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Abstract—Integrating unmanned aerial vehicles (UAVs) into
wireless sensor-actuator networks (WSANs) offers flexibility and
improved system performance. However, imprecise localization
and limited battery capacity constrain UAV operations. This
paper explores the use of battery swap station (BSS)-assisted
UAV to facilitate timely actuation in WSANs while addressing
the above limitations. The UAV collects data via backscatter
communication from the sensor nodes and delivers to the energy-
constrained actuator nodes along with the required energy.
Incorporating UAV location uncertainty and Nakagami-𝑚 wire-
less channel fading, closed-form expressions are derived for the
ergodic capacity in backscatter communication and the expected
energy harvesting rate. To minimize the maximum delay in
actuation, an optimization problem is formulated. To reduce
complexity, the problem is transformed into an equivalent node
visit sequence optimization and solved using sequential deep re-
inforcement learning (SDRL). Through Monte Carlo simulations,
the accuracy of our analysis is verified. Our results confirm that
the proposed SDRL based strategy consistently offers reduced
actuation delay with a significantly less computation overhead.

Index Terms—UAV, wireless sensor-actuator network,
backscatter communication, wireless energy transfer, DRL

I. INTRODUCTION

Recent advances in wireless communication have enabled
distributed sensing and actuation through wireless sensor and
actuator networks (WSANs) [1]. However, these networks,
which consist of wirelessly connected sensor and actuator
nodes, are constrained by communication range, energy, and
infrastructure costs. Conventional nodes with limited bat-
tery life need frequent replacements, which is infeasible in
hazardous deployments. To overcome these issues, emerging
technologies such as backscatter communication (BSC) and
wireless energy transfer (WET) are of interest [2], [3].

In WSANs, a key objective is to send sensor data to
actuators for timely action while ensuring the availability
of required energy. The Age of Information (AoI) approach
focuses only on optimizing sensor updates [4]. In [5], AoI
is combined with data uncertainty; but AoI alone does not
ensure the timeliness of data-driven action. In [6], the actuation
delay is modeled by assuming direct communication between
the sensor and actuator, which may not be valid in remote
deployments. The work in [7] proposed using a controller
for data relaying. However, a static controller may not be
sufficient for communication and actuation operations, as these
power-intensive tasks require the controller to be close to the
sensor and actuator nodes. To this end, unmanned autonomous
vehicles (UAVs) can be used in BSC and WET based WSAN.

Although UAV-based aerial communication has been widely
studied, UAV-aided sensor data relaying and WET has not
been explored before. UAV offers operational flexibility and

Figure 1 UAV and BSS aided wireless sensor actuator network.

sustainability in WSAN through WET and monostatic BSC,
but it is constrained by its limited onboard battery and energy
losses due to imprecise UAV localization and low WET
efficiency. While UAV energy limitation can be addressed by
placing a battery swap station (BSS) within the region [8],
[9], optimizing UAV-aided WSAN operation considering the
various system constraints requires in-depth analysis.

Building upon the challenges outlined above, the key con-
tributions of this work are as follows: (1) Using tools from
stochastic geometry, closed-form expressions are derived for
the BSC ergodic capacity 𝑟BSC and the expected energy har-
vesting rate 𝑃̄EH, incorporating Nakagami-𝑚 channel fading
and UAV location uncertainty. (2) Based on 𝑟BSC and 𝑃̄EH
and WSAN requirements a novel UAV-assisted framework
is proposed to minimize the actuation delay in WSAN. (3)
To achieve this objective, the problem is reformulated into
an equivalent form that optimizes the UAV node visiting
sequence. (4) Given the high complexity induced by the
constrained combinatorial nature of the problem, a sequential
deep reinforcement learning (SDRL) approach is employed
for solving it. (5) Finally, the proposed scheme is shown
to offer reduced actuation delay at a significantly smaller
computational overhead compared to the benchmark methods.

We remark that this kind of mobile-aided autonomous
WSAN system can be useful in various practical situations. For
instance, sensor data from avalanche or landslide-prone areas
can be used to actuate early warning signs nearby the affected
road sections, for enhancing both safety and convenience.

II. SYSTEM MODEL

Consider a UAV-aided WSAN, having 𝑁 sensor-actuator
pairs, a UAV, and a BSS, deployed in a circular region of radius
𝑅𝑚𝑎𝑥 (Fig. 1). The nodes are assumed to be located far apart;
thus, the UAV can serve only one node at a time. The UAV
is required to visit each sensor node before the corresponding
actuator, but only once in each round. However, it may visit
the BSS as often as needed. The UAV flies at a constant
speed 𝑉UAV and an altitude ℎUAV. Its power consumptions for
movement 𝑃mov and hovering 𝑃hov are modeled as in [10].
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The sensor and actuator nodes have both communication
and energy harvesting modules. Each sensor node also con-
tains a sensing module, whereas each actuator node has a
mechanical actuation module. The combined set of sensor
and actuator devices is denoted as U = {1, · · · 2𝑁}. The
index 𝑘 ∈ {1, · · · , 𝑁} denotes the 𝑘-th sensor, and the index
𝑘 + 𝑁 ∈ {𝑁 + 1, · · · , 2𝑁} denotes the actuator associated with
the 𝑘-th sensor. The nodes are static, and their locations are
known apriori. The coordinates of 𝑛-th node is denoted as
𝑤n = {𝑥n, 𝑦n, 𝑧n}. For convenience, indices ′0′ and ′2𝑁 + 1′
represent the BSS and the UAV terminal station with respective
coordinates {𝑥0, 𝑦0, 𝑧0} and, {𝑥2N+1, 𝑦2N+1, 𝑧2N+1}. The 2D
Euclidean distance between any two indices is denoted as 𝑑i,j.

The UAV collects the sensor data using BSC by hovering
over it and transmitting an unmodulated signal 𝑥1 toward
the sensor node. The received signal at the sensor node is
𝑦S = ℎ1

√
𝑃tx𝑥1+𝑛1. The sensor node reflects back the received

signal after modulating it with the information signal 𝑥2. The
signal received by the UAV is [11]: 𝑦U = ℎ2ℎ1

√
𝑃tx𝑥1𝑥2 +

𝑛1 + 𝑛2, where 𝑃tx is the transmit power of the UAV, 𝑛1
and 𝑛2 denote additive white gaussian noise (AWGN). There
can be some imperfection in hovering position due to UAV
localization error, which are discussed in Section III. The
wireless communication link is primarily line-of-sight, and the
channel coefficients follow a Nakagami-𝑚 distribution. The
channel gain is ℎi =

√︁
𝐺1𝐺2 (𝜆/4𝜋)2𝑑−𝛼𝑃 ℎ̃i ∀𝑖 ∈ {1, 2}. Here,

ℎ̃i denotes the small-scale fading coefficients, 𝛼P is the path
loss exponent, 𝜆 is the transmission frequency, and 𝐺1, 𝐺2
respectively denote the UAV and node antenna gain. The
communication data rates from the sensor node to UAV 𝑟S−U
and the UAV to actuator node 𝑟U−A are expressed as

𝑟S−U=log2

(
1 + 𝑃tx |ℎ1 |2 |ℎ2 |2

𝜎2
1 + 𝜎

2
2

)
, 𝑟U−A=log2

(
1 + 𝑃tx |ℎ1 |2

𝜎2
1

)
. (1)

The harvested power𝑃EH,with 𝑃rx=𝑃tx |ℎ1|2,is modeled as [12]

𝑃EH (𝑃rx)= (𝑎𝑃rx + 𝑏)·1[ 𝜚1 , 𝜚2 ) (𝑃rx)+𝑃EH, max·1[ 𝜚2 ,∞) (𝑃rx) (2)

where 𝑃EH, max is the maximum possible harvest power, 𝜚1 is
the receiver sensitivity, while 𝑎 and 𝑏 are shaping parameters.

III. STATISTICAL ANALYSIS

In this section, 𝑟BSC and 𝑃̄EH are derived based on the above
channel model and UAV location uncertainty.

Distance distribution: While serving the 𝑛-th node, the
UAV is meant to hover above 𝑤n. Due to location error, its
actual position is considered uniformly distributed in a ball
𝐵(𝑤n, 𝑅max). Thus, the UAV-to-node distance distribution is

𝑓d (𝑑) =
2𝑑√︃

𝑑2 + ℎ2
UAV

; ℎUAV ≤ 𝑑 ≤
√︃
ℎ2

UAV + 𝑅
2
max (3)

BSC ergodic capacity: It is defined as maximum achiev-
able average data rate, taking into account both the random
variations in the wireless fading channel, which is modeled as
a gamma-distributed random variable, and the spatial distri-
bution of the UAV-to-node distance as modeled in (3) and is
expressed as 𝐸𝑑

[
𝐸ℎ1ℎ2

[
log2 (1 + 𝛾)

] ]
.

Theorem 1. The closed-form expression for BSC ergodic
capacity is expressed in (4), where

𝐶4 =
𝛼1𝛼2𝑃tx (𝐺1𝐺2)2 (𝜆/4𝜋)4

𝑚1𝑚2
, 𝐶3 =

1
Γ𝑚1Γ𝑚2

.

Proof. See Appendix A. ■

Expected energy harvesting rate: It is defined as the
average amount of power that can be harvested by the node
via WET process.

Theorem 2. The closed-form expression considering Gamma-
distributed wireless fading link gain and spatial distribu-
tion as modeled in (3) is expressed in (5), where 𝐾 =

𝑃tx𝐸 [𝑑𝛼p ] (𝜆/4𝜋)2𝐺1.

Proof. See Appendix B. ■

IV. PROBLEM FORMULATION

We now formulate the actuation delay minimization based
on the node requirements and statistical measures from (4) and
(5). Then, the associated feasibility constraints are presented.

The actuation delay minimization is formulated as a se-
quence prediction problem. After the UAV leaves the terminal,
it travels to each sensor node to gather data and proceeds
to the associated actuator node to transfer information and
energy. This process continues until data are collected from
all sensor nodes and the respective actuators are served, and
the UAV recharges itself as required. UAV visiting sequence is
denoted as 𝑆 = {𝑠𝑘}𝐿𝑘=1 where 𝑠𝑘 ∈ {0, 1, · · · , 2𝑁 +1} denotes
the indices having one-to-one mapping with the devices, BSS,
and terminal station, 𝐿 is the sequence length, which is at least
2(𝑁 +1), but could be longer since the UAV may need to visit
the BSS multiple times. 𝑆 needs to be optimized for reduced
actuation delay. In finding the optimal 𝑆, the feasibility needs
to be ensured, as the constraints can affect the viability of 𝑆.

A. Feasible sequence

We define a variable I(𝑘) that indicates the index of the
location visited by the UAV at 𝑘-th position in the sequence
and is defined as I(𝑘) = 𝑚, s.t.𝑠m = 𝑘;𝑚 ∈ {1, 2, · · · 𝐿}, 𝑘 ∈
{1, 2, · · · 2𝑁}. While serving, each device should be visited
only once, with an actuator visited only after its corresponding
sensor is served. The constraints are represented as

if 𝑠i= 𝑘⇒ 𝑠j ≠ 𝑘;∀ 𝑗 ≠ 𝑖,∀𝑖, 𝑗 ∈ {1, · · · , 𝐿}, 𝑘 ∈ {1, · · · , 2𝑁} (6)

I(𝑘) < I(𝑁 + 𝑘) ∀𝑘 ∈ {1, · · · , 𝑁} (7)

Moreover, the total time the UAV spends on each device is
required to be greater than or equal to the required service
time for that device. The variable 𝜏𝑗 denotes the expected time
required to serve the 𝑗-th device and is defined as

𝜏j =


𝐷

req
j

𝑟S-U , j
(1 + 𝑃c

𝑃EH
) ∀ 𝑗 ∈ {1, · · · , 𝑁}

𝐸
req
j
𝑃EH
+

𝐷
req
j

𝑟U-A , j
≈
𝐸

req
j
𝑃EH

∀ 𝑗 ∈ {𝑁 + 1, · · · , 2𝑁}
𝜏BSS 𝑗 = 0

(8)

where 𝐷req
j denotes the amount of data required to be transmit-

ted, 𝐸 req
j denotes the required energy for actuation, 𝑃c denotes
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𝑟BSC =
𝐶3ℎ

-2
UAV𝑅

3

2 𝐻
0,1:1,4:1,1
1,0;4,3;1,2

(
(0, 2, 1)
−

���� (1 − 𝑚1, 1) (1 − 𝑚2, 1) (1, 1) (1, 1)
(1, 1) (1/2, 2) (0, 1)

���� (−1/2, 1)
(−1, 1) (−3/2, 1)

���� 𝐶4ℎ
-4
UAV,

𝑅2

ℎ2
UAV

)
(4)

𝑃̄EH =
𝑎𝛼1𝐾
𝑚1Γ𝑚1

(
𝛾

(
𝑚1 + 1, 𝑚1 𝜚2

𝐾𝛼1

)
− 𝛾

(
𝑚1 + 1, 𝑚1 𝜚1

𝐾𝛼1

))
+ 𝑏

Γ𝑚1

(
𝛾

(
𝑚1,

𝑚1 𝜚2
𝐾𝛼1

)
− 𝛾

(
𝑚1,

𝑚1 𝜚1
𝐾𝛼1

))
+ 𝑃EH , max

Γ𝑚1

(
1 − 1

Γ𝑚1
𝛾

(
𝑚1,

𝑚1 𝜚2
𝐾𝛼1

))
(5)

the sensor node circuit power consumption while performing
BSC, and 𝜏BSS denotes the time required for battery swapping.
Thereby, total energy required to spend by UAV on 𝑗-th device
is expressed as Eser

j ≈ (𝑃Hov + 𝑃tx)𝜏j ∀ 𝑗 ∈ {1, · · · , 𝑁}.
The UAV transmits with 𝑃a

tx for actuator nodes and 𝑃s
tx for

sensor nodes. Once the node has been served, Eser
j is reset to

null. Furthermore, throughout the process, it is necessary to
monitor the on-board battery and recharge it when required.
The variable 𝐵rem,j denotes the remaining on-board battery
capacity of UAV after it has completed traversing the sequence
upto 𝑗-th element ∀ 𝑗 ∈ {0, 1, · · · , 2𝑁 + 1}. Furthermore, to
represent the relationship between two nodes that are visited
in sequence, a binary variable Xij (𝑛) is defined as Xij (𝑛) = 1
if 𝑠n = i and 𝑠𝑛+1 = j, where, 𝑖, 𝑗 ∈ {0, · · · 2𝑁 + 1} and
𝑛 ∈ {0, · · · 𝐿 − 1}. Given that Brem,n is known and Xij (𝑛) = 1
where 𝑛 ∈ {0, · · · 𝐿 − 1}, then the battery status is updated as

Brem,n+1 =


Brem,n − Emov

ij − Eser
j 𝑗 ∈ {1, · · · , 2𝑁}

Bfull 𝑗 = 0
Brem,n − Emov

ij 𝑗 = 2𝑁 + 1
(9)

It is to be noted that the onboard battery status restricts the
UAV movement. The constraints are represented as

Xij (𝑛)≥ 0 if

{
Brem,n ≥ Emov

ij + Eser
j + E

mov
j0 𝑗 ∈ {1, · · · , 2𝑁}

Brem,n ≥ Emov
ij 𝑗 ∈ {0, 2𝑁 + 1}

(10)
Xi0 (𝑛) = 1 if Brem,n − Ei,0 < min

{
E𝑚𝑜𝑣ij

}
∀𝑛 ∈ {1, · · · , 𝐿 − 1},

𝑖 ∈ {1, · · · , 2𝑁}, 𝑗 ∈ {1, · · · , 2𝑁 + 1} \ {𝑖}
(11)

where, (10) indicates that after serving the 𝑖-th node the UAV
can visit the 𝑗-th node only if the remaining battery capacity
is sufficient for both serving the 𝑗-th node and returning to
the BSS from 𝑗-th node. Moreover, (11) states that if the
remaining battery capacity is not enough to serve any unserved
devices, the UAV should proceed to the BSS. The subtraction
in (11) ensures that the UAV always has sufficient battery to
reach BSS. Furthermore, (12) highlights that the UAV in any
feasible sequence starts and ends on UAV terminal position.∑

iX2N+1,i (0) = 1,
∑

iXi,2N+1 (𝐿 − 1) = 1∀i ∈ {0, · · · , 2N} (12)

B. Problem formulation

The UAV performance is measured by the maximum delay
of actuation (MDA), defined as the maximum time difference
between the start of operation and when the actuator takes
action. The overall optimization problem considering this
metric and the feasibility constraints is expressed as

(P1) : min
S

max
k
|𝑡k+N − 𝑡0 |

s.t. : (4), (7), (10) − (12)
(13)

where, 𝑡0 is the time at which UAV starts the operations
and 𝑡𝑘+𝑁 denotes the time at which actuator associated

with 𝑘-th sensor takes action which is expressed as 𝑡j =∑I( 𝑗 )
𝑖=1 (𝑑si ,si+1/𝑉UAV) + 𝜏i,∀ 𝑗 ∈ {𝑁 + 1, · · · , 2𝑁}. The problem
P1 is an NP-hard combinatorial optimization problem. Con-
sidering the UAV battery capacity sufficiently large and homo-
geneity among all the nodes, the transformed problem becomes
an equivalent NP-hard problem as in [10]. Consequently, the
problem P1 is inherently NP-hard, rendering it difficult to
address through conventional solution methods. Therefore, we
propose a sequential deep reinforcement learning approach
building on [13], [14] to effectively address this challenge. The
details of the solution are outlined in the following section.

V. PROPOSED SDRL-BASED SOLUTION

The proposed solution utilizes a Markov Decision Process
framework, where the UAV (agent) interacts with the dynamic
environment by selecting actions that generate rewards while
transitioning among states. Here, the UAV is responsible for
making decisions and executing actions. A state 𝑆𝑙 includes
information about the last visited node and relevant parameters
such as {𝑤n, 𝜏n, Eser

n }𝑛=2𝑁+1
𝑛=0 , and 𝐵rem,l. The action set consists

of the available choices at a given state 𝑆𝑙 , which includes
unvisited node indices, BSS, and the UAV terminal station,
all subject to the constraints defined in P1. The action 𝑎𝑙
represents the index of the location the UAV visits. The reward
is calculated at the end of the episode and is defined as the
negative of the maximum actuation delay, as described in P1.

A. Sequential neural network architecture

To map the current state to a probability distribution of
possible actions, a sequential neural network-based policy
is used at the UAV. Primarily, sequential neural network
architecture is composed of an encoder and decoder module.

Encoder: The encoder input consists of static components
𝐶s,n = {𝑤n ∪ 𝜏n} (location and expected serving time) and
dynamic components 𝐶d,n = {𝐵UAV ∪ Eser

n }∀𝑛 = {0 · · · 2𝑁 + 1}
(UAV battery and energy requirements). These are processed
through an embedding layer comprising a convolutional en-
coder, which maps the low-dimensional data to a high-
dimensional space and produces embedded outputs 𝐶emb,𝑠n and
𝐶emb,𝑑n , with total inputs and outputs denoted as 𝐶in and 𝐶emb.

Decoder: For a policy 𝜙, the probability that the UAV
follows a sequence 𝑆 conditioned on 𝐶emb is defined as
𝑃𝜙 (𝑆 |𝐶emb) =

∏𝐿
𝑙=1𝑃(𝑠𝑙+1 |𝑆𝑙 ,𝐶emb), where 𝑆𝑙 denotes the

sequence up to 𝑙 steps. At each step 𝑙 ∈ {1, · · · , 𝐿}, the
decoder generates the conditional probability distribution
𝑃(𝑠𝑙+1 |𝑆𝑙 , 𝐶emb), that determines the agent action 𝑎l. The op-
timal policy 𝜙∗ gives the optimal sequence 𝑆∗ with probability
1. We aim to minimize the optimality gap between 𝜙 and 𝜙∗.

In the 𝑙-th decoding step, the static information of the last
visited index is encoded as 𝐶emb,𝑠l-1 , and Gated Recurrent Unit
(GRU) processes this encoded data along with the hidden state
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Algorithm 1 Pseudo-code for SDRL training stage
1: Input: batch size B , training dataset D.
2: Output: Policy parameters 𝜚𝑎 , 𝜚𝑐
3: for itr = 1, 2, · · · , itot do
4: reset gradient 𝑑𝜚𝑎 ← 0, 𝑑𝜚𝑐 ← 0
5: Obtain training batch

{
D(itr×B)+1, · · · ,D(itr+1)×B

}
6: for 𝑏 = 1, 2, · · · ,B do
7: 𝑙 ← 0
8: do
9: compute 𝑃(𝑠𝑏

𝑙+1 |𝑆
𝑏
𝑙
, 𝐶𝑏
𝑒𝑚𝑏
)

10: choose action accordingly
11: 𝑙 ← 𝑙 + 1
12: while terminal state is reached
13: compute reward 𝑅𝑏
14: end for
15: calculate gradient
16: 𝑑𝜚𝑎 ← 1

B
∑𝐵
𝑏=1

(
𝑅𝑏 −𝑉𝑏

)
∇𝜚𝑎 log

(
𝑃𝑏 (𝑆 |𝐶𝑒𝑚𝑏)

)
17: 𝑑𝜚𝑐 ← 1

B
∑𝐵
𝑏=1 ∇𝜚𝑐

(
𝑅𝑏 −𝑉𝑏

)2

18: Update 𝜚𝑎 and 𝜚𝑐
19: end for

ℎl-1 maintained by GRU, yielding ℎl, 𝑌l = GRU(ℎl-1, 𝐶emb,𝑠l-1 ).
The GRU output 𝑌l is then passed through the attention block
which incorporates the importance of the locations at the
current decoding step. This is achieved through the following
operation: 𝑎l = softmax(𝑣T

a1 tanh(𝑊a1 · 𝐶emb) + 𝑣T
a2 tanh(𝑊a2 ·

𝑌l)). Using 𝑎l, a context vector 𝑐l, is generated as 𝑐l =∑2𝑁+1
𝑖=0 (𝑎i

l𝐶emb,i). The encoded output 𝐶emb is then combined
with 𝑐l to produce 𝜅l as 𝜅l = 𝑣

T
c1 tanh(𝑊c1 ·𝐶emb)+𝑣T

c2 tanh(𝑊c2 ·
𝑐l). Before generating the action probability distribution, the
masking vector Ml is applied to 𝜅l as 𝜅l = 𝜅l +Ml, where
Ml,i ∈ {0,−∞}∀𝑖 ∈ {1,· · · ,2𝑁+2}, enforces that the feasibility
conditions in P1, are satisfied. In addition, the actuator nodes
are masked until all the sensor nodes are visited. Finally, the
conditional probability distribution which determines the agent
action 𝑎l, is calculated as 𝑃(𝑠l+1 |𝑆l, 𝐶emb) = softmax(𝜅l). The
process repeats until the termination condition is satisfied.

B. Training

The UAV policy network is trained using the REINFORCE
algorithm to maximize the expected cumulative reward, as
outlined in Algorithm 1. The algorithm utilizes both an actor
and a critic neural network to optimize the policy. The actor
adjusts the policy parameters 𝜚𝑎, increasing the likelihood of
selecting actions that lead to positive outcomes. During each
episode, the agent collects experience from the environment
and computes the cumulative reward 𝑅𝑏 at the end, which
serves as a performance estimate. Following the policy gra-
dient approach, the policy parameters are then updated in the
direction that increases the likelihood of actions that lead to
higher rewards. The critic estimates the value function 𝑉𝑏 and
associated parameters 𝜚𝑐 are trained using stochastic gradient
descent on the mean squared error (MSE) between predicted
value and actual reward, helping to reduce variance in policy
updates. To enhance learning efficiency, parallel learning and
batch processing are used, addressing correlation between
successive states and improving training stability.

Table I Simulation parameters and settings [9], [12], [13]
Parameter Value Parameter Value
𝑚1, 𝑚2 2 𝐷𝑟𝑒𝑞 24-40 Bytes
𝛼1, 𝛼2 1 𝐸𝑟𝑒𝑞 31-47 mJ
𝐺1 10 dBi 𝜏𝐵𝑆𝑆 180 s
𝐺2 0 dBi ℎ𝑈𝐴𝑉 10 m

𝜎2
1 , 𝜎2

2 1 × 10−9 𝑎 0.24714,
𝜆 915 MHz 𝑏 -1.5817e-5

𝑅𝑚𝑎𝑥 150 m 𝑃𝐸𝐻,𝑚𝑎𝑥 0.00492 𝜇W
Δ𝑅 2 m 𝑃𝑐 10.6 𝜇W
𝛼P 2 𝜚1 , 𝜚2 0.000064 , 0.02
𝑃𝑎
𝑡𝑥 40 W 𝑉𝑈𝐴𝑉 9.8 m/s
𝑃𝑠
𝑡𝑥 10 W Training size 128e+4

Validation size 1e+3 Convolution layers 1
Learning rate 5e-4 Hidden size ℎ𝑠 128

Batch size 256 Dropout rate 0.1

Table II Compute overhead for different sensor-actuator pair counts

Method Computation Time (ms)
N = 10 N = 15 N = 20

Baseline 0.1675 0.19 0.26
HSR 1504 2100 3080

SDRL 86.76 104.96 134.65

VI. NUMERICAL RESULTS

The SDRL simulations are performed in Python with the
PyTorch library on a system having an Intel Xeon W-2145
3.70 GHz processor, 64 GB RAM, and Nvidia Quadro P5000
GPU. The values of the simulation set-up parameters are listed
in Table I. Fig. 2(a) highlights the BSC ergodic capacity.
The analytical results align with the Monte Carlo simulations,
highlighting the accuracy of the derived analytical expressions.
The plot illustrates a positive correlation between ergodic
capacity and transmit power while also showing a reduction
with increasing hovering altitude due to higher path loss.

Fig. 2(b) illustrates the performance of the UAV energy
transfer capability in terms of expected energy harvesting rate.
The plot highlights the effects of UAV altitude variation and
localization inaccuracy. At lower elevations, the impact of
localization uncertainty on performance is more pronounced.
Fig. 2(c) shows the learning curves of the proposed algorithm
for different battery capacities. The curves demonstrate even-
tual convergence to the long-term return. The maximum delay
is observed with the lowest battery capacity.

Figs. 2(d) and 2(e) compares the proposed algorithm, the
baseline solution, and the hybrid swap-and-reverse (HSR)
algorithm. The baseline solution satisfies the feasibility con-
straints but does not necessarily yield an optimal result. In
contrast, the HSR algorithm is based on 2-Opt operation [15],
begins with a feasible solution, and randomly selects two
indices. Based on a specified probability, either the nodes at
these indices are swapped, or the sequence between them is
reversed. The resulting sequence is retained if it yeilds higher
reward and remains feasible; otherwise, it is discarded. This
iterative process continues to progressively refine the solution.

Fig. 2(d) demonstrates that, for a fixed battery size of 80kJ,
the maximum actuation delay increases as the number of
sensor-actuator node pairs rises. In Fig. 2(e), where simula-
tions are performed with 20 sensor-actuator pairs for varying
battery capacities, a clear reduction in maximum actuation
delay is observed as battery capacity increases. In both cases,
the proposed algorithm outperforms the baseline and HSR
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Figure 2 (a) Ergodic capacity vs. UAV transmit power. (b) Energy harvest vs. UAV transmit power for various location error. (c) Convergence
of proposed SDRL algorithm; 𝑁 = 15. (d) Actuation delay, with battery size 80 kJ. (e) Actuation delay for 20 sensor-actuator node pairs.

algorithms, improving performance and significantly reducing
computation time compared to HSR. This time reduction is
summarized in Table II, highlighting the efficiency of the
proposed approach. The proposed SDRL order complexity is
O(𝐿𝑁ℎ2

𝑠𝐶1) while the complexity of HSR is O(𝐼𝑚𝑎𝑥𝑁2𝐶2),
where 𝐶1,𝐶2 are constants, ℎ𝑠 is the hidden size, and 𝐼𝑚𝑎𝑥 is
the number of iterations. Furthermore, the proposed algorithm
is robust to variations in the number of sensor-actuator node
pairs, meaning it does not require retraining when there
are changes in the node count or the node configuration.
This characteristic enhances its generalizability, allowing it to
effectively adapt to modifications in network requirements.

VII. CONCLUSION

This paper introduced UAV and BSS-aided WSAN for min-
imizing actuation delay with imperfect UAV localization and
wireless fading channel constraints. Closed form expressions
of BSC ergodic capacity for based data collection and expected
energy harvesting rate were derived. Based on node require-
ments and the statistical properties of communication and en-
ergy harvesting, the node visit sequence of UAV was optimized
using sequential DRL. The simulation results demonstrated
that the proposed strategy offers reduced actuation delay with
a significantly lower computation overhead.

APPENDIX

A. Proof of (4)
The pdf of the product of two independent but not identical
(i.n.i.d.) gamma random variables ℎ1 and ℎ2 is

𝑓ℎ1ℎ2 (𝑧) = 2
Γ𝑚1Γ𝑚2

(
𝑚1𝑚2
𝛼1𝛼2

) 𝑚1+𝑚2
2

𝑧
𝑚1+𝑚2−2

2 𝐾𝑚1−𝑚2

(
2
√︃
𝑚1𝑚2𝑧
𝛼1𝛼2

)
.

(A.1)
The ergodic capacity is defined as

1
log 2

∫ 𝑑max

𝑑min

∫ ∞

0
log (1 + 𝛾) 𝑓ℎ1ℎ2 (𝑥) 𝑓d (𝑑) d𝑥 d𝑑 (A.2)

where 𝛾 = 𝜂𝑑−2𝛼𝑥, using (A.1) and [16, 07.34.03.0456.01].
Consider the following integral:

𝐼1 = 𝐶1

∫ ∞

0
𝐺

1,2
2,2

(
11
10

���� 𝐶2𝑥

)
𝑥

𝑚1+𝑚2−2
2 𝐾𝑚1−𝑚2

(
2
√
𝑥
)

d𝑥. (A.3)

Using [17, Eq. (7.821.3)], and substituting in (A.2) we have∫ 𝑑max
𝑑min

𝐶3𝐺
1,4
4,2

(
1 − 𝑚1, 1 − 𝑚2, 1, 1

1, 0

����𝐶4𝑑
−2𝛼

)
𝑑√︃

𝑑2−ℎ2
UAV

d𝑑

(A.4)
where 𝑑min = ℎUAV, 𝑑max =

√︃
𝑅2 + ℎ2

UAV. Thereafter, using [17,
Eq. (9.34.7)] we get (4).

B. Proof of (5)

The expected energy harvesting rate is

𝑃̄EH =

∫ 𝜚2

𝜚1

(𝑎𝑃 + 𝑏) 𝑓𝑃̄rx
(𝑃)𝑑𝑃 + 𝑃EH, max

∫ ∞

𝜚2

𝑓𝑃̄rx
(𝑃)𝑑𝑃 (B.1)

where 𝑃̄rx = 𝐸d [𝑃rx] = 𝐺1 (𝜆/4𝜋)2 𝐸 [𝑑−𝛼𝑃 ]ℎ1𝑃𝑡 𝑥 . For
𝛼𝑃 = 2, after simple mathematical calculations, we get

𝐸 [𝑑−𝛼P ] =
∫ 𝑑max

𝑑min

𝑑−𝛼P 𝑓d (𝑑)d𝑑 =
2

ℎUAV𝑅max
tan−1

(
𝑅max
ℎUAV

)
. (B.2)

Finally, substituting (B.2) into (B.1) and using [17, Eq.
(8.350.1)], the close form expression (5) is obtained.
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