters,
the energy requirements for sensing, and the current
energy available at the node. The Q-learning algorithm
uses these reward calculations to make decisions about
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which sensors to activate during each cycle to balance
between data quality and energy conservation.

o The proposed approach involves utilising an LSTM net-
work to predict missing parameters at the edge node. This
prediction is achieved by analyzing the sampled param-
eters and their cross-correlations. The LSTM network is
trained to make accurate predictions by learning from the
relationships and patterns present in the data, enabling it
to fill in missing parameter values effectively.

o The proposed algorithm is tested on an air pollution
monitoring dataset. It achieves a 13% improvement in
error performance and up to 20% improvement in sensing
energy consumption compared to the nearest state-of-the-
art approach, while maintaining a lower bound of cross-
correlation coefficient between the inactive and active
sensor set.

Paper Organisation: Section II describes the system
model. Section IIT describes the LSTM-based prediction
model, followed by the proposed Q-learning-based sensor
selection strategy in Section IV. Section V presents the results
and discussion, followed by the conclusion in Section VI.

Notations: A set is denoted as .4 and a matrix is denoted
as A, where A € RM*M denotes a M x N real valued
matrix, and A € RM*1 denotes a vector with M elements.
The cardinality/number of elements of set .4 is denoted as

A = A.

II. SYSTEM MODEL

Fig.1 depicts a sensor node with multiple sensors integrated
or assembled to the node. The sensor node is wirelessly
connected to an edge node. The sensor module of the node
equipped with P number to sense P distinct parameters in
the environment. The microcontroller receives data from the
sensors at every sampling instant for a period called the
measurement cycle and transmits the data through the RF
module to the edge node after every measurement cycle. The
sensor node also transmits FEj, which denotes the energy
available in battery at the end of z'" measurement cycle.
Let P = {P,;1 < p < P} be the set of parameters.
2" € RPX! denotes the measurement vector at a sampling

instant containing the observations of each parameter in the
2" measurement cycle. Let I? be the number of sampling
instances in z!" measurement cycle. Thus, Z* € RE*I®
denotes the data matrix of the 2*" measurement cycle.

Given that the sensors in the node are responsible for
monitoring signals that change over time within the same
environment, few parameters exhibit good cross-correlations.
This allows the system to predict one parameter based on its
correlations with other parameters. Thus, N = (2F —2) is the
total count of sensor sets that can be formed from P sensors,
not including the empty set and the universal set. The i*"
active set of sensors in the z** measurement cycle is denoted
as, A7. The respective inactive or sleep sensor set is denoted
as BY =P — A?;1 <14 < N. Therefore,

AP = {Pas ;1 <m < AT} (1)
and

Bf = {Pps ;1 < k < Bf} 2)
Let

S ={(A7,BY);1<i< N} 3)

be the set that contains all the active and inactive sensor sets,
and |A?| = A7, |BY| = B?, |S"| = N, and A7 + BY = P.
The sensing model described here is employed within the
proposed framework outlined in Section I'V. In this framework,
the sensors belonging to the active set gather samples over
a specific duration known as the measurement cycle. These
collected samples are then stored in the node’s memory. After
the measurement cycle, the node transmits the accumulated
data to the edge node. The intelligent adaptive sensing al-
gorithm is programmed at the edge node, where the data is
subsequently processed using the algorithm detailed in Section
IV-C, which leads to the generation of feedback. As depicted
in Fig. 1, the feedback in z*" measurement cycle consists of
the active sensor set (A?), length of z*" measurement cycle
(7*), and the sampling interval of the active sensors (t%).
This feedback is then sent back to the node, informing it of




necessary adaptations to improve sensing quality and energy
efficiency in subsequent cycles.

In the context of this study, it is essential to note that, in a
given environmental scenario, the average number of commu-
nication exchanges and the associated energy requirements are
relatively stable. Additionally, it is observed that the energy
consumption for sensing in wireless nodes involved in environ-
mental monitoring is notably high and can often dominate over
communication-related energy costs [8]. Given the primary
focus on optimizing sensing energy and quality through the
exploitation of cross-correlations among parameter values, this
study does not take into account the communication cost in
its analysis.

III. PROPOSED LSTM-BASED PREDICTION MODEL

A Q-learning-based optimization method, discussed in Sec-
tion IV, is used to choose an optimal active sensor set.
According to the selected optimal set, certain sensors from the
sensor array are to be turned on, while the remaining sensors
data are predicted using the LSTM-based regressor model.
This prediction is based on the active sensing parameters
and the previous temporal values of the inactive parameter,
as described in this section. LSTM is a variant of recurrent
neural network (RNN) architecture that aims to address the
shortcomings of conventional RNNs by better capturing and
understanding distant relationships within sequential data.
LSTMs are particularly effective in tasks involving sequential
or time-series data, which makes it appropriate for predicting
time series sensor data in this framework.

LSTM networks consist of various components that work
together to process and learn from sequential data while
addressing the vanishing gradient problem that often plagues
traditional RNNs. The key components of an LSTM cell are:

o Cell State (ct): This is the core memory of the LSTM.
It runs linearly through the cell with minor interactions,
which helps information to persist over long sequences.
Information can be added to or removed from the cell
state through various operations.

o Hidden State (h;): The hidden state carries information
about the previous time step and is used to make predic-
tions and decisions. It can be thought of as the output of
the LSTM cell.

o Input Gate (i4): This gate controls whether and to what
extent new information has to be stored in the cell state. It
considers both the current input and the previous hidden
state, and the output is a value between 0 and 1 for each
component of the cell state.

o Forget Gate (f;): This gate determines what information
should be removed or forgotten from the cell state. It
also considers both the current input and the previous
hidden state, and gives output between 0 and 1 for each
component of the cell state.

o Output Gate (0;): The output gate decides what the next
hidden state should be. It combines the current input and
the previous hidden state to produce a value between 0
and 1 for each component of the cell state.

o Candidate Cell State: This is a new candidate value that
could be added to the cell state. It is calculated based on

the current input and the previous hidden state. The input
gate determines how much of this candidate value gets
added to the cell state.

The forget gate identifies which data from the prior cell state
to omit, while the input gate determines what fresh information
should be incorporated into the cell state. The candidate cell
state generates a potential value for inclusion in the cell state.
The update cell state function merges the outcomes of the
forget gate, input gate, and candidate cell state to refresh
the cell state. Ultimately, the output gate decides the output
according to the refreshed cell state, which can serve as the
hidden state for the present time step.

The LSTM architecture’s ability to learn long-term de-
pendencies and manage information flow through the cell
state and gates makes it well-suited for various sequential
tasks. It addresses the vanishing gradient problem by allowing
information to flow more easily through the cell state, enabling
the network to remember information over long sequences
[15], [16]. Although GPR-based prediction model performs
better than SBL, as discussed in [24], the prediction accuracy
can be improved further using LSTM [16].

Input to the LSTM network is the design matrix Z, consists
of n feature vectors. To predict p”* inactive parameter, each
feature vector consists of the active parameters and one
step previously collected/predicted value of the p'” inactive
parameter. Consider y as the target vector with n number
of target values of the p'" parameter from the training set.
Thus, N sub-models can be created for P active sets A7 to
predict the corresponding parameters of the inactive set 37.
Intuitively, the temporal parameter has more significance in
prediction, than the cross-correlated parameters. However, the
cross-correlated parameters give information about the present
condition of the environment.

As shown in Fig. 2, the n' feature vector of the training
matrix of the inactive parameter k € B is:

) Zili(A?) (n), Zfsi(k) (n—1)}

“4)

z3,(n) = {Ziiu)(")v Ziti(z) (n),- -
and the output is 25, ;) (n). Thus, the target vector is:

28,y ()} )

The sub-models are trained at the beginning using n training
samples. The i*" sub-model has B¥ number of regressors to
predict each parameter of 57.

ylmgi(k) = {Zgl(k)(1)7 e Zlm?,i(k;) (2), e

IV. PROPOSED SENSOR SELECTION FRAMEWORK

As discussed in Section III, a set of sensors is selected
to activate out of P sensors in the next measurement cycle
based on the cross-correlation among all the sensors and the
sensing energy consumption of the active sensors. Section
IV-A describes the proposed Q-learning-based active sensor
set selection framework. Each active sensor collects data at a
certain optimum sampling interval decided based on the time
series correlation of that sensing signal. The active sensors
collect data for an optimum length of measurement cycle
which is also decided based on the temporal correlation of
the parameters, described in Section I'V-B.
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Fig. 2: LSTM-based prediction model.

A. Q-learning-based optimization Framework

As discussed in Section II, sensing parameters of a node
experience the same environmental condition, hence exhibit-
ing good cross-correlation. Therefore, few parameters can
be predicted from the other parameters without turning On
those sensors for a cycle. Since the environment is non-
stationary, the optimum active sensor set changes over the
period. Thus a set is selected at the end of z** measurement
cycle to collect data at (x + 1) measurement cycle. From
the dataset collected at (x + 1)** measurement cycle, a new
set is selected to collect data at (z + 2)*" measurement cycle.
With P sensors N = 27 — 2 states can be created. At each
state, N = 2 — 2 actions can be taken, where each action
refers to a unique vector containing the information of the
set of active sensors for the next cycle. By taking action at
a particular state, the system reaches the next state and gets
some reward based on that action. Therefore, a reinforcement
learning model can be created to choose an optimal action
that maximises the reward of the system. According to [23],
Q-learning is an algorithm in reinforcement learning operates
without a model, that learns the value associated with taking
a specific action in a given state. Thus, a Q-learning-based
optimization framework, which is a model-less reinforcement
learning framework, is proposed to find an optimal set of nodes
based on the system parameters.

The reward of the system is computed based on the follow-
ing performance parameters:

1) Cross-correlation factor of the it" sensor set: Let the
cross-correlation coefficient between p and ¢ is denoted as
¢(p,q). Thus, p and ¢ can be called as cross-correlated if
le(p,q)| > cin, where ¢y, denotes the threshold of cross-
correlation coefficient. As discussed in Section II, the total
count of active-inactive sensor sets that can be formed from
P sensors is N = (27 — 2). Thus, A? and B¥ are cross-
correlated if the sensing parameters of B; is cross-correlated
with the sensing parameter of A?. Thus, the cross-correlation
factor C¥, which is the average cross-correlation between A7,

is:

BY A7
T ]. i i . . ) )
¢ = Wk;; |c"(m, k)|;Vk € BY and m € A? (6)

If CF < ¢y, CF is assigned as 0.
2) Sensing energy consumption of A7: The energy con-
sumed by the sensors of the set € A7 is:
A7
Ef = M} Eny;Vm € A7 (7)
m=1
M7 is denoted as the number of samples measured by the
mh parameter of A% at z'" cycle and En,, is the energy
consumed by the m!" sensor for collecting one sample.

3) Residual node energy: To introduce energy awareness
into the optimization framework, the remaining energy is also
taken into account as an additional performance metric to
estimate the optimal sensor set. If Ey,q; is the battery capacity
connected with the sensor node and E§ is available node
energy at the end of z** measurement cycle, the normalised
energy available at the sensor node is:

a B
Ebatt

The objective is to maximise C7, A*, and minimise 7. If R}
is the reward obtained for choosing ‘" action at state s in the

A (®)

2th measurement cycle, RY can be defined as:
NEC®
R = L 9
= ©)
where .
v znel %’i Es? (10)

The reward is defined such that it is bounded to [0,1]. The
new Q value of the state s for choosing i action is:

Quew(s,9) = Qs,8) + a[R] (s) + maxQ(s', 1) — Q(s, )]
(11

The Q-table is initiated with zeros. The rewards are computed
for all N actions from the training data set and the Q values



Train the LSTM models Create N active

sets using P sensors

Send the information to
the sensor node

Find optimal sensor set
using Q-learning algorithm

Collect data from all the sensors
and send to the base station

Predict the remaining data of the
inactive sensors using LSTM

Collect data from the active sensors
and send to the base station

Training stage

Prediction stage

Fig. 3: Flow chart of the proposed LSTM and Q-learning-based adaptive sensing framework.

are computed using (11). The optimal active sensor set in the
2" measurement cycle is chosen as

Af. =argmaxQ(s®,1)
€S

S. L. Cf > Cth (12)
The inactive nodes will not participate in the data collection
operation for this measurement cycle. The sensing signals of
the inactive nodes are predicted using the LSTM, as discussed
in Section III.

B. Finding Optimal Sampling Instants and Optimal Length of
Measurement Cycle

As discussed in the [5], the sampling interval of the sensors
is decided based on the Nyquist rate of the sensing signals.
However, it has been observed that the data collected at
Nyquist rate exhibits a very high temporal correlation [24].
Therefore, the sampling rate can be chosen based on the tem-
poral correlation of the sensors. Let the temporal correlation
of p'" parameter between Z7 (i) and ZZ (i — I) be ctZ(I). If
cty(I) = ctyp, , the sampling interval of p'" parameter is set as
t, = I. To reduce the complexity, the sampling interval of all
the sensors is set as ¢* = min(#). Similarly, a new temporal
correlation threshold ctyy,, is set to decide the retraining point.
If ct;; < ctip, of any parameter p, the model needs to be
retrained.

The cross-correlation among the sensing parameters is time-
varying in nature. Therefore, the length of measurement cycle
7 should be chosen such that the active sensor set selected
at that cycle is optimal for the entire duration. Hence, 7, in
the proposed framework, is decided by exploiting the cross-
correlation factor of the active sensor sets, such that the aver-
age cross-correlation factor of all the active sensor sets remains
similar during the measurement cycle. The optimum number
of samples collected by each sensor in the 2" measurement

P

cycle is given by, M* = .

C. Adaptive Sensor Selection framework

The proposed edge intelligence adaptive sensing framework
is shown in Fig. 3, which is programmed at the edge node. Ini-
tially, The Nyquist sampling rate of all the sensing parameters
is computed at the beginning by collecting data at a sampling

Algorithm 1: Adaptive sensing algorithm at the edge node

Input: x =0, e =1, fm, ctiny, Cliny, and cep.

if e=1 then

Receive data for all sensing parameters from the sensor
node and E§

Train/retrain and test the model with recently collected
samples

Exploit temporal correlation to find +*** and 757+

Construct S and calculate Cy and E;Vi € S using (6)
and (7), respectively

Find optimal active sensor set AEZH) by solving (12)

Sete=0
else

Receive E§ and data from the active sensors of the
sensor node

Predict the missing samples using the LSTM model as
described in Section III

Exploit temporal correlation to find new ¢* 1!

T:c+ — Tz

Construct S and calculate CY and EY;Vi € S using (6)
and (7), respectively

Find optimal active sensor set AEZH) by solving (12)

Find ct;;Vp € P

while ¢ty # ctin,;Vp € P do

‘ Sete =1, t*T1 = f%’ and 7%t = n x ¢* 1L
end
end
Transmit AT, £7+1 72%1 and e to the sensor node
Setx =z +1

interval of 1 sec. For simplicity, the Nyquist sampling rate is
kept fixed.

At the beginning of the algorithm at the edge node, as
presented in Algorithm 1, the node collects data from all the
sensors at a sampling frequency f,, = max(fi, f2, -, fp),
where f, is the Nyquist sampling rate of the p*" sensor.
The LSTM-based prediction model is trained at the edge
node using a sufficient quantity of samples gathered from
the node. The prediction model includes /N sub-models that
are constructed based on the input/output of N subsets in
S, before exploiting the temporal correlations to find ¢* and
77, Subsequently, the optimal sensor set is chosen based on
the Q-learning method as discussed in Section IV-A. Finally,
the outcome of the process consists of the optimal active
sensor set A7 containing the sensors to be activated during



1 25
10 - Prediction error .
§ ‘©Energy consumption -
s AR
T | NI ERUURIDINE N DRI - ey AR 2
g 10 Ts E
E 2
) g
E s
E=15 [ 2y i >
2 80
= 105 o
A 10% \ \ \ \ \ \ \ 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cross-correlation threshold (cth)

(a)

—AT <%-CO -0, 0.03

|-PM,

Ix608
{Y 0.995476 5>NO, %S0,

<

e

o

®
T

e

15

=
T

®Soseg 0.02

=
)
N

%0.01

Temporal correlation
=3
o
-
Prediction error

e
e
T

0.001

150 200 250 300 350 400
Interval (sec)

(d)

Fig. 4: (a)Variation of temporal correlation and prediction error with sensing interval, (b)Variation of prediction error and energy consumption

with cross-correlation threshold.

X 1264
Y 0.85205

0.8 b

0.7

0 200 400 600 800 1000 1200 1400
Length of measurement cycle (sec)
Fig. 5: Average cross-correlation factor versus measurement cycle

length.

Average cross-correlation factor

the x" measurement cycle, sampling interval +*, length of
2" measurement cycle 7%, and a status flag e is transmitted
to the sensor node. Based on the status of e the node activates
the sensors of A7 and collects total M* samples from each
sensor at a sampling interval ¢*.

At the end of the measurement cycle 7%, the sensor node
transmits the samples collected by its active sensors and its
energy status E§ to the edge node. Upon receiving these values
from the sensor node, the edge node executes the adaptive
sensing algorithm and sends the required control information
to the sensor node for executing in the cycle 7(*+1),

To retrain the model, the temporal correlations among indi-
vidual parameters are exploited. Given that these parameters
represent slowly changing temporal signals, it is anticipated
that there will be robust temporal correlation among the signals
from one cycle to the next. Let ctp ¢, be the user-defined
temporal correlation threshold of p'"* parameter to maintain an
acceptable range of prediction error. The temporal correlation
ct,, is calculated by selecting an equal number of samples
from both the currently reconstructed signals and those from
past cycles at a consistent interval. When prediction errors
increase, it indicates a reduction in the temporal correlations
among the signals because these errors introduce randomness
into the data. Therefore, all the sensors are activated in the
(z + 1) measurement cycle if cty # ctpunVp € P. The
LSTM network is retrained after collecting new samples from
every sensor.

The proposed framework can be adopted to all the applica-
tions consisting of field sensor nodes with multiple sensors
exhibiting a moderate to high cross-correlation among the
sensing parameters.

V. RESULTS AND DISCUSSION

The performance of the proposed LSTM and Q-learning-
based adaptive sensing framework is evaluated in this section.
Air pollution monitoring node is one of the widely used CloT
devices in smart city infrastructures. To analyze the efficiency
of the proposed method in real-life applications, the algorithm
is simulated in Python on an air quality monitoring data set
from [25] where 6 sensors are used to monitor six parameters
(P = {Temperature, PM3 5, CO, NO2, Ozone Oz, SOz }).
According to [24], the sensing energy consumption of the
sensor set P to turn ON and collect one sample is set as,
En = {0.012,29.55,0.026, 0.02, 0.05,0.026} J.

Section V-A describes the estimation of optimum parameter
values of the algorithm. A performance comparison of the
proposed LSTM and Q-learninig-based framework with its
competitive GPR-based framework [10] and SBL-based multi-
sensing framework [19] is presented in Section V-B.

The prediction/reconstruction error of the inactive param-
eters is computed in terms of mean relative error (MRE). If
2, (i) and Z, (i) are the i*" samples of the actual and predicted
data sequence of p!* parameter, respectively, the MRE for I
number of samples is defined as,

_ g~ @) - 50)
MRE, = 70 LGl

According to [5], the sensing parameters can be predicted
accurately if MRE< 1072, Thus, the prediction error threshold
of the parameters is set as ey, = 1072, which is comparable
to the error achieved from the GPR-based optimization frame-
work described in [10]. The sub-models having MRE higher
than 1% are discarded from the set S that contains the active-
sleep subsets to reduce the computational complexity.

(13)

A. Finding Optimum System Parameters

The most important parameter to decide in the proposed
framework is the cross-correlation threshold c;;,. As shown
in Fig.4(a), the sensing signal prediction error decreases with
increasing c;. Thus, in our study ¢;;, = 0.65 is chosen such
that the prediction errors lie within a range [1073, 1072]. It
has been observed that the prediction error gradually increases
with time. Considering the prediction error threshold as 1072,
according to [8], the sub-models need to be retrained when
the prediction error of any sensing parameter exceeds 1072
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TABLE 1I: Reconstruction error (MRE)

Sensing (SBL+MS- (GPR+UCB); (LSTM+Q-
parameters CC)-based based learning)-based
framework framework framework
[19] [10] (Proposed)
Temperature 0.001 0.0007 0.002
PM3 5 0.01 0.009 0.004
CO 0.009 0.009 0.002
NO2 0.004 0.003 0.004
Ozone 0.007 0.006 0.009
SOo 0.005 0.004 0.006

Although the Nyquist sampling rate always provides a
faithful reconstruction of the signal, since it is based on the
potential highest frequency component in the signal which
may occur infrequently, the sensing energy consumption is
very high in such cases as the sensors are mostly always turned
ON to collect data at low sampling intervals. Therefore, the
temporal correlation-based sampling interval selection method
is proposed in this framework. The temporal correlation tend to
decrease with the increased sampling interval, which increases
the prediction error. In our study, to find the optimum sampling
interval, the temporal correlation threshold ct;;, is set as
0.995 for all the parameters, which provides a prediction error
< 1073 for all the parameters, as shown in Fig. 4(b). The
sampling interval from Fig. 4(b) is set as ¢ = 60 sec for all
the parameters at the first measurement cycle.

The temporal correlation is also exploited to decide whether
to retrain the sub-models. From Fig. 4(b), the prediction
error of a few parameters exceeds 10~2 when ct < 0.976.
Accordingly, the sub-models are retrained when the temporal
correlation of any pt, ct, < ctyp,.

The length of a measurement cycle 7 is decided by ex-
ploiting the cross-correlation factor of the active sensor sets
of §. From Fig. 5, it has been observed that the average
cross-correlation factor of all the active sets decreases with
the increasing length of the measurement cycle. Accordingly,
7 = 21 min is initially chosen in the proposed algorithm.
However, it is recomputed during the subsequent retraining
stages, when fresh samples are collected.

B. Performance Comparison with State-of-the-Art

The performance of the proposed joint LSTM and Q-
learning-based adaptive sensing strategy is compared with the

competitive state-of-the-art GPR and UCB-based optimization
strategy presented in [10] and SBL-based multi-sensing strat-
egy in [19]. The GPR and UCB-based optimization strategy
in [10] was found to be the most recent and competitive
state-of-the-art framework. The framework in [19] considered
the network level performance, which we modified appropri-
ately for additionally capturing the node level performance
measures and comparing with the proposed framework. This
section presents the relative error performance of the sensing
parameters and energy consumption in the three competitive
the frameworks.

The algorithms of all the three frameworks were simulated
up to 450 measurement cycles for comparing the sensing
quality and energy consumption performances. From Fig. 6,
it can be observed that the prediction error increases with
measurement cycle, which is intuitive. Fig. 6(a) shows the
variation of average prediction error (average of prediction
errors of all the sensing parameters) with time. The average
prediction error, denoted as MRE,, , is calculated by aver-
aging the MRE of the current and past measurement cycles.
Although the prediction error profile shows randomness, the
mean value MRE,,, 4 increases gradually, as shown in Fig. 6(b).
Hence, the models are retrained when prediction errors exceed
a predefined error threshold. As observed from Fig. 6(b), since
LSTM has better prediction proficiency, the retraining require-
ment is reduced when using the LSTM model compared to
GPR and SBL models. By exploring the data, cty,, = 0.976 is
chosen for all the parameters such that the average prediction
error remains within the error threshold. As shown in Fig.
6(a), the prediction error increases non-monotonically rather
than linearly. Thus, the effect of high prediction error reflects
on the temporal correlation of the sensing parameters after a
few measurement cycles.

The average prediction error of individual sensing parame-
ters in terms of MRE is listed in Table II. It can be observed
that the prediction error of PMs s and CO have improved.
Thus, the average prediction error is improved in the case of
LSTM-based sensor data prediction model compared to the
GPR-based model and the SBL-based model.

The battery energy profile of the sensor node is shown in
Fig. 7. Initially, the Q-learning method activates many sensors
including the high energy-consuming sensors (such as the PM
sensor) to update the Q-values of all the states until the Q-
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TABLE III: Performance comparison of the proposed framework with the competitive state-of-the-art methods

Performance parameters

(SBL+MS-CC)-based frame-

(GPR+UCB)-based frame- | (LSTM+Q-learning)-based

work [19] work ([10]) framework (Proposed)
Average energy consumption (J) 75 51 37
Average reconstruction error (MRE) 6 x 10~ 3 5.2 x 1073 4.5 % 1073
Retraining interval after 212 cycles after 238 cycles after 424 cycles

Average reward -

0.18 0.2

values reach stability. After that, the learning agent judiciously
activates the high energy consuming sensors. In contrast, UCB
takes action based on the reward achieved in the previous mea-
surement cycle. Since low energy-consuming sensors provide
higher rewards compared to high energy-consuming sensors,
UCB judiciously activates the sensor from the beginning.
However, in the long run, it has been observed that Q-learning-
based framework performs better than UCB, as depicted in
Fig. 7(a). Since the optimal number of active sensors set
in the SBL-based framework are chosen by comparing the
cross-correlation coefficients only, the battery energy of the
sensor node decays faster than the UCB-based framework as
well as the proposed Q-learning-based framework. For fair
comparison, in all the frameworks, c;, was set as 0.65 as the
cross-correlation threshold.

Fig. 7(b) presents the battery energy profile of the sensor
node in the proposed framework in three scenarios: while
exploiting only the temporal correlation of individual sensors,
only cross-correlation among the sensors, and both the tem-
poral and cross-correlations of the sensors. It can be observed
that the energy efficiency of the node significantly improves by
exploiting the cross-correlation of the sensors and judiciously
activating the sensors. The energy efficiency improves further
by exploiting both the temporal and cross-correlation of the
sensing signals.

Table III presents the performance comparison of the pro-
posed framework with the competitive state-of-the-art ap-
proaches in [10] and [19]. The proposed algorithm shows up to
13% (256%) improvement in error performance and up to 20%
(50%) improvement in sensing energy consumption, while
maintaining a lower bound of cross-correlation coefficient
¢, = 0.65 between the inactive and active sensor set. Further,
considering an error threshold of 1072, the retraining interval
in the proposed framework increases to 424 cycles from 238
cycles in [10] and 212 cycles in [19], as also visible from the
trends in Fig. 6(a). Although the computational complexity of
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Fig. 8: Regret versus measurement cycle.

LSTM is higher than GPR and SBL due to multiple hidden
layers, the algorithm is implemented in a high computing edge
node, where the processing delay can be accommodated. The
proposed learning-based framework is appropriate for semi-
real-time or non-real-time systems, where energy sustainability
of the field sensor nodes is prioritized over time criticality.
The convergence of the reinforcement learning algorithms
is studied in terms of regret. Regret is the price paid by the
learner for not choosing the optimal sensor set. It is computed
as the difference between the maximum reward that could be
achieved and the reward obtained at the current cycle based
on the active sensor set chosen at that cycle. From Fig. 8 it
can be observed that the Q-learning-based optimization frame-
work converges faster (within 10 measurement cycles) than
the UCB-based optimization framework (about 18 cycles).
Thus, UCB requires to explore more number of cycles before
converging compared to the Q-learning based approach.

VI. CONCLUDING REMARKS

In this article, an efficient edge intelligence adaptive sensor
selection strategy has been introduced for the CloT nodes that
combine LSTM and model-less reinforcement learning (Q-
learning). When dealing with an environment that undergoes
constant change (referred to as non-stationarity), it is more



enlightening to learn from all historical data rather than
depending solely on the most immediate data. To measure the
quality of sensed signals (as it is often impractical to determine
actual prediction errors), we have defined a correlation factor,
which serves as a robust performance indicator. The proposed
edge intelligence framework has been designed to identify
the most efficient sensor set by leveraging insights from the
system’s dynamics while carefully managing energy resources.
Furthermore, the optimal sampling and data transmission
intervals have been determined based on the temporal variation
of the sensor parameters. Extensive investigations conducted
using air pollution monitoring data have confirmed that our
proposed algorithm significantly enhances error performance
and energy efficiency compared to the current state-of-the-art
approaches, while maintaining a similar correlation among the
reconstructed parameters at the edge node.
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