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Characterization of Qualified Grid Nodes for the
Identification of Power Network Oscillations

Akash Kumar Mandal and Swades De

Abstract—Rapid integration of renewable energy sources and
power electronic components in the conventional energy systems
has resulted in increased sub-synchronous oscillations (SSOs) in
the power network. As a consequence, accurate and exhaustive
monitoring of SSOs is critical for reliable system operation. The
importance of failure-proof network operation has necessitated
the requirement of a revised notion of power system stability
and control. In this regard, this paper presents a benchmark
study on power grid disturbances to efficiently identify the
most qualified buses that should be monitored to capture the
perturbations present in the network. Our analysis shows that the
proposed approach is computationally much faster and utilizes
a significantly reduced number of buses for disturbance identi-
fication as compared to the state-of-the-art, without compromis-
ing on the disturbance identification accuracy in the network.
Theoretical formulation of optimization objectives are verified
by the results from the data-driven performance results using
phasor measurement units (PMUs). PMU data was generated
through real-time structured computer-aided design (RSCAD)
simulation. Considering various adversities, such as single PMU
loss, single line loss, measurement noise-infested PMU data, and
compromised PMU operation, our results demonstrate ≥ 50%
and ≥ 75% reduced data footprint under normal and adverse
system operations, respectively, while identifying > 95% of
the critical SSO frequencies, with a > 94% reduced execution
time. Also, the proposed approach presents ≈ 25% enhanced
accuracy of SSO identification in standard IEEE networks,
≈ 25% improved noise immunity, ≈ 15% additional immunity
to grid adversities as compared to the state-of-the-art machine
learning and statistical SSO identifiers, with only 0.21% accuracy
loss on per-node increase in grid size.

Index Terms—Integer optimization, optimum power grid mon-
itoring, phasor measurement unit (PMU), real-time structured
computer-aided design (RSCAD), sub-synchronous oscillation
(SSO).

I. INTRODUCTION

With increasing renewable integration in the conventional
power network and high voltage direct current transmission
technology, the utilization of power electronics-interfaced
components has increased manifolds [1]. This has resulted
in an increased sub-synchronous and super-synchronous inter-
harmonics injected into the power signals, causing sub-
synchronous oscillations (SSOs). The origin of SSO can be
attributed to the interaction between the inter-harmonics and
torsional vibration frequencies of the generator shaft system
[2]. These disturbance frequencies propagate to various parts
of the system, causing system destabilization and degradation
in power quality [3]. Therefore, real-time identification of such
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system oscillations is pertinent to the stability and control of
modern power networks.

Phasor measurement units (PMUs) serve the purpose of grid
health monitoring with densely sampled and time-stamped
values of important power system attributes. However, the
field data from these real-time Internet-of-Thing (IoT) de-
vices is often infested with power system electromagnetic
impairments and allied measurement noise [4]. Furthermore,
with the advent of modern communication technologies in the
conventional power networks, the abnormalities arising by the
virtue of cyber attacks and similar IoT-related adversities has
increased manifold [5]. Therefore, for real-time identification
of the power network oscillations, it is important to select the
most qualified PMUs, so that the data from these devices suffi-
ciently characterize the network instability or SSO conditions.

A. Literature Review and Motivation

The research to date in SSO identification can be broadly
divided into two sets. The first set [6], [7] uses modal
transformation techniques for SSO detection in the modern
power networks. The works in [8] and [9] employed fast
Fourier transform, [10] utilized wavelet theory, and [11] used
Prony algorithm for generating detailed information about the
oscillation modes. However, the accuracy of these methods
depend on the data size and its spatial variability. To mitigate
such issues, the approach in [12] employed a Taylor-Fourier
multi-frequency model-based SSO parameter estimator and
[13] utilized a waveform-based method for fast and accurate
identification of SSOs. Although, these methods address the
issue of higher data footprint, the aspect of co-analysis of
multiple node dynamics has not been accounted thus far in
the literature. As a result, the accuracy of SSO detection in
a power network is compromised with an increase in their
operational complexity.

Nodal PMU data-based estimation of SSOs is proposed
using the empirical wavelet transform in [14], while the uti-
lization of PMU data in SSO identification in high renewable-
injected grids is proposed in [15]. On one hand, it has been
established in literature that, the signature from one PMU is
not enough to capture the oscillation dynamics of complete
power network [16]. On the other hand, using multiple PMU
data could be burdensome from communication, data storage,
and efficient execution standpoints [17], [18]. Therefore, the
identification of the optimum number of PMUs, i.e., the
PMUs monitoring the most qualified nodes is important for
a computationally light and accurate detection of SSOs [19].

The second type of analysis [20], [21] involves the use
of machine learning (ML) approaches in the identification of
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the power system SSOs. A Data-driven mode identification
method was proposed in [22], [23], and a PMU data based
power system event detection and classification using unla-
beled data is proposed in [24]. The study in [25] used wavelet-
based feature extraction from the recorded real-time dataset
followed by identification of the class of the disturbance using
machine learning. An S-transform-based feature extraction
strategy was proposed in [26], followed by an analysis using
a combination of extracted features in [27]. The work in
[28] used deep learning techniques to perform disturbance
classification using an image-converted form of the PMU
dataset. In context of the SSO identification, the common
learning strategies that have been utilized involve deep neural
network, support vector machine, random forest, decision tree,
artificial neural network, K-nearest neighbour, and naive Bayes
[29].

Although ML has evolved as an effective tool in identifica-
tion of such real-time events, these strategies often suffer from
high computational complexity [30], over-fitting, and local
convergence issues [31], and the requirement of a prior data
model [32]. Much of these issues arise with the requirement of
a huge dataset in any learning-based methodology. Though this
helps to reduce modeling error which results in an improved
accuracy of classification/identification and faster convergence,
it simultaneously leads to the aforementioned trade-offs. The
study in [33] proposed a PMU data-based disturbance classi-
fication approach considering bad data. However, the research
is limited to disturbance classification, relaxing the real-time
identification of power network disturbances. Furthermore,
the lack of a co-analysis framework makes the wideband
disturbance analysis approach in [33] inefficient and complex.

In our preliminary study [34], we proposed a novel opti-
mization framework for the identification of the most qualified
buses that can help in capturing the critical SSO frequency
components and their mode shapes of the power network. A
PMU data-based optimization was used for the experimental
validation of the obtained theoretical results. However, the
measurements and the system’s operating conditions were
considered ideal. As an advance, this study considers real
system conditions with measurement noise-infested PMU data
and re-purposes the data-based optimization in [34] to include
the aspect of non-ideal system conditions. As a result, a revised
set of optimal power system buses and the most qualified
PMUs are obtained. As an exhaustive consideration, this
study also considers practical adversities resulting from single
PMU loss, single line loss, and other IoT-specific impairments
caused by cyber attacks or similar unethical activities.

Remark 1. It is notable that, the state-of-the-art PMUs
only provision a maximum reporting rate up to 200/240 fps
(nominally 25/30 fps) for 50/60 Hz grids, respectively. This
creates a bottleneck in our analysis in identifying the super-
synchronous frequency components. However, the oscillation
identification approach proposed in our work is capable of
identifying wideband oscillation frequencies (electromechan-
ical to electromagnetic band). Thus, in this work, we have
specifically focused on identifying the SSOs for the sake of
technological correctness.

B. Contributions and Significance

The key contributions of this research are as follows:

1) A theoretical system-based optimization problem advo-
cating co-analysis of multiple power grid nodes is formu-
lated for the identification of the important power system
buses, that can help in capturing the critical frequency
components of the SSO.

2) A mathematical framework of the measurement noise-
infested PMU data is developed for the data-based op-
timization formulation, by proposing a revised spectral
decomposition and correlation value, leading to an up-
dated hypotheses threshold.

3) A data-based characterization of the most critical system
parameter(s) from the perspective of identifying SSOs in
perturbed power networks is undertaken.

4) The solution to the proposed optimization framework is
studied using a standard IEEE 5-bus system. The knowl-
edge of the most critical system parameters are utilized
in the theoretical optimization, which is solved for IEEE
14, 30, 39, 57, and 118-bus networks, and the results are
validated with the PMU data-based optimization problem
to capture the disturbance signature for the complete
power network.

5) Finally, the optimization problems are revisited consid-
ering system adversities resulting from single PMU loss
and single line loss conditions. A practical measurement
scenario is considered with measurement noise-infested
PMU data. Also, as an exhaustive study, the possibility of
compromised PMU operation by cyber attacks or similar
abnormalities is considered for establishing the validity
of the data-based optimization.

Theoretical results corroborated by the real-time structured
computer-aided design (RSCAD) simulation verify the appro-
priateness of the proposed optimization formulation and the
observations that are noted as a byproduct. This study helps
in establishing a benchmark in defining the most qualified
buses, i.e., characterizing the minimum number of system
nodes that must be co-analyzed to extract an accurate and
exhaustive information about the SSOs. For example, in a 57-
bus system, the number of disturbance identification location
in the proposed approach reduces from 18 to 8, with a ≈ 96%
reduction in the execution time and 94% reduction in time
when averaged over all considered test systems. Furthermore,
on an average, the proposed SSO identification approach
demonstrates ≈ 25% enhanced accuracy of SSO identification
in standard IEEE networks, ≈ 25% enhanced noise immunity,
≈ 15% enhanced immunity to grid adversities as compared
to the state-of-the-art ML and statistical SSO identifiers, with
only 0.21% accuracy loss on per-node increase in grid size.

It is notable that, under adversities such as, single PMU loss,
single line loss, noise-impaired PMU data, and compromised
PMU operation, the execution time does not vary considerably
in the proposed SSO identification approach, while still cap-
turing > 95% of the disturbance energy for all considered test
networks. This suggests that the proposed algorithm converges
to the optimum for systems of varied sizes.
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TABLE I: List of symbols used in the analysis
xi Binary decision variable for the choice of bus i

wij , αi, βij
Importance of jth Eigenvalue of bus i, where wij = αiβij
αi: ability of node i to cause oscillation, βij : contribution of jth eigenmode of ith node in aggregate oscillation

λij jth eigenvalue associated with bus i
ϕ
(m)
i , θ(f)i Binary variables representing the presence of mth eigenmode and f th frequency component in the state matrix of bus i

li, µi, πi
Binary variables indicating whether PMU installed at ith grid node, whether it is chosen for collaboration,
and if it is available or lost

χt, χ0 χi-squared test criterion χt =

√∑q
j=1(δφ

(j)
∆t · σ

−1

φ
(j)
∆t

)2 and χ0 is test threshold level

a
(m)
i , b(f)i

a
(m)
i is a binary variable indicating whether the PMU at node i captures measurements from mode m
b
(f)
i is a binary variable indicating whether PMU i captures measurements within frequency range f

U, Σ, V Upper triangular matrix, matrix of singular values, and lower triangular matrix (in order)
κj(∆t), ξj(∆t) Defined time sensitivity of jth parameter and the sensitivity of chi-squared metric with the jth parameter
∆ηSOA Drop in the SSO identification efficiency with unit increase in system node

Transmission lines Transmission tower

Solar panel

Fig. 1: System model for collaborative oscillation monitoring.

C. Paper Organization

The rest of the paper is organized as follows: Section II de-
scribes the system model. Section III presents the formulation
of theoretical optimization used in the identification of SSOs
in the power network. Section IV formulates its data-based
optimization counterpart, wherein the impact of measurement
noise is discussed. Finally, the results are presented in Section
V, followed by the conclusion in Section VI.

II. SYSTEM MODEL

Schematic representation of a power network is shown in
Fig. 1. Let the network has N nodes which are collected
in the set N , such that ∥N ∥c = N . Here ∥ · ∥c denotes
the cardinality operation. High renewable penetration and
increased presence of power electronic components inject
SSOs of the form u(t) = a0 +

∑N
n=1 ane

−σnt sin(ωnt+ δn),
where an, σ, ωn ≥ 0, and δn denote the amplitude, damping
coefficient, frequency, and initial phase offset of the nth
oscillatory component, respectively. The network is designed
to supply power to various load types, requiring a good power
factor. For the sake of grid health monitoring, the PMUs are
placed at strategic positions in the grid, that record data for
various important power system features. This data is utilized
for the identification of SSOs in the power network.

As a general case, we consider that the PMU data has
field-induced measurement noise due to the surrounding elec-
tromagnetic radiations from the high voltage lines. Further,
the PMUs are considered to communicate data over optical
ground wire. As reported in literature [35], we consider the
possibility of compromised PMU operation due to cyber
attack. Additionally, we consider single PMU loss and single
line loss conditions in the grid. The next section formulates

the theoretical optimization for detecting the SSOs in the
power network. This theoretical formulation is validated for
mathematical correctness using the data-based optimization
undertaken in the subsequent sections. The list of mathematical
notations used in the manuscript are mentioned in Table I.

III. THEORETICAL OPTIMIZATION FOR DETECTION OF
POWER SYSTEM SSO

For the system described in the previous section, let the
selection of the ith bus be represented using a binary decision
variable xi ∈ {0, 1}, i ∈ N , such that xi = 1 if the ith
bus is chosen and 0 otherwise. Then, the selection of the
significant power system nodes/buses can be achieved through
the following optimization problem:

(P1) : max
xi

∑
i

xiri

C11 :
∑
i

xiϕ
(m)
i ≥ 1, ∀m

C12 :
∑
i

xiθ
(f)
i ≥ 1, ∀f ∈ [0, fs)

C13 : ϕ
(m)
i , θ

(f)
i , xi ∈ {0, 1}, ∀i,m, f

(1)

where ri =
∑Mi

j=1 wijλij , Mi represents the total number of
eigenvalues, and λij denotes the jth eigenvalue that is associ-
ated with bus i. Weights wij represent the importance assigned
to the jth eigenvalue of bus i. ϕ(m)

i and θ
(f)
i ∈ {0, 1} are

binary indicators representing the presence of mth eigenmode
and f th frequency component in the state matrix of bus i,
where fs represents the synchronous frequency of the grid.

The maximization in (P1) operates over xi to select the
most significant power system nodes or buses to capture crit-
ical frequency components of SSOs. Constraint C11 ensures
that every important mode of SSO in the power network is
associated to at least one of the chosen buses. C12 ensures
that the f th frequency band of SSO is an eigenfrequency of
at least one selected bus. Lastly, C13 imposes a binary limit
on all the relevant variables.

A. Definition of ϕ(m)
i and θ(f)i

The mathematical description of every dynamic system can
be achieved using a state vector x ∈ R

V×1, input vector
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u ∈ RV×1, and an output vector y ∈ RW×1. In case, when
the time derivative of the state variable vector ẋ ∈ R

V×1

and the output vector are not explicit functions of time t, the
dynamic system is more generally represented as ẋ = f(x,u)
and y = g(x,u), where f(·) ∈ RV×V and g(·) ∈ RW×V are
functionals relating the system state and input to the change
in state and output, respectively.

Introducing small perturbations in state vector and input
vector and linearizing, we get

∆ẋ =FS∆x+ FI∆u

∆y =GS∆x+GI∆u
(2)

where FS ∈ RV×V , FI ∈ RV×V , GS ∈ RW×V , and GI ∈
R

W×V are the system matrix, input matrix, output matrix, and
feed-forward matrices, respectively. In order to determine the
eigenfrequencies, we solve the characteristic equation:

∥FS − λI∥ = 0 (3)

where I ∈ RV×V is an identity matrix. Let the eigenvalues of
the system be denoted by λ1, · · · , λV . It is notable that, if (3)
is solved for the ith bus, the jth obtained eigenvalue follows
the nomenclature λij . Next, we define an indicator function
I(Z) such that the indicator evaluates to unity when the
hypothesis Z holds true. Hereafter, we define two hypotheses
for the modeling of ϕ(m)

i and θ(f)i , namely Hypotheses 1 and
2, respectively.

Hypothesis 1 : Z
(m)
ij

(def)
=⇒ λm ∈ (λij −∆λ, λij +∆λ)

Hypothesis 2 : Z
(f)
ij

(def)
=⇒ f ∈ (fij −∆f, fij +∆f)

(4)

where fij =
ℑ(λij)

2π , ∆λ represents the mode variation, i.e.,
the proximity to a given mode shape as experienced by a given
power system node, and 2(∆f) is the frequency bandwidth of
SSO observed as a virtue of the ijth eigenmode. Therefore,
based on the hypotheses, as defined above, we have

ϕ
(m)
i =I

(
Z
(m)
i1 ∨ Z

(m)
i2 ∨ · · · ∨ Z

(m)
iq

)
θ
(f)
i =I

(
Z
(f)
i1 ∨ Z

(f)
i2 ∨ · · · ∨ Z

(f)
iq

) (5)

where ∨ represents the logical OR operation. Thus, ϕ(m)
i and

θ
(f)
i evaluate to unity if at least one of the involved hypotheses,

i.e., Z(m)
ij and Z

(f)
ij , ∀j = 1, · · · , q, respectively, holds true.

The modeling of wij is presented next.

B. Modeling of Weights wij

As per definition, wij represents the importance assigned to
the jth eigenvalue of the ith bus. We bifurcate this weight into
two disjoint product terms αi and βij , such that wij = αiβij .
In this notation, αi models the ability of a node to contribute
to the aggregate SSOs in the grid and βij captures the
contribution of the jth eigenmode of ith node in that aggregate
oscillation. Therefore, βij can be written as

βij =
λ∗ij∑Mi

j=1 ∥λij∥
(6)

where (·)∗ denotes the conjugate operation on a complex
number and ∥ · ∥ represents the norm operation. Let the

ith node be associated with q features, such that, φi,∆t =

{φ(1)
i,∆t, φ

(2)
i,∆t, · · · , φ

(q)
i,∆t}, where φi,∆t is the feature set ob-

served in the duration ∆t. These features are related using the
network equations as follows:

φ
(1)
1,∆t =ψ

(1)
i

(
φ
(1)
i,∆t, φ

(2)
i,∆t, · · · , φ

(q)
i,∆t

)
...

φ
(q)
i,∆t =ψ

(q)
i

(
φ
(1)
i,∆t, φ

(2)
i,∆t, · · · , φ

(q)
i,∆t

) (7)

where the ψ(·) functions could be modeled through Kirch-
hoff’s voltage/current laws, swing equations, power flow equa-
tions, etc. Applying Taylor’s expansion in (7) for the modeling
of SSOs in the features of φi,∆t denoted as ∆φi,∆t, we have

∆φ
(1)
i,∆t =

[
∆ψ

(1)
i

(
φi,ss

)]T
∆φi,∆t

...

∆φ
(q)
i,∆t =

[
∆ψ

(q)
i

(
φi,ss

)]T
∆φi,∆t

(8)

where the subscript ss denotes the set of steady state values,
∆(·) represents the change in the objective parameter, and T
represents the transpose operation. For dimensional compat-
ibility, we must note that ∆φj,∆t, ∆ψ

(j)
i

(
φi,ss

)
∈ Rq×1,

and their product results in a scalar ∆φ(j)
i,∆t, ∀j = 1, 2, · · · , q.

Thus, (8) can be concisely represented as

∆ψi (φi,ss)∆φi,∆t = ∆φi,∆t (9)

where ∆ψi (φi,ss) = [[∆ψ
(1)
i (φi,ss)]

T , · · · , [∆ψ(q)
i (φi,ss)]

T ]T

∈ Rq×q . It is noteworthy that, (9) represents an eigenrelation,
with a unit magnitude of the corresponding eigenvector.
Therefore, to define αi, we find the contribution of the
eigenvector of magnitude 1 amongst a total of q eigenvectors
that are obtained for the ith node, i.e., αi =

1∑q
j=1 ∥λ′

ij∥
, where

λ
′

ij , ∀j = 1, 2, · · · , q are the eigenvalues of ∆ψi

(
φi,ss

)
.

The data-based optimization for selection of most qualified
nodes is done next.

IV. DATA-BASED OPTIMIZATION FOR DETECTION OF
POWER SYSTEM SSO

In this section a PMU data-dependent optimization is pro-
posed for an overall oscillation monitoring in an N -node
power network. This serves as a validation for the solution
obtained for (P1). It is worth noting here that, systems fluctu-
ations due to renewable energy sources and (or) other system
variables are already recorded in the node datasets. Therefore,
the proposed methodology is robust to such fluctuations and
can function with similar efficiency in identifying the critical
oscillation frequencies of the renewable-integrated systems.

Let µi ∈ {0, 1}, πi ∈ {0, 1}, and li ∈ {0, 1}, such that
i ∈ N , be binary decision variables indicating whether a PMU
is installed at the ith grid node, whether or not it is chosen for
collaboration, and if the PMU is available or lost. The loss of
a PMU (li = 0) could be attributed to a hardware, software,
or any network failure, or due to a possible cyber attack. If a
PMU is installed at node i, µi = 1 and 0 otherwise. Similarly,
the value of πi is decided based on if the PMU at node i is
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selected (πi = 1) or not selected (πi = 0) to be a part of
the collaboration for SSO detection. Since optimal placement
of PMUs is not in the scope of this research, we assume that
there are K optimally placed PMUs, with their locations stored
in L, such that ∥L∥c = K. To be able to detect the power
system oscillations with least number of PMU involvement,
the optimal PMU selection problem is formulated as follows:

(P2) : min
πi

∑
i

liµiπi

C21 : χt ≥ χ0

C22 :
∑
i

liµiπia
(m)
i ≥ 1, ∀m

C23 :
∑
i

liµiπib
(f)
i > 1, ∀f ∈ [0, fs)

C24 :
∑
i

liµiπi ≤ K

C25 : a
(m)
i , b

(f)
i , πi, µi, li ∈ {0, 1}, ∀i,m, f

(10)

where a
(m)
i is a binary variable that indicates whether the

PMU at node i captures measurements from oscillatory mode
m. a(m)

i = 1 iff PMU i captures measurements from oscil-
latory mode m, and 0 otherwise. b(f)i is a binary variable
that indicates whether PMU i captures measurements within
frequency range f . b(f)i = 1 if the PMU installed at node
i captures measurements within frequency range f , and 0
otherwise. Therefore, in case of a PMU loss or compromised
PMU operation, a revised PMU selection can be attained by
dropping the index of the affected PMU from the set L.

The χt-squared test criterion is defined as χt =√∑q
j=1(δφ

(j)
∆t · σ

−1

φ
(j)
∆t

)2, where δφ
(j)
∆t =

∑
i µiπiδφ

(j)
i,∆t∑

i µiπi
,

δφ
(j)
i,∆t = φ

(j)
i,∆t−φ

(j)
i,ss, with φ(j)

i,∆t representing the amplitude
of jth feature measured by the ith PMU in time window ∆t,
and q denotes the total features monitored by the PMUs, viz.,
voltage magnitude, voltage phase, current magnitude, current
phase, etc. These features for the ith node are stored in the
feature set φi,∆t and σ

φ
(j)
∆t

represents the standard deviation
in the aggregated measurement of the jth feature.

Constraint C21 ensures that the total represented deviation
by the chosen PMUs captures a significant proportion of the
potential SSOs in the power system. Constraint C22 ensures
that the selected PMUs collectively capture measurements
from each oscillatory mode in the power system. Constraint
C23 focuses on capturing measurements from specific fre-
quency ranges to enable accurate spectral analysis of SSOs.
Constraint C24 ensures that the total number of PMUs in
collaboration are less than or equal to the maximum PMUs
installed in the grid. Finally, the constraint C25 limits a(m)

i ,
b
(f)
i , and πi to be a binary constants. The mathematical

modeling of a(m)
i and b(f)i is done next.

A. Mathematical Modeling of a(m)
i

Let the ith PMU dataset be denoted as Ri ∈ R
p×q ,

where p is the number of time instances over which the data
is recorded. We normalize each column of this dataset by
subtracting the respective mean and dividing by the standard
deviation of that particular data feature. Let R̃i be the nor-

malized dataset obtained from Ri. We construct a collective
data matrix D of all PMU datasets of size Rp×(q×K), such
that, D = [R̃1, · · · , R̃K ]. We apply the singular value decom-
position (SVD) to obtain D = UΣVT , where U ∈ Rp×p

is an upper triangular matrix, Σ ∈ Rp×(q×K) is the matrix
of singular values, V ∈ R(q×K)×(q×K) is a lower triangular
matrix, and T represents the transpose operation. Next we
define a correlation threshold value τ , such that, 0 ≤ τ ≤ 1,
to identify significant correlations between the mode shapes
obtained from the theoretical optimization in Section III and
the PMU datasets. For the mth oscillatory mode shape, defined
by the mth column vector um ∈ C (U) of the matrix U, we
calculate the correlation coefficient ρ (um, Rij) between uk

and each column of the normalized PMU dataset Ri, where
i ∈ 1, · · · ,K, j ∈ 1, · · · , ∥C (Ri) ∥c, and C (Ri) and C(U)
are the column spaces of matrix Ri and matrix U, respectively.
Mathematically

ρ
(m)
ij = ρ (um, Rij) =

E[ũT
mR̃ij ]

σumσR̃ij

(11)

where ũm = um − µumfp×1, µum = E [um], with
fp×1 being a vector of ones of size p × 1, and σum

=

E

[
(um − µum

)
T
(um − µum

)
]
. Thus, for the indicator func-

tion I(·), introduced in the explanatory notes after (3), we

define the hypothesis as follows, Hypothesis 3: Z
(def)
=⇒ ρ

(m)
ij ≥

τ . Therefore, a(m)
i is defined as

a
(m)
i = I

({
ρ
(m)
i1 ≥ τ

}
∨
{
ρ
(m)
i2 ≥ τ

}
∨ · · · ∨

{
ρ
(m)
iq ≥ τ

})
.

It is notable that, a(m)
i evaluates to 1 if the mth oscillatory

mode posses high correlation with at least one feature of the
measurements collected by the ith PMU, i.e., with one column
of the data matrix Ri.

B. Mathematical Modeling of b(f)i

From the state-space model of the system deduced in (2)
and the corresponding eigenvalues obtained through (3), the
frequency (should not be confused with the nominal frequency
of the grid, i.e., 50 or 60 Hz) components of significance are
given by the imaginary part of the eigenvalues, i.e., the rth
eigenfrequency component is written as fr = ℑ(λr)

2π , such that
f = [f1, · · · , fV ]T ∈ RV×1 is a vector of eigenfrequencies,
where ℑ(·) denotes the imaginary part operation. Next, we
take the row-wise Fourier transform of the ith PMU dataset.
Mathematically

Rij = F
(
R̃ij

)
, where R̃ij ∈ C

(
R̃ij

)
(12)

where F(·) represents the Fourier transform operation. The
power spectral density (PSD) Pij is represented as

Pij = K (Rij) (∥K (Rij) ∥c)−1 (13)

where K(·) represents an element-wise norm-squared opera-
tion on the vector Rij . We define the frequency component f
from the Pij as P

(f)
ij and define a new hypothesis as follows,

Hypothesis 4: Z
(def)
=⇒ P

(f)
ij ≥ Pth. Therefore, b(f)i is defined
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as

b
(f)
i = I

({
P

(f)
i1 ≥ Pth

}
∨
{
P

(f)
i2 ≥ Pth

}
∨ · · · ∨

{
P

(f)
iq ≥ Pth

})
.

It is worth observing that, b(f)i evaluates to 1 if the frequency
component f is dominant in the PSD of at least one data
feature monitored by the ith PMU. The optimization problems
(P1) and (P2) are solved using the intlinprog function of
MATLAB. In the next subsection, we relax the noiseless
(ideal) assumption on the measurements noted by the PMU
data, and re-evaluate the parameters involved in the optimiza-
tion formulated in (10). As a result, the related hypotheses
are restructured to impart immunity against the measurement
noise suffered by the PMU data to the data-based optimization.

C. Impact of Measurement Noise

If the attribute set measured by the PMU is denoted as
A, the measurement noise-infested dataset can be represented
as R̂i(A) = Ri(A + δA), where δA is the deviation in
the measurements of the attributes. For relative small error
values, which is mostly the case in well-maintained IoT units,
linearizing using the Taylor’s expansion returns

R̂i(A+ δA) = Ri(A) + δA∂Ri(A)

∂A . (14)

Here onwards, for brevity, we drop the arguments and repre-
sent δA∂Ri(A)

∂A = Ei, which is termed as the measurement
error, such that R̂i = Ri + Ei. Let Ei ∈ R

p×q denote
the noise matrix corresponding to the PMU measurements in
Ri ∈ Rp×q , such that the columns of Ei denote the noise
in different attributes measured by the PMU and the rows
describe the time-evolution of the noise. Then, as established
in literature, it is fair to assume that the noise follows a zero-
mean Gaussian distribution profile [36]. Therefore, based on a
matrix noise structure, Ei follows a matrix normal distribution
MN p,q(0,L,M), given by

p (Ei|0,L,M) =
exp

(
− 1

2
Tr

[
M−1ET

i L−1Ei

])
(2π)pq/2|M|p/2|L|q/2

(15)

where Tr(·) is the trace operation, E[Ei] = 0, and E[EiE
T
i ] =

LTr (M). Therefore, the revised collective data matrix D̂
of all PMU datasets, is given by D̂ = D + E, where
E = [E1, · · · ,EK ]. Again, using SVD, we write

D̂ = ÛΣ̂V̂T (16)

where Û is the revised upper triangular matrix, Σ̂ is the
matrix of revised singular values, and V̂ is the revised lower
triangular matrix for the error-prone PMU data measurements.

Lemma 1. For any non-Hermitian perturbed matrix D̂, re-
lated to its unperturbed counterpart D as, D̂ = D + E, its
SVD can be expressed as

D̂ = PU(Σ+∆)VT
[
2I− (DTD)−1DTPD

]
where Σ̂ = Σ+∆, such that the ith singular value obtained
for the true and perturbed matrices follow, |∆i| = |σi− σ̂i| ≤
∥E∥F , ∀i, with ∆i being the ith value of ∆ matrix, σi
and σ̂i denoting the singular values for true and perturbed

matrices, respectively, and ∥·∥F represents the Forbenius norm
of the involved matrix. Û = PU represents the rotational
relationship between left eigenspaces of the unperturbed and
perturbed matrices, such that

(MTM)−1MTPM− (DTD)−1DTPD = (MTM)−1MTE− I

where M = U∆VT , D = UΣVT , and I represents the
identity matrix.

Proof. See Appendix A.

The above Lemma provides an interesting insight into the
relation between the SVD of noisy and noise-free versions of
a matrix. For a non-Hermitian matrix, the SVD of the noisy
matrix can be represented solely in terms of the rotation of
one of the eigenspaces. First, we establish the signal-to-noise
power ratio (SNPR) to quantify the noise-level present in the
PMU measurements. SNPR is defined as follows

SNPR (dB) = 10 log10
PS

PN
(dB) (17)

where PN and PS are the noise power and signal power,
respectively. Mathematically, the power of a matrix χ with
T time samples and A attributes, is defined as follows

PM =
1

AT

A∑
j=1

F
(
χj

)T F
(
χj

)
(18)

where χj represents the jth column of matrix χ and M =
{N,S}. Next, we analyze the impact of measurement noise
E on the correlation computed in (11).

Lemma 2. The Pearson’s correlation computed from the
perturbed SVD is given as ρ̂

(m)
ij = ρ

(m)
ij

(
1−ζ1
1+ζ2

)
, where

ρ
(m)
ij is the correlation computed from the error-free

SVD decomposition, ζ1 = (DDT )−1DQ0

E[ũT
mR̃ij ]

, and ζ2 =

uT
m(DDT )−1DQ1D

T (DDT )−1um

2σ2
ũm

+
E[ET

ijEij ]

2σ2
R̃ij

.

Proof. See Appendix B.

Therefore, from Lemma 2, we note that if we revise the
threshold as τ → τ

(
1−ζ1
1+ζ2

)
, the decision rule for a

(m)
i

does not vary between the measurement noise-infested and
noise-free PMU data. Next, we remodel b(f)i to address the
measurement noise E.

Lemma 3. The revised value of b(f)i can be restored to
its original value by changing the threshold for the fourth
hypothesis as, Pth → Pth +

K(∂Rij)
∥K(Rij)∥c

, where ∂Rij is the
Fourier spectrum of the measurement error in the PMU data.

Proof. See Appendix C.

Next, we show the results obtained from the optimization
formulations (P1) and (P2) with the adversities considered
in Section II in proving the applicability of the proposed
approach in detecting the SSOs in the power network.

V. RESULTS AND DISCUSSIONS

This section presents the results for the optimization prob-
lems (P1) and (P2), wherein we simulate the standard IEEE
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TABLE II: Multi-machine system configuration for the IEEE 5-bus (3-machine) test system in Fig. 2 [37]

Machine Parameters
Machine rating Exciter-stabilizer Turbine-governor

Machine 1

Rating: 555 MVA, 24 kV
In p.u. based on machine rating:

Xad = 1.138, Xf = 0.0781, Xrd = 0.088
Xaq = 1.038, XKq = 0.227, ra = 0.00153

rf = 0.000748, rKd = 0.00805, rKq = 0.00253
H = 3.38 sec, PG = 0.9, ΩG = 0.44

Ke = 350, KQ = 6, τv = 0.03, τe = 0.002
τQ = 1.4, τa = 0.121, τx = 0.033 sec Kg = 0.04, τ3 = 0.1, τ4 = 0.3 sec

Machine 2

Rating: 635 MVA, 24 kV
In pu based on machine rating:

Xad = 0.945, Xf = 0.0755, XKd = 0.085
Xaq = 0.945, XKq = 0.085, ra = 0.00153

rf = 0.00039, rKd = 0.00805, rKq = 0.00253
H = 5.4

Ke = 200, KQ = 10, τv = 0.03, τe = 0.002
τQ = 1.4, τa = 0.12, τx = 0.033 sec Kg = 0.04, τ3 = 0.1, τ4 = 0.3 sec

Machine 3

Rating: 66 MVA, 13.8 kV
In pu based on machine rating:

Xad = 0.567, Xf = 0.14, Xrd = 0.087
Xaq = 0.33, XKq = 0.163, ra = 0.002
rf = 0.00035, rrd = 0.02, rrq = 0.04
H = 4.29 sec, PG = 0.2, QG = 0.7

KA = 200, KE = −0.17, KF = 0.04, SE = 0.95
τA = 0.05, τE = 0.95, τF = 1, τv = 0.03 sec Kg = 0.04, τ1 = 0.4, τ3 = 0.4, τ5 = 0.35 sec

IM1

IM2
Infinite bus

.05 + j.5

j.2 j.2

.3 + j.02

SG2 = .80 + j.35SG1 = .85 + j.2

SM1 = .25 + j.1

j.2

.03 + j.3 .03 + j.3
.02 + j.2

0 + j.1

SG3 = .08 + j.01

0.6 + j.05

SM2 = .28 + j.08

.02 + j.2

.06 + j.2

0.47 + j.02

GNDGND

GND

Bus 1
Bus 2

Bus 3Bus 4

Bus 5

Fig. 2: Network diagram of IEEE 5-bus (3 machine) test system.

TABLE III: IEEE 5-bus test system’s eigenvalues at base condition

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5
−.542± j1.854 −2.823 −10.42 −19.96± j376.2 −49.95
−.628± j5.943 −2.975± j9.947 −10.46 −20.58 −52.21
−.691± j.121 −3.195 −13.21 −30.54 −152.6
−.750 −3.218± j2.004 −13.06± j18.13 −30.92 −167.8
−1 −7.576± j20.96 −13.58 −33.02 −239.5± j1365
−1.334 −8.312± j21.23 −14.41± j376.5 −34.01 −500.6
−1.436± j6.242 −8.555± j27.10 −15.17± j430.3 −34.39± j560.9 −502.1

test systems and collect PMU data generated by the indus-
trially accepted RSCAD simulation platform. The results are
validated for IEEE 5, 14, 30, 39, 57, and 118-bus systems.
In our analysis, we have considered a total of K oscillation
modes, where

K = NT −NPV − 1 +M +A (19)

where NT denotes the total buses in the system, NPV denotes
the total number of PV (or generator) buses, M denotes the
total number of machines, and A are the additional system
states arising from other dynamic components. The results
presented in Tables III through VII consider A = 0 for
tractability of analysis. In the results that follow, we set the χ-
squared test energy threshold χ0 as 0.95. This threshold can be
set between 0 and 1, based on the amount of total disturbance
energy that requires to be captured for gathering significant
information on the disturbance signature in the power network.

A. Example: IEEE 5 Bus (3-Machine) Test System

Fig. 2 depicts the structure and operating conditions of IEEE
5-bus (3-machine) system, with its system parameters defined

in Table II. To consider the aspect of additional system states,
in this subsection, we provide a detailed analysis on the use of
our proposed oscillation identification methodology consider-
ing a total of 35 oscillation modes (c.f. Table III). Buses 1, 2,
and 3 consists of fossil fuel-based, nuclear power-based, and
smaller hydro power-based generating units. Machines 1 and 2
have static exciters and stabilizing signals fed-back depending
on the rotor speed of the respective machines. Machine 3 has a
type 1 exciter, with governor effects included in the simulation
of all the three machines. System loads are represented as
linear static elements located at buses 2, 3, and 4. Further,
two dynamic equivalent models for induction motor loads are
envisaged at buses 1 and 4. All per unit values mentioned in
Fig. 2 are calculated as per the base values of 600 MVA and
24 kV. Based on above system description, the detailed state
update equations for each bus is derived as detailed in [37]
and the corresponding eigenvalues are mentioned in Table III.

For the sake of covering all important eigenfrequency
ranges, we choose the frequency ranges of importance as 0-1
Hz, 1-5 Hz, 50-80 Hz, and 190-220 Hz, with ∆f for these
ranges defined as half of the frequency range. For example,
for the range 0-1 Hz, the central frequency is 0.5 Hz, with
∆f = 0.5, i.e., the frequency bandwidth of SSO. Therefore,
using Table III, we get θ(f)1 = 1 for f = 0.5 Hz, while
θ
(f)
i = 0, ∀i = 2, · · · , 5. Next, we define the mode range of

importance starting from 0-5 in steps of 5 and ∆λ = 2.5, i.e.,
0-10, 10-20, and so on. The central mode value is naturally
the mid-point of the mode range. Thus, ϕ(m)

1 = ϕ
(m)
2 = 1 for

m = 5, while ϕ(m)
1 = 0, ∀i = 3, 4, 5. Similarly, all other ϕs

and θs can be computed for the optimization problem (P1).
On solving (P1), we obtain the optimal solution as 2, 5.

Further, on solving (P2) using the PMU data generated using
RSCAD, we obtain the same solution vector, i.e., 2, 5. This
verifies the theoretical results obtained for (P1) through the
solution obtained for (P2) using the simulated PMU dataset.

Remark 2. It is notable that, since the optimization problem in
(P1) and (P2) already obtain the most qualified nodes as per
the frequency and mode ranges, the obtained solution helps
in capturing the information about the disturbances/SSOs in
the entire network in a least-time and tap manner, i.e., by
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TABLE IV: Optimal solution of the most qualified PMU selection for standard IEEE test systems for capturing all eigenfrequencies under
normal grid conditions; Prop.: proposed, Conv.: conventional

IEEE test
system Strategic PMU placement [38] PMU data-based optimization Theoretical optimization Execution time (sec) % red. in

req. nodes
% energy

Prop. Conv. [33] captured
14-bus 2, 6, 7, 9 2, 7 2, 7 1.013 8.74 50 99.57
30-bus 1, 7, 8, 10, 11, 12, 18, 23, 26, 30 7, 11, 18, 26 7, 11, 18, 26 1.793 23.44 60 99.52
39-bus 2, 6, 9, 12, 14, 17, 22, 23, 29, 32, 33, 34, 37 6, 12, 22, 29, 33, 37 6, 12, 22, 29, 33, 37 1.996 28.73 53.85 99.47
57-bus 2, 6, 10, 12, 19, 22, 25, 27, 32, 36, 38, 41, 45, 46, 49, 52, 55, 57 2, 6, 10, 22, 27, 32, 38, 57 2, 6, 10, 22, 27, 32, 38, 57 2.017 40.03 55.56 99.32

118-bus
2, 5, 10, 12, 15, 17, 21, 25, 29, 34, 37, 41, 45, 49, 53, 56, 62, 64,

72, 73, 75, 77, 80, 85, 87, 91, 94, 101, 105, 110, 114, 116
2, 10, 15, 21, 29, 34, 41, 53, 56, 62, 72,
73, 75, 80, 87, 91, 94, 105, 110, 116

2, 10, 15, 21, 29, 34, 41, 53, 56, 62, 72,
73, 75, 80, 87, 91, 94, 105, 110, 116

4.113 100.75 37.50 99.34

(a) (b)

Fig. 3: (a) Time variation of the jth grid feature and (b) variation of
chi-squared metric with the change in the value of jth grid feature.

tapping/analyzing least nodes/buses of the network.

B. Characterization of Critical Grid Feature

From the joint analysis of the PMU dataset obtained through
the RSCAD simulation, we plot the variation of κj(∆t) =
δφ

(j)
∆t

σ
φ
(j)
∆t

and ξj(∆t) = lim
∆t→0

dχt

dαj(∆t) with the number of samples,

denoting the time variation of the jth grid feature from the grid
feature set and the variation of the chi-squared disturbance
metric with the change in the value of jth grid feature. κj and
ξj metrics define the time sensitivity of the jth parameter and
the sensitivity of chi-squared metric with the jth parameter
value. From Fig. 3(a), we note that frequency and ROCOF
features demonstrate highest variability with time. Therefore,
these features are most important in determining the presence
of disturbance in the power grid network. From Fig. 3(b), we
observe that, change in frequency and voltage-phase causes
maximum impact to the chi-squared disturbance metric. In
conclusion, frequency and voltage-phase are most critical
in identifying disturbance in a grid. It is notable that, this
inference is consistent with the well known ‘swing equation’.

C. Optimal Solution to Qualified Node Selection

Table IV presents the solution to the ‘qualified node selec-
tion’ optimization problem. The results from the theoretical
optimization in (P1) are mentioned in the second column,
which are verified by solving (P2) for li = 1 ∀i, i.e., perfect
(not compromised) PMU operation scenario, using the simu-
lated PMU data gathered from RSCAD. The solution to (P2)
is tabulated in the third column. First, we note that the results
obtained from the theoretical optimization, i.e., (P1), match
the results obtained from the data-based optimization, i.e.,
(P2). Next, it can be observed that, by the virtue of selecting
the most qualified nodes, the time required in identifying the
disturbances/SSOs in the power network reduces significantly.

The final column shows the amount of energy from the
power network disturbances that is captured using the data

from the selected qualified nodes. This is computed as the
ratio of the total energy captured by joint analysis of the
most qualified nodes obtained through optimizing (P1) and
(P2) to the total energy of the disturbances present in the
network. It was noted that the captured disturbance energy is
close to > 99%. Therefore, we conclude that, by choosing
the most qualified nodes for identifying the disturbances in
the power network, it is ensured that the disturbances at the
critical frequencies, i.e., the eigenfrequencies, are noted with
certainty, resulting in a robust network protection and control.
We further draw attention towards the reduction in the number
of nodes required to be co-analyzed for the identification of
disturbances. For example, for the IEEE 57-bus system, the
number of required nodes is reduced by ≈ 60%, leading to
a ≈ 96% faster analysis time. A careful observation reveals
that the number of required nodes, considering all test systems,
reduces by a minimum of 50%, leading to communication and
analysis of a reduced data footprint.

Here, we verified the validity of the data-based optimization
formulation by demonstrating its correspondence with the
proposed theoretical optimization in (P1). Therefore, here
onwards, we only focus on the solution to the data-based
optimization in (P2) under various adversities.

Remark 3. It is noteworthy that, the reduction in the number
of nodes to be co-analyzed for identifying the disturbances in
the power network, depends on the grid incidence matrix, i.e.,
the connection between the nodes. In essence, if the network
graph is highly connected, co-analysis of a lesser number
of nodes could lead to a sufficient detection for capturing a
significant fraction of energy in the disturbance wave.

D. Qualified Node Selection Under Grid Adversities

This subsection discusses the solution to the most qualified
node selection optimization while considering single PMU
loss and single line loss conditions. We simulate PMU loss
with li = 0, for the lost PMU and the single line loss
situation by changing the grid incidence matrix, which directly
impacts (2) through (9). Further, for a fair analysis under such
considerations, we start by utilizing the optimization suggested
in [38], which considers providing in-advance redundancy
for such grid adversities. Next, for investigating into the
most critical situations, we consider the loss of PMU which
is placed at the node with highest incidence and the loss
of power line that leads to the loss in connection between
high incidence nodes or the nodes connecting the buses with
generating units. From Table V, we observe that, under single
PMU loss, the choice of the most qualified nodes changes for
all the IEEE bus systems. However, the selected PMUs can
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TABLE V: Optimal solution for the selection of the most qualified PMUs for capturing all eigenfrequencies considering single PMU loss in
perturbed standard IEEE test systems; Prop.: proposed, Conv.: conventional

IEEE test
system

Single PMU loss Execution time (sec) % red. in
req. nodes

% energy
Strategic PMU placement [38] PMU data-based optimization Prop. Conv. [33] captured

14-bus 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14 2, 9, 14 1.519 26.649 61.54 99.03
30-bus 1, 2, 3, 4, 7, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 28, 29, 30 2, 18, 23, 28, 29 2.241 48.536 66.67 99.13

39-bus 14, 15, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 14, 19, 27, 28, 30, 38, 39 2.472 46.834 51.85 99.15

57-bus
2, 3, 8, 9, 10, 12, 16, 17, 18, 19, 20, 23, 28, 29, 30, 31, 32, 33, 38, 41, 43, 45, 48, 49,

51, 52, 53, 54, 55, 56, 57
2, 17, 20, 23, 28, 30, 32, 38, 45, 57 2.902 70.075 59.52 99.22

118-bus

1, 2, 6, 7, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 29, 32, 36, 41, 42, 43,
44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 60, 62, 65, 66, 67, 68, 69, 72, 73, 74,

75, 76, 77, 78, 79, 80, 81, 83, 85, 86, 87, 88, 89, 90, 92, 94, 95, 97, 98, 99, 100, 101, 102,
103, 104, 106, 106, 107, 108, 109, 110, 110, 111, 112, 113, 113, 114, 115, 116, 117, 118

1, 11, 17, 21, 27, 46, 49, 52, 55, 57, 60, 67,
72, 74, 78, 80, 86, 88, 92, 101, 103, 110, 116

4.652 277.803 62.39 99.25

TABLE VI: Optimal solution of the most qualified PMU selection for standard IEEE test systems for capturing all eigenfrequencies under
line loss; Prop.: proposed, Conv.: conventional

IEEE test
system

Single line loss Execution time (sec) % red. in
req. nodes

% energy
Strategic PMU placement [38] PMU data-based optimization Prop. Conv. [33] captured

14-bus 1, 2, 4, 6, 8, 9, 11, 13 2, 9, 13 2.375 34.892 37.50 99.13
30-bus 1, 3, 5, 7, 8, 10, 11, 12, 15, 17, 19, 20, 22, 24, 26, 28, 29, 30 8, 11, 19, 26, 29 4.105 59.372 44.44 99.20
39-bus 1, 2, 3, 6, 8, 9, 11, 13, 14, 16, 17, 19, 22, 23, 26, 29, 32, 34, 37 1, 6, 13, 23, 26, 34, 37 5.107 59.823 31.58 99.22

57-bus
1, 2, 4, 6, 9, 12, 15, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 35, 36,

38, 39, 41, 43, 45, 46, 47, 50, 51, 53, 54, 56, 57
1, 6, 9, 19, 22, 28, 32, 39, 46, 53 7.032 86.728 46.88 99.27

118-bus

1, 2, 5, 7, 9, 10, 11, 12, 15, 17, 19, 21, 22, 25, 26, 28, 29, 34, 35,
37, 40, 41, 43, 45, 46, 49, 50, 52, 53, 56, 58, 59, 62, 63, 65, 67,
68, 70, 71, 72, 75, 76, 77, 79, 80, 84, 85, 87, 89, 91, 92, 94, 96,

100, 101, 105, 107, 109, 110, 113, 114, 115

5, 9, 15, 21, 28, 34, 40, 50, 52, 56, 62, 72,
76, 79, 84, 87, 89, 91, 94, 101, 105, 109, 115

9.127 330.795 46.67 99.29

still capture > 99% of the energy in the disturbance wave,
which is computed as detailed in the previous subsection.
Furthermore, since the proposed optimization finds an optimal
PMU group, which is significantly lesser than the total PMUs
deployed in the network, the time required to detect the
network oscillations reduces significantly, such as 94.23%,
95.38%, 94.72%, 95.86%, and 98.33% for IEEE 14, 30, 39,
57, and 118-bus system, respectively.

The optimization solution with single line loss in presented
in Table VI. Again, we note that the optimal PMU set
changes when a physical loss of line is considered. However,
since the optimization ensures a particular fraction of the
disturbance energy getting captured, sufficient monitoring of
power network SSOs is always ensured. Notably, the execution
time to identify the SSOs increases under line loss as compared
to PMU loss, which is the result of more PMU data that has
to be analyzed in such conditions. It is notable that, under
any adversity, the increase in execution time in the proposed
SSO identification framework, involving the co-analysis of
data from multiple PMUs is minimal. In contrast, the execution
time with the conventional strategy varies significantly (on
an average 20%) under line loss conditions. This is by the
virtue of a decorrelation introduced in the PMU data arising
from the loss of physical connection in the network graph. In
summary, we note that the proposed optimization significantly
reduces the processing (≈ 95%) time while still detecting
a significant fraction of SSO energy (≈ 99%) with a data
footprint reduction of 75%, considering all test systems, under
single PMU as well as single line loss conditions.

E. Qualified Node Selection in Presence of PMU Impairments

Earlier, we discussed the affect of grid adversities on the
solution to the optimal selection of most qualified PMUs for
detecting power network SSOs. However, it is important to

realize that there is another class of adversities that results
from a measurement noise-infested real-field data or a com-
promised PMU operation arising from data breach and (or)
malicious attack on the PMU. In such cases, it is important
for the proposed optimization framework to find a revised
optimal set of PMUs for detecting the network oscillations.
Since identifying such adversities are beyond the scope of this
research, we assume that such events are detected using the
strategy proposed in [35]. From Table VII we note that, as the
data becomes infested with more measurement noise, i.e., a
lower SNPR, the optimal PMU selection changes considerably,
with more number of PMUs (than in the normal operating
conditions) being chosen for best results. Naturally, if the
optimization results in choosing all the PMUs placed in
the network, the fraction of disturbance energy that can be
captured reduces. However, since the proposed optimization
utilizes a collective analysis of multiple PMU datasets, the
reduction in the fraction of disturbance energy that was
captured is not significant. It is particularly noteworthy that,
for larger SNPR values, i.e., SNPR ≥ 0 dB, the revision in
the values of a(m)

i and b
(f)
i suggested through Lemma 2 and

Lemma 3, respectively, helps to maintain the same optimal
PMU set while capturing > 99% of the disturbance energy.

Next, Table VIII presents the solution to the most qualified
node selection optimization, considering compromised PMU
operation. In the analysis, we assume that, the PMU placed
at the bus with highest order of incidence is compromised
(represented using the numbers in bracket in Table VIII for
each IEEE test system). It is observed that, with compromised
PMU operation, a higher number of PMUs are selected in the
process of optimization for detecting the critical frequencies
present in the power network disturbance, while still capturing
> 99% of the energy in the disturbance wave. Further, it
can be noted that the execution time for detecting > 99%
of the energy in disturbance wave increases in case of the
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TABLE VII: Optimal solution of the most qualified PMU selection using measurement noise-infested PMU data for standard IEEE test
systems for capturing all eigenfrequencies under normal grid conditions

IEEE test
system

SNPR= −10 dB SNPR= 0 dB SNPR= 10 dB

PMU data-based optimization
% energy
captured PMU data-based optimization

% energy
captured PMU data-based optimization

% energy
captured

14-bus 2, 6, 7, 9 95.61 2, 7 99.56 2, 7 99.56
30-bus 1, 7, 8, 10, 18, 23, 26, 30 97.08 7, 11, 18, 26 99.52 7, 11, 18, 26 99.52
39-bus 2, 9, 12, 14, 23, 29, 32, 34, 37 98.79 6, 12, 22, 29, 33, 37 99.44 6, 12, 22, 29, 33, 37 99.44

57-bus
10, 12, 19, 25, 27, 36, 41, 46, 52,

55, 57
99.28 2, 6, 10, 22, 27, 32, 38, 57 99.30 2, 6, 10, 22, 27, 32, 38, 57 99.31

118-bus
5, 12, 17, 21, 25, 29, 37, 41, 45, 49, 56, 64,
72, 75, 77, 80, 85, 87, 91, 94, 101, 110, 116

99.32
2, 10, 15, 21, 29, 34, 41, 53, 56, 62, 72,
73, 75, 80, 87, 91, 94, 105, 110, 116

99.33
2, 10, 15, 21, 29, 34, 41, 53, 56, 62, 72,
73, 75, 80, 87, 91, 94, 105, 110, 116

99.33

TABLE VIII: Optimal solution of the most qualified PMU selection using measurement noise-infested PMU data for standard IEEE test
systems for capturing all eigenfrequencies under compromised PMU operation

IEEE test
system

Normal PMU operation (SNPR = 10 dB) Compromised PMU operation at highest incidence node (SNPR = 10 dB)

PMU data-based optimization
% energy
captured

Execution
time (sec) PMU data-based optimization

% energy
captured

Execution
time (sec)

14-bus 2, 7 99.56 1.013 6, 7, 9 (2) 99.51 1.597
30-bus 7, 11, 18, 26 99.52 1.793 8, 10, 18, 26, 30 (7) 99.43 2.359
39-bus 6, 12, 22, 29, 33, 37 99.44 1.996 2, 9, 14, 22, 23, 32, 34 (33) 99.41 3.57
57-bus 2, 6, 10, 22, 27, 32, 38, 57 99.31 2.017 2, 12, 25, 27, 32, 41, 46, 52, 57 (38) 99.22 4.402

118-bus
2, 10, 15, 21, 29, 34, 41, 53, 56, 62, 72,
73, 75, 80, 87, 91, 94, 105, 110, 116

99.33 4.113
5, 12, 15, 21, 29, 37, 45, 53, 56, 62, 64, 72, 73,
75, 77, 87, 91, 94, 101, 105, 110, 116 (80) 99.30 6.464

(a) (b) (c) (d)

Fig. 4: % SSO energy captured versus (a) total number of epochs (run-time) for a single power system node, (b) for a complete power
network with increasing number of nodes, (c) in a power network with noise in the measurement data, and (d) grid or PMU adversities in
IEEE 14-bus test system; CPO: compromised PMU operation, SOA-1: [39], SOA-2: [8].

compromised PMU operation. However, since a collective
analysis of the PMU data is undertaken in the proposed
methodology, the execution time does not increases signifi-
cantly. On closer inspection, we note an average % increment
of ≈ 36% in the execution time corresponding to various IEEE
test networks, considering cyber attacks. In conclusion, the
proposed optimization formulation, based on the co-analysis
of data from multiple PMUs, can detect network oscillations
using data with measurement noise and while considering
cyber attacks on the PMU, while capturing a sufficient energy
band of the disturbance wave and in sufficiently less time
compared to the state-of-the-art.

F. Comparison wrt the State-of-the-Art Approaches
In this subsection, we conduct a detailed comparative anal-

ysis with two diverse SSO identification approaches from the
state-of-the-art (SOA). SOA-1 [39] uses a machine learning
approach while SOA-2 [8] uses a statistical approach. The
comparison outlines the % SSO energy captured as a function
of variables such as, total run epochs for one power network
node, different system sizes (nodes/buses), measurement noise
in dB, and various grid/PMU adversities.

From Fig. 4(a) we observe that, in the detection of oscilla-
tions at the node level, both the proposed approach and SOA-1

reach similar detection accuracy, with the proposed approach
attaining the maximum efficiency (≈ 96%) in ≈ 10 detection
epochs. The requirement of higher time order in SOA-1 is
attributed to the involved training and testing phases. Also, the
PMU data-based statistical oscillation identification strategy in
SOA-2 renders lesser efficiency as they do not utilize inter-
attribute correlation in the multivariate dataset.

Next, from Fig. 4(b) we note that the proposed approach
outperforms SOA-1 (18.89% better) and SOA-2 (31.654%
better) in identifying SSOs in a complete power grid (≈ 25%
better on average). Furthermore, the performance of the state-
of-the-art approaches degrade with the increase in the system
size (efficiency drop per unit increase in system node ∆η:
∆ηSOA−1 = 20.77%, ∆ηSOA−2 = 27.37%), while the pro-
posed approach performs similarly for systems of varied sizes
(∆ηProposed = 0.21%). This performance loss is attributed to
the missing aspect of co-analysis of data from multiple PMUs,
which is a key proposition in our SSO identification approach.

From Fig. 4(c) we observe the performance deterioration
resulting from the use of noisy PMU dataset (20.57% in SOA-
1 and 27.96% in SOA-2 on an average, i.e., ≈ 25% enhanced
noise immunity on average), which is taken care by the noise-
resistant oscillation identification approach proposed in this
work (c.f. Section IV-C). Also, from Fig. 4(d) it is notable
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that, the co-analysis strategy proposed in our approach makes
the proposed oscillation detection framework immune to grid
adversities arising from single line loss (SLL), communication
or hardware failure resulting in single PMU loss (SPL), and
compromised PMU operation. The proposed approach demon-
strates 10.33% and 19.78% increased efficiency (≈ 15%
enhanced immunity to grid adversities on average) compared
to SOA-1 and SOA-2, respectively.

VI. CONCLUDING REMARKS

Identification of SSOs in the modern power networks is a
crucial task for their reliable operation. This paper conducted
a benchmark analysis on identifying the most qualified buses
that can help in characterizing the disturbance profile of the
entire power network. The proposed approach offers a reduced
time complexity compared to the classical approaches and it
does not have the model complexity as in the learning-based
approaches. For this purpose, an optimization problem was
formulated for the theoretical characterization of such nodes,
with sole reliance on the small signal modeling of the power
networks. A data-driven optimization was formulated, utilizing
PMU data obtained from RSCAD simulation, which corrobo-
rated the results from the initial theoretical characterization. As
a consequence, the most qualified node selection optimization
translates to the selection of the most qualified PMUs, the
data from which can be co-analyzed to capture a significant
fraction of energy in the power network SSOs.

Real PMU data monitoring scenarios with measurement
noise-infested data measurements was considered and a math-
ematical treatment of the measurement noise-infested PMU
data was suggested. Other practical system scenarios, such
as single PMU loss, single line loss, and compromised PMU
operation were simulated and the optimization problem was
solved. An intermediate result for the most critical feature
of the grid was noted, signifying the grid feature with the
highest mutual information about the disturbances in the net-
work. The solution to the optimization problems demonstrated
that, by selecting the most qualified buses, the disturbance
profile for the entire power network can be gathered in a
reduced time frame while capturing a considerable fraction
of the total energy in the disturbance wave. The results
were validated for various standard IEEE test systems, under
various measurement noise profile, and system adversities. The
comparison of the proposed algorithm with the state-of-the-
art ML and statistical SSO identifiers proves its enhanced
abilities in efficiently identifying SSOs in power networks
of various sizes, under different adversities and measurement
noise considerations.

APPENDIX

A. Proof of Lemma 1

Given SVD of D = UΣVT , let D = ÛΣ̂V̂T , we suppose
Û = PU, V̂ = QV, and Σ̂ = Σ+∆, s.t. the singular values
are absolutely bounded as |σi − σ̂i| ≤ ∥E∥F , where ∥ · ∥F
denotes the Forbenius norm. Since the error E is small, it is
fair to assume that the rotation in the respective eigenspaces
is small. As a consequence, the rotations can be approximated

as P = I+dP and Q = I+dQ, respectively, where dP and
dQ are small rotational gains. On substituting and comparing
both sides in the SVD of D̂, we obtain

D+E = PDQT +PMQT . (A1)

Comparing like terms: D = PDQT and E = PMQT . On
further simplifications, neglecting higher order terms, we get

DdQT + dPD = 0 & MdQT + dPM = E−M. (A2)

On solving mutually (A2), we get

(MTM)−1MTPM− (DTD)−1DTPD

= (MTM)−1MTE− I
(A3)

and dQ can be derived as dQT = −(DTD)−1DTdPD.
Therefore, finally on substituting the above relations in the
SVD of D̂, we obtain

D̂ =PU(Σ+∆)VT (I+ dQ)T

=PU(Σ+∆)VT
[
I− (DTD)−1DTdPD

]
.

(A4)

Re-substituting dP = P − I in (A4), the final spectral
decomposition is obtained as follows

D̂ =PU(Σ+∆)VT (I+ dQ)T

=PU(Σ+∆)VT
[
2I− (DTD)−1DTPD

]
.

(A5)

B. Proof of Lemma 2

We start by simplifying (A3) to determine an approximate
solution for P. It is noteworthy that the entries of matrix M
are significantly smaller than that of D. Therefore, we neglect
the first term of (A3) to obtain

P = I−D
(
MTM

)−1

MTEDT
(
DDT

)−1

. (B1)

Here, we evaluate a few important moments of P, as follows

E[P] =I−D
(
MTM

)−1
MT

E[E]DT
(
DDT

)−1
= I

E[PTEij ] =E[(I− (DDT )−1DETM(MTM)−1DT )Eij ]

=− (DDT )−1DQ0

E[PTP] =I+ (DDT )−1DQ1D
T (DDT )−1,

where Q0 = E[ETM(MTM)−1DTEij ], Q1 =
E[(ZE)T (ZE)], and Z = D(MTM)−1MT . Therefore,
the correlation defined in (11) is re-calculated as follows

ρ̂
(m)
ij = ρ̂

(
ûm, R̂ij

)
= E[ûT

mR̂ij ]/σ̂ûm σ̂R̂ij
= ρN/ρD. (B2)

Therefore, evaluating the numerator and denominator terms
separately, we get the numerator as

ρN =E[(Pum −E[Pum])T (R̃ij +Eij)]

=E[(Pum −Pµum)T (R̃ij +Eij)]

=E[ũT
mR̃ij ] + uT

mE[P
TEij ] = E[ũ

T
mR̃ij ]− (DDT )−1DQ0.

Similarly, the denominator is evaluated in (B3). For the
additive terms, it is fair to assume that the ratios are ≪ 1,
as the measurement error in a well-made device cannot be
comparable to the actual measurements. Therefore, the term
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ρD =

√
E[(um − µum )TPTP(um − µum )]E[(R̃ij +Eij)T (R̃ij +Eij)] =

√(
σ2
ũm

+ uT
m(E[PTP]− I)um

)(
σ2
R̃ij

+E[ET
ijEij ]

)

=σũmσR̃ij

√(
1 + uT

m(DDT )−1DQ1DT (DDT )−1um/σ2
ũm

)(
1 +E[ET

ijEij ]/σ2
R̃ij

)
.

(B3)

inside the root can be approximated as follows

ρD = σũmσR̃ij
+

uT
m(DDT )−1DQ1DT (DDT )−1um

2σũm/σR̃ij

+
E[ET

ijEij ]

2σR̃ij
/σũm

.

Therefore, ρ̂(m)
ij = ρ

(m)
ij

(
1−ζ1
1+ζ2

)
, where ζ1 = (DDT )−1DQ0

E[ũT
mR̃ij ]

and ζ2 =
uT

m(DDT )−1DQ1D
T (DDT )−1um

2σ2
ũm

+
E[ET

ijEij ]

2σ2
R̃ij

.

C. Proof of Lemma 3

We start by taking Fourier transform of the jth column of
the ith PMU dataset impaired by measurement noise given by

R̂ij = F
(
R̂ij

)
= F

(
R̃ij

)
+ F (Eij) = Rij + ∂Rij

where ∂Rij = F (Eij) is the Fourier spectrum of the measure-
ment noise. Therefore, the revised conditional for hypothesis
4 can be obtained as

P̂ij =
K
(
R̂ij

)
∥K (Rij) ∥c

=
K (Rij + ∂Rij)

∥K (Rij) ∥c
. (C1)

Applying triangle inequality in (C1), we get

P̂ij ≤K (Rij) + K (∂Rij)

∥K
(
R̂ij

)
∥c

≤ Pij +
K (∂Rij)

∥K (Rij) ∥c
. (C2)

Motivated by (C2), we revise the hypothesis threshold to
Pth → Pth +

K(∂Rij)
∥K(Rij)∥c

. Consequently, the revised b
(f)
i is

restored to its previous value.
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