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Light-weight ML Aided Autonomous IoT Networks
Sushmita Ghosh, Akash Kumar Mandal, Swades De, Shouri Chatterjee, and Marius Portmann

Abstract—A common challenge in Internet-of-Things (IoT)
networks is managing and connecting a large number of field
deployed IoT nodes. With the massive growth of IoT applications,
any human intervention is even more impractical. Hence, node-
and network-level coordination for low-cost sensing, energy
sustainability, self-organized fault remediation capability, auto-
calibration of field nodes are some of the desirable features.
Aiming at autonomous IoT, this article first presents the re-
cent progress on light-weight machine learning aided strategies
for context-aware IoT applications, wherein, depending on the
application context and adaptation requirement, the data-driven
intelligence operates at the field nodes or at the nearby edge node
or at the cloud storage. A few motivating results towards opera-
tional autonomy and network scalability on the chosen use cases
are presented. Next, the requirements towards fully autonomous
and self healing IoT networks are presented, highlighting several
future research directions and challenges.

Index Terms—Auto-reconfigurability; edge computing; energy
autonomy; light weight machine learning; self healing; smart IoT

I. INTRODUCTION

Internet-of-Things (IoT) devices, such as smart meters,
wireless sensors, smart wearables, etc. are increasing the ease
of living by providing advanced information along with easy
communication. IoT devices have massive applications in
multiple sectors, such as smart homes, environmental mon-
itoring, grid monitoring, traffic management, smart parking,
smart surveillance, autonomous vehicles, etc. Wireless sensor
network (WSN) is one of the most widely used IoT networks,
having multiple applications across various industries, such
as healthcare, pollution monitoring, smart agriculture, and
border surveillance. The WSNs consist of a large number
of sensor nodes that are connected to a central entity (or
edge node), with each sensor node consisting of multiple
sensors to monitor various parameters of the system. In a
network, the nodes can be connected to each other wirelessly,
to share information which can further be connected to the
central entity that controls the operations based on the sensed
data. Managing a large scale IoT network poses numerous
challenges in terms of uninterrupted operation, high volume
data data communication, computation, storage, and data se-
curity. Although the energy and bandwidth constraints can be
addressed by smart sensing or data pruning techniques [1],
[2], human intervention-free adaptive network operation is of
great importance from cost and scalability viewpoints.
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A. Current Trends on Learning Aided Smart IoT

The field deployed wireless nodes often have energy con-
straints. Besides cost and convenience, frequent battery re-
placement of the field nodes disrupts the network operation.
Two main energy consuming activities of WSNs are sensing
and communication. Towards energy sustainability, energy
efficient data acquisition optimization can be divided into two
categories: a) node level; b) network level. Several sensor
data handling schemes are proposed in literature. Learning
aided real-time (RT) data pruning by dynamic prediction and
non-RT (NRT) data reduction by compressive sampling [3]
are used to minimize the communication energy and data
footprint transmitted to the central entity. Further, due to
more energy consumption by some sensors in sensing than
in communication, optimal sampling interval is decided for
each parameter without compromising the sensing quality [4].

In a dynamic stochastic environment, machine learning
(ML) based adaptive sensing is employed at the sensor node,
which can be a part of a large network or a distributed
sensor node. In a multi-sensing node, if the parameters are
cross-correlated, a few sensors are optimally activated in
the next measurement cycle based on the cross-correlation
and sensing energy consumption of the sensors, while the
remaining sensors stay off [5]. The temporal correlation of
each parameter of the active sensor set is also exploited to
find the optimal sampling interval of that parameter. For the
field nodes’ energy sustainability, the edge nodes play a critical
role in receiving the data, running the optimization algorithm,
and communicating the active sensor set and their optimal
sampling intervals back to the node. Thus, edge intelligence
provides a global control on the IoT network, which can also
detect and act on the battery status of node, making the system
more independent from external intervention [6].

In a densely deployed WSN involving network level op-
timization, a large IoT network consisting of several sensor
nodes is expected to use the spatio-temporal correlations
among the environmental parameters to monitor the system
with least redundancy. In this objective, the learning based
adaptive sensing strategy activates an optimal set of nodes to
sense the environment over a measurement cycle. Since such
algorithms are computationally complex, they are executed
at the central entity and the information is broadcast to all
the sensor nodes [7], [8]. In contrast, in a relatively sparse
WSN, as predominant in controlled deployments in a smart
city context, the spatial data correlation is rather minimal; the
redundancy can be only at the node-level due to temporal
correlation in data for each monitored parameter and cross-
correlation among multiple parameters. Thus, optimal sensing
adaptation can be only at the node-level in case of sparsely
deployed WSNs. However, in joint system monitoring setups,



2

Context-aware smart IoT:

Sustainable and Autonomous 

Device-level and Network Solutions

Clean-slate 

Customizable System 

Design

Customizable 

RT/NRT 

solutions

Application 

context-aware 

priority 

adaptation

Context-aware 

NRT 

applications

Context-

aware RT 

applications

• Application/deployment-specific design

• Supervised/Unsupervised/

Reinforcement learning

• Single-variate/multivariate data

compression/pruning

• Edge/Cloud/Fog computing framework

Fig. 1: LWML aided context aware IoT network solutions.

where a minimum number of sensors are used to reduce
installation and maintenance cost, node level data processing
strategy is often not beneficial. This stems from the fact that,
in creating an image of the system at the central entity, the
data from all the sensors are used in predicting the state of the
unmonitored system nodes. Thus, a system agnostic node-level
data processing does not serve the purpose.

B. Generalized Viewpoint on ML Aided Smart IoT

Various adaptive sensing strategies, such as adaptive
Nyquist sampling, auto-regressive models, ML based pre-
diction models, etc., have been suggested for efficient data
collection in IoT networks [4], [7]. Among others, light-weight
ML (LWML) based adaptive sensing is proven to be quite
energy efficient, with a comparatively low sensing error.

Fig. 1 depicts a generic representation of LWML aided
context-aware smart IoT network solutions towards energy
and operational autonomy. In developing sustainable and
autonomous IoT solutions, context aware clean-slate system
design for RT/NRT applications allows the implementation of
smart sensing algorithms and priority adaptation at the node
level as well as network level. In custom IoT applications
without any control on sensing, such as in smart grid moni-
toring, smart energy metering, etc., for energy and bandwidth
efficiency, backward-compatible context-aware dynamic data
handling strategies are developed for RT/NRT solutions.

The following two sections present some representative
LWML based advances towards autonomous and scalable IoT.

II. SMART SENSING IN CUSTOMIZABLE IOT NODES

The energy consumption of the IoT nodes can be minimized
by LWML techniques at the node-level, access-level, as well
as network-level. Since a node typically monitors various
parameters, the node’s energy consumption can be reduced by
optimally activating the different sensors. In case of densely
deployed WSNs, the data collected form the various nodes
contain redundancy. In a networked sensing, the nodes can be
optimally activated to reduce the energy consumption. Some
example approaches are discussed below.

Fig. 2: Smart sensing system model.

A. Customizable RT/NRT Design Solutions

Owing to the continuously growing number of applications
of IoT network, manually managing the nodes to collect data
and reconfigure them is impractical and hence poses multiple
challenges. Fig. 2 is an example of an IoT sensor network
deployment architecture, consisting of a large number of field
IoT sensor nodes equipped with multiple sensors to monitor
the environmental phenomena. Each node is wirelessly con-
nected to a central entity available in its vicinity. The network
consists of both high cost sensing stations (HCSSs), equipped
with good quality sensors and low cost miniature sensing
nodes (MSNs), which need to be calibrated with respect to
the HCSSs. Due to the high cost and large size, deploying
HCSSs massively to monitor the entire geographical area is
practically challenging. Thus, low cost MSNs can be deployed
along with the HCSSs to make the network dense for fine
granular monitoring of the environmental parameters. Since
the edge node collects data from all the sensor nodes, the
data collected from the HCSSs can be used to automatically
calibrate/recalibrate the low cost MSNs data at the edge node.

Let, the distances between the HCSSs, such as N1, N2,
N3 deployed at positions P1, P2, P3, respectively are on the
order of kilometers, as shown in Fig. 2. However, deploying
MSNs (N0 at position P0) makes the network more dense and
improves the monitoring of environmental variations. The data
collected at the nodes, based on sampling rate, are transmitted
to the edge node. The edge node calibrates the MSNs data
from the HCSSs data and applies the adaptive sensing algo-
rithm on the calibrated data to find optimal system parameters,
such as the number of active nodes, number of sensors at each
active node to be activated in the next cycle, and the sampling
interval of these sensors. The system takes decisions based
on previous samples and experiences to optimize the energy
efficiency. The edge nodes are connected to the base station
or cloud for further data transmission and storage purposes.
Thus, Fig. 2 depicts a self-managed IoT network.

1) Network level adaptive sensing : Fig. 2 depicts a multi-
node IoT communication network, monitoring the variations of
a system parameter over a geographical region. High sparsity
in the spatio-temporal signature of the underlying parameter
could be exploited to remove data redundancy in a centrally
controlled setup [9]. Densely deployed WSNs present a prac-
tical use-case platform, where LWML aided adaptive sensing
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Fig. 3: Variation of sensing error and the residual energy of a
network with measurement cycle [7].

strategies activate an optimal set of sensor nodes and sensing
elements within them for subsequent measurement cycles,
based on sparsity. These approaches increase the energy sus-
tainability of the network. The sampling interval of the sensors
in the active node can be decided based on the temporal
variation of the signal [5]. In [7], an optimization function is
defined to select a particular set of sensor nodes in a WSN for
the next measurement cycle by jointly optimizing the trade-off
between the sensing error and the sensing energy consumption.
The optimization function minimizes the Bayesian Cramer-
Rao bound (BCRB), which is the lower bound of mean squared
error (MSE) of the estimated sparse signal to select the optimal
active sensor set. BCRB is computed from the spatio-temporal
variations of that specific signal. This method uses PCA based
sparse signal representation and the signal is reconstructed
using Sparse Bayesian learning (SBL) method. Fig. 3 describes
the network level energy saving performance of the adaptive
sensor node selection framework presented in [7], considering
32 sensor nodes in the WSN monitoring humidity in the
environment. The PCA-SBL based framework is 50% more
energy efficient compared to the other competitive methods
without compromising on the sensing accuracy, as shown in
Fig. 3. Thus, the network lifetime of the battery powered
WSN has been increased by optimally activating the nodes
by using LWML based methods without compromising the
sensing quality. The central entity acts as an edge node that
controls the activity of the sensor nodes connected wirelessly
and makes the network self-manageable.

2) Node level adaptive sensing: In real-life scenarios, net-
work level connectivity is not always possible in many applica-
tions, such as in home/office, medical health monitoring, etc.,
whereas node-level adaptation still can be used to make the IoT
devices smart. Multiple works have been published on node-
level energy efficient sensor data collection approaches using
one-way ANOVA model, Nyquist criteria, Kalman Filter, etc.,
by considering a single parameter sensor node [4]. The work
in [5] focuses on a learning based energy efficient sensor data
collection mechanism by exploiting the temporal and cross-
correlations of a multi-parameter sensor node.

As depicted in Fig 2, let us focus on node N0 with multiple
sensing elements for sensing various intended parameters,
powered through a battery with limited capacity. In a real-
life scenario, the sensed parameters exhibit cross-correlation.
In such a case, the power hungry sensors can be judiciously

turned off, with the corresponding parameters being predicted
using the measurements of the lesser power hungry sensors.
However, as the sensing signals are dynamic, the correlations
vary with time. Hence, it is desirable to find an optimal sensor
set for each measurement cycle, based on the correlations
among the sensed parameters. In this objective, LWML based
adaptive sensor selection algorithms employ reinforcement
learning methods to determine the optimal sensor in a mea-
surement cycle [5]. The monitored signals are used to predict
the parameters of the ‘inactive sensors’ using efficient predic-
tion models. While choosing an optimal set of sensors to turn
on and collect samples from, the sampling interval of those
sensors is decided by exploiting the temporal correlations
of the sensing signals. Further, sensing and data reporting
are dynamically adapted from non-time-critical (‘good’ state)
to time-critical (‘bad’ state), depending on the values of
some sensed parameters, which further optimizes the node-
level multi-sensing and transmission. A sensing parameter is
considered to be in a ‘good’ state if the signal remains within
its satisfactory level (signal quality is satisfactory). Otherwise,
the signal is considered to be in a ‘bad’ state.

A case study of an edge intelligence based data-driven
priority-aware sensing and communication framework is
adopted to optimize the energy sustainability of a multi-
parameter sensor node [5]. In this method, the edge node is
programmed to exploit the spatiotemporal correlation among
the sensing parameters from the data collected at the im-
mediate past measurement cycle, to find the optimal active
sensor set and their sampling intervals for the next mea-
surement. An optimization function is developed using the
discounted upper confidence bound (UCB) algorithm, which
extracts the trade-off between the cross-correlation coefficient
of the sensing parameters and the energy consumption. Due
to the non-stationary distribution of the sensing parameters,
UCB performs well in this case [10]. The optimal sampling
interval of each active sensor is obtained by applying a user-
defined temporal correlation threshold. Two different temporal
correlation thresholds are decided for good state and bad
state, as the sampling rate is higher in good state compared
to that in bad state. Finally, the information containing the
optimal active sensor set and optimal sampling intervals is
fed back to the node. Accordingly, the node activates the
sensors, collects data at their respective sampling interval,
and sends all the data to the edge node at the end of the
measurement cycle. The parameter values of the sleep sensor
set are predicted from the parameter values of the active
sensor set using a Gaussian process regressor model [11].
Thus, sensing and communication are dynamically varied
from NRT (‘good’ state) to RT (‘bad’ state), depending on
the value of the sensed parameters. The performance of this
algorithm on an air quality monitoring dataset is presented
in Fig. 4. It has been observed that the node lifetime can
be increased significantly by applying the edge computing
method to perform the optimal sensor selection. The GPR
based framework is 41% energy efficient and 32% bandwidth
efficient compared to the SBL based framework [7], while
detecting the system states with 98% accuracy.
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Fig. 4: Variation of sensing error and the residual energy of a
multi-sensing node with measurement cycle [5].

B. Application Context Aware Priority Adaptation

Section II-A discussed the various optimization strategies
applied at the application layer. In a customizable design, the
IoT nodes need to be programmed for smart data handling both
at the sensing stage as well as communication (networking)
level. Dynamic transition of the system between NRT and RT
creates a high variability of network resource requirements.
Since the sampling rate of a node is higher in RT (critical/bad)
state compared to that in NRT (non-critical/good) state, the
bandwidth requirement is high in the critical state. Although
efficient access control techniques, e.g., access class barring,
exist in LTE (long term evolution), to handle a massive number
of access requests, optimal scheduling, resource allocation,
and routing methods are needed. The data transmitted from
the node have different delay budgets based on its criticality
level. Since the edge node controls the network, it can allocate
resources dynamically based on the data priority. However,
in massive machine type communications, the data packets
are routed through multiple hops. Due to the delay associated
with the routers, some packets which are exceeding the delay
budgets are dropped even before reaching the data collector.
To address this problem, a delay-aware priority access classi-
fication method is presented in [12]. This method dynamically
assigns the access priority of the nodes having data to transmit,
based on the packet delay due to access class barring.

III. ML BASED DATA OPTIMIZATION STRATEGIES FOR
BACKWARD-COMPATIBLE IOT

A customizable IoT node design allows sampling the data at
the required sampling interval, where smart sensing strategies
can be implemented. However, this method cannot be applied
to the already deployed IoT nodes where the sampling strategy
is already fixed. Here, a backward-compatible smart process-
ing can be added at the source IoT node, thus enabling to
transmit only a fraction of useful samples required to recon-
struct the signal. Based on the criticality of the data, backward-
compatible data-driven pruning can have two major application
contexts: a) NRT applications and b) RT applications.

A. Data Driven NRT Applications

Smart energy metering infrastructure is an example of NRT
applications, where the energy meter collects the electrical
parameters at a fixed sampling rate. While exploiting the

temporal and cross-correlations among the various electrical
parameters, such as energy, voltage, current, apparent power,
frequency, etc., it has been observed that they possess a good
degree of correlation. Thus, a dynamic data-driven resource
optimization technique is employed to reduce the data volume,
which is added backward with the source IoT node. At the
sensor node, initially, the processing unit fetches the data
in a batch of x × y matrix, where y is the number of
parameters and x is the number of samples of each parameter
collected by the energy meter. On the data matrix, Principal
Component Analysis (PCA) is applied to reduce the sparsity
and estimate the optimum number of columns (z) containing
99.9% variation of the data [13]. Thus, by pruning the less
significant columns, a new data matrix of x × z is formed,
where z << y. The transformed data matrix may have
some sparsity in the time series samples (collected at a high
sampling rate) even after applying PCA. To further reduce the
data volume, compressive sampling is applied on each column
of the transformed data matrix x × z. With this, only the
required samples are transmitted to the edge node, for fairly
accurate reconstruction as opposed to Nyquist sampling.

Consider a vector X = (X1, X2, . . . , Xn), consisting of n
time series samples collected by the IoT node at the Nyquist
sampling rate. Thus, X can be represented as, X = ψF ,
where ψ is the n × n sparse basis matrix and F is the
transformed sparse vector of coefficients corresponding to ψ.
F consists of few non-zero samples that denote the optimum
number of samples (comprising 99.99% energy) required to
reconstruct the entire signal. Hence, only k samples (k << n)
are randomly chosen from X for transmission, which can be
represented as, K = ϕX = ϕψF . Here, ϕ is the sensing
matrix of size k × n. From k random samples, the original
signal X is accurately reconstructed at the receiver end by
using the Subspace pursuit algorithm, which solves an under-
determined system of linear equations. In this case, Discrete
Fourier Transform (DFT) and Random Gaussian Matrix are
chosen as sparse basis matrix and sensing matrix, respectively
to satisfy the restricted isometry and incoherence property [3].

The data compression algorithm reduces the data volume
to be transmitted to the edge node, thereby reducing the
storage memory requirement at the edge node. It also reduces
the communication energy consumption, while losing some
energy in processing the algorithm at the IoT node. Thus, the
complexity of the compression algorithm should be as low
as possible to reduce the processing energy consumption and
achieve maximum gain in terms of total energy saving. This
method achieves a bandwidth saving up to 81% in 3.6 ms with
an average reconstruction error of < 10−3 when implemented
in a practical smart metering infrastructure. This concept can
be easily extended to similar IoT devices generating time-
series data consisting of single or multiple parameters.

Smart data pruning provides inherent data security by
transforming data into feature space through the parameter
k. Since the original data is converted to another domain, the
pruning-induced ‘encryption’ at the transmitter end can only
be ‘decrypted’ at the receiver having an accurate information
of the system variables k and z, by employing appropriate
decompression algorithm. These parameters are estimated for
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Fig. 5: Current attribute reconstruction.

Fig. 6: Optimum bandwidth saving.

every batch depending on the sparsity of the data, thus making
it difficult to maliciously estimate these parameters.

B. Data Driven RT Applications

Most of the critical IoT applications cater to the monitoring
task within a defined delay budget. As the budget becomes
strict, the sensing and control actions have to be accurate
and fast-acting. However, with a rapid sensing requirement
(higher sampling rate), the data processing exceeds the delay
budget, owing to huge data volumes. This elongates the action
time through the control centre. Thus, a data processing
technique for such low latency systems is required, before
the data analysis is done. One such RT IoT device is the
phasor measurement unit (PMU), capturing the dynamic state
vectors of the electrical power grids. These IoT devices report
data to the edge node served by a phasor data concentrator
(PDC). Therefore, a smart PMU-PDC communication strategy
is required, employing RT data pruning at the IoT node with
an ambient reconstruction at the edge node.

Multiple power system attributes, such as 3-phase complex
voltage, 3-phase complex current, positive sequence voltage
and current, frequency, rate of change of frequency (ROCOF)
etc., are sensed by the IoT node. Owing to the high sampling
rate used by the IoT node, the generated multi-attribute data
set has a very high dimensionality. Therefore, a learning based
pruning algorithm is used to compress the multi-attribute
data in real time. ϵ-SVR aids this purpose by mapping the

input features to a higher-dimensional space and performing
regressions to find the best fit on the given data. It creates
an ϵ-tube around the data which is useful when the error in
prediction has to be contained within a particular range.

Two groups G1 and G2 are formed to segregate the base
attributes in G1 and the non-base attributes in G2. Initially,
all attributes are kept in G2 with two parameters ρνi and
δνi associated with them, where ρνi denotes the value of
maximum correlation of the νth element in G2 with the
elements in group G1 during ith sample estimation, and δνi
captures the position index of that attribute in group G1. These
parameters are initially set to 0 and −1, since G1 is empty.
A cross-correlation threshold ct is defined using the Pearson’s
correlation coefficient to generate the couple attributes with
highest correlation, as it is known to provide best correlation
results for true experiments involving associative or causal
hypothesis. Using this threshold, we iterate through G2 and
find dνi = ρνi −ct, defining the distance of ρν for ith attribute
from ct. Attributes having negative distance are the candidate
attributes for shifting to G1. A transfer score κν for the νth

attribute is calculated as κνi =
∑

Aj∈G2||mkj − ρj ||, where
mkj is an element of the matrix Ml×l. Finally, the one with
the maximum score is shifted to G1 and the values of ρ and
νM are updated for all the attributes in G2. This process is
repeated until all the attributes in G2 validate ρνi > ct.

Two SVR models utilizing the radial basis function, namely,
base SVR model and non-base SVR model are formed respec-
tively at the source IoT node and the edge node. The base SVR
model uses auto-regression for predicting its own subsequent
samples, which are used by the non-base SVR model(s) for
predicting their values. One flag each is defined for capturing
run-time prediction errors in base and non-base attributes. If
such a flag is raised, based on the model the flag is raised for,
either a retraining or remodeling is in order. This helps to save
the communication bandwidth by transmitting data only at
the beginning, or during the retraining instants. The proposed
method is compared with the N -single variate data pruning
algorithm, which corresponds to ct = 1. Thus harnessing no
cross-correlation among the attributes. From Fig. 5, depicting
the reconstruction graph for the current attribute, a close
correspondence between the actual and reconstructed graphs
was observed with a RMSE of 4.34×10−5, with the maximum
computational footprint upper bounded by 0.04 s. Further,
from Fig. 6 we observe that by setting an optimum value of
ct = 0.7 with the SVR algorithm, maximum bandwidth saving
(≈ 94%) is attained. Also, for ct = 1, a reduced bandwidth
saving of 70% is achieved, which is ≈ 40% lesser than the
optimum achieved using the proposed strategy.

A few future research directions on fully autonomous IoT
networks are outlined below.

IV. TOWARDS FULLY AUTONOMOUS IOT NETWORKS

High energy consumption of field deployed IoT nodes is
one of the most challenging problems, as the nodes are
mostly powered by batteries with limited capacity. Section II
discussed various learning based optimization strategies, which
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are implemented to reduce the energy consumption at the sen-
sor nodes and related communication modules. Another major
challenge is to accommodate the high bandwidth requirement
of the already deployed non-customizable IoT devices in
transmitting data sampled at high rate to the receiver node. In
this context, Section III discussed the various data compression
methods to prune/compress the data at the transmitter side and
decompress at the edge node/receiver side. Though the work
undertaken provides potential solutions in a lot of relevant
use-cases, a few of the challenging aspects remain to be
addressed. As we look into the future, dynamism in the IoT
devices and environment pave their way through the existing
infrastructure. The problem becomes further pertinent as we
move towards auto-reconfigurable and self-healing networks.
The work presented thus far helps to motivate such a case.

A. Energy Autonomy

Energy sustainability and green sensing/communication
form the base for all future smart IoT networks. Since the
battery capacity of the field deployed sensor nodes are limited,
efficient energy harvesting techniques need to be incorporated
to make the nodes energy autonomous. The currently available
harvesting methods, such as solar, RF (radio frequency), piezo-
electric, etc. generate a limited amount of energy, as opposed
to the high energy requirement of the sensor nodes having
multiple good quality sensors. Thus, the design of a completely
self-healing IoT network involving good quality sensors is still
an unresolved challenge with an abundance of future scope.

One approach in achieving this milestone would be to have
the sensor nodes transmit battery status along with data to
the edge node. If the energy level falls below a threshold, the
edge node or the network controller can take the decision to
substitute that sensor node with another energy-surplus node,
while the former switches to replenishing mode by recharging
from ambient or via on-demand wireless energy transfer. This
leads to another direction of research, towards the development
of specialized sensor-to-edge communication standards. Since
edge intelligence is one of the important features in 3GPP
standards for the future generation networks, standard methods
need to be developed for automated actuation and control of
the sensor nodes. If the edge processing capability is placed
in a mobile robot used to collect data from the static/mobile
sensor nodes, the edge node can be equipped with a charging
unit, such as RF transmitter, while the sensor nodes are
equipped with RF energy harvester. Optimum methods need
to be developed at the edge node for recharging the sensor
node and collecting data from the node simultaneously.

B. Auto-Reconfigurability

Dynamic adaptability at the node and network levels rep-
resent the next most important aspect of autonomy in future
IoT networks. Mobile sensor nodes provide great avenues for
robust and low-cost system monitoring. However, the manage-
ment in such an auto-reconfigurable setting is a complex task.
Beyond efficient data collection and processing at the edge
node, energy management in such node-level mobility poses a
potential research perspective in re-configurable autonomous

IoT networks. The entire system under test could be divided
into multiple small zones, each having a local data collector,
which are jointly monitored by a central edge node. An effi-
cient data offloading policy through a structured handshaking
and hand-off would be of interest. Furthermore, this provides
an alternate vantage point in self-healing scenarios, where an
energy-deficient node can be turned off, while being replaced
by an energy-surplus sensor node.

Network-level auto-reconfigurability is a step further to-
wards autonomous IoT networks. One of the major chal-
lenges in this task is an energy efficient autonomous sys-
tem reorganization, thus suggesting the need for inter-node
coordination in a massive IoT node deployment scenario.
This not only necessitates the use of LWML techniques at
the node level, but a network level coordinated learning also
becomes pertinent. One of the crucial addressed phenomena
in self-healing network aspect is allowing redundancy through
network-level mobility by intelligently awakening a group of
sensors. This takes to the more demanding, yet appealing
task of distributed analysis and joint data processing, thereby
constructing an entire situational image of the system using a
limited deployment of IoT sensor nodes.

C. Secure Autonomous IoT Networks

Security makes the backbone of the future autonomous IoT
networks, as mass-scale adaptability of such network cannot
happen without data integrity [14]. With a higher order of
dynamism, higher node deployment, and sparse data offload-
ing, the security and reliability of IoT networks becomes a
challenge. As the handling of network and node level auto-
reconfigurability seeks distributed processing of sensor data,
correct data interpretation at the edge node and false data
identification and rejection becomes increasingly important in
establishing a secure and reliable IoT network. Though compu-
tation offloading at multiple levels (edge/cloud/fog) enhances
the IoT node longevity, it amplifies the data access points
for a possible breach. This seeks a robust data processing
formulation, thereby segregating false data from the true one.
Furthermore, a specialized public key infrastructure could be
devised for such a distributed autonomous IoT framework.

It is notable that, as distributed data processing requires
aggregate system visualization, optimum control action for
maintaining or restoring system stability holds crucial im-
portance for the IoT infrastructure. Non-ideality in the con-
trol channel must be appropriately modeled and combated
to ensure reliable network functioning. Further, as the data
processing becomes distributed, tail data mis-classification
gains prominence, thus leading to ‘attack of tails’. Such attacks
can be defended using a central observer that ensures that
the mis-classification is handled as an outlier. Further, from
graph-theoretic viewpoint, when a malicious user launches
such attacks, the graph can have a small quotient-cut that
disconnects multiple graph nodes. Thus, the malicious attacker
can be identified and removed using a ’SybilGuard’ approach.
An allied concern stems from the data reconstruction purview
under channel noise. Channel adaptive transmission protocols
needs to be built to facilitate robust and secure data delivery.
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D. Human-Machine Interface

The factor of fully human intervention free operation has
proven to be a demerit of many artificial intelligence enabled
autonomous systems. The initiative by Defense Advanced
Research Agency over the years has shown the pitfall in
the autonomous systems owing to the human intervention-
free nature of ML based solutions [15]. The mid-2015 cyber-
attack drills suggested an important strategy in false event
management, namely rapid attack detection, isolation, and
characterization. This posits a major lacuna arising from fully
autonomous networks. A potential direction of research lies
in the monitoring system smartly seeking human intervention
over precarious events. This could secure robust control in
many false attack events, as a human perspective of system
and surroundings provides a different viewpoint in event char-
acterization. Furthermore, the idea of human machine interac-
tion strengthens the sensor life-span by providing preemptive
maintenance of the nodes beyond the network’s self healing
capability limit. Thus, a controlled human moderation could
prove valuable in strengthening the security and reliability of
the IoT network, thereby enhancing the benefits of network-
level autonomy while mitigating the pitfalls of full autonomy.

V. CONCLUDING REMARKS

This article has presented strategies for realizing au-
tonomous IoT networks through various LWML aided node-
and network-level optimizations. Through some implementa-
tion case studies it has shown how some of the autonomous
features can be fulfilled by energy and data footprint reduction.
These include context-aware smart sensing and smart data
pruning, and further edge-intelligence based network-level
coordination, aiding scalability and energy autonomy. The
glimpses of learning-aided auto-calibration feature of the IoT
sensor nodes discussed in the article has demonstrated the pos-
sibility of operational autonomy. To achieve fully autonomous
IoT networks and to work around the pitfalls of full autonomy,
more research and innovations are necessary. Some of the
exciting future works and challenges have been highlighted,
which include smarter network towards self-healing capability,
further advanced techniques on deployment agnostic energy
autonomy, and on-demand wireless energy replenishability. A
pitfall of learning-aided fully machine-type/autonomous sys-
tem is the potential lack of human control on security, privacy,
and actuation/control of system. Some of these challenges
and research directions and the need for human machine
interaction in smart IoT networks are also highlighted.
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