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Abstract—We report characterization of busy and idle periods
in 802.11 WLAN via experiments in software-defined radio. A
new channel occupancy model, called Gaussian mixture (GM)
model, is proposed and shown to fit the empirical data signifi-
cantly better than the other available models. Further simulation
results demonstrate that, utilizing GM model highly-improves
secondary user goodput and energy efficiency.

Index Terms—802.11 WLAN channel availability model, Gaus-
sian mixture (GM) model, software defined radio, cognitive radio

I. INTRODUCTION

Cognitive radio (CR) is an intelligent communication
paradigm where the secondary users (SUs) dynamically ex-
ploit the spectral and temporal voids in the licensed spectrum.
Proper modeling of licensed/primary user (PU) activity is
essential for CR user to maximize spectrum utilization while
ensuring quality of service (QoS) to the PUs.

In this letter, based on extensive measurement experiments
we propose a new PU (WiFi user) activity model for wireless
local area networks (WLAN). The proposed model can be
used for improved opportunistic access of WLAN spectrum.
Our study is motivated by the emergence of LTE-U (Long
Term Evolution - Unlicensed), where an LTE-U user (SU) can
operate in an unlicensed band such as that of 802.11g WLAN.

Various medium access control (MAC) methods to exploit
voids of the PU channels mostly consider exponentially dis-
tributed PU activity (ON/OFF) durations (e.g., [1]–[3]). A few
experimental studies have reported that the ON/OFF durations
are not truly exponentially distributed [4]–[6].

To model busy/idle periods in 802.11b WLAN, traffic
sources taken were UDP [4], [5], [7], Skype voice [7], and
HTTP [4]. In [5], the idle period was modeled as general-
ized Pareto distributed, while [4] modeled it as hyper-Erlang
distributed. These studies were done in interference-controlled
settings. The spectrum usage models in [6] did not consider
WLAN traffic. Though general environment was considered in
[8] to model idle period, it was on 802.15.4 standard with QoS
objectives different from those in 802.11. Also, these empirical
models were not evaluated on any CR-MAC protocols.

Different from the prior art, we conduct measurement
experiments on 802.11 WLAN traffic, in both interference-
controlled and general environments. Based on our ob-
servations, we propose a new WLAN channel occupancy
model, called Gaussian mixture (GM) model. For performance
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Fig. 1: Experimental setup in interference-controlled environment.
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Fig. 2: Algorithm flowgraph for power sample measurement in SDR.

comparison with the other considered models (exponential
[3], generalized Pareto [5], and hyper-Erlang [4]), statistical
goodness-of-fit test is conducted using the empirical data.
Besides, performance of the competitive models are studied
by employing them in two recent CR-MAC protocols [1], [2].
Novelty and significance of the work are as follows:

1) The GM model is proposed via extensive measurements
in interference-controlled as well as general environment.

2) Goodness-of-fit of the GM model is significantly better
than the available WLAN channel occupancy models.

3) Compared to the other occupancy models, GM model
yields notably-improved CR-MAC performance.

II. WIFI USER (PU) ACTIVITY CHARACTERIZATION

A. Experimental setup

In the interference-controlled environment, we consider two
application types: Skype video over IP (VoIP) and file transfer
protocol (FTP), over 802.11g WLAN in absence of any other
traffic. One computer (PC1) was connected to the Internet via
802.11g WLAN access point (AP) operating at 2.412 GHz,
while the other (PC2) was connected via Ethernet LAN (cf.
Fig. 1). A VoIP Skype call was setup between PC1 and PC2
for a duration of 5 minutes. A similar setup was used for
FTP. The spectrum occupancy was observed by recording the
received power samples using Amitec software defined radio
(SDR) (amitec.co) at 22 MSps rate and 256 point FFT. Fig. 2
presents flowgraph of the algorithm implemented in the SDR.
The recorded power samples were processed in MATLAB.

In general environment, multiple WiFi-enabled devices op-
erate concurrently over a WLAN channel. The devices connect
to a public 802.11/b/g/n AP. Specifically, we measured the
channel usage in a public place. Power samples were collected
similarly as in the interference-controlled environment.

The experiments were repeated 3 times in each environment.
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Fig. 3: Power sample histograms for WLAN traffic.
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Fig. 4: Busy/idle period pdf of WLAN traffic in general environment.

B. WLAN channel (PU) activity modeling

Energy detection method [9] is used to identify the channel
state from the power samples. Channel is marked idle/OFF
(respectively, busy/ON) if the energy of the captured samples
is below (respectively, above) a threshold. Histogram of the
captured samples are plotted in Fig. 3. The first peak indicates
the ‘noise floor’ and the others represent the signal power. In
general environment, multiple peaks after the ‘noise floor’ are
due to the transmissions from multiple devices. To minimize
false alarm probability, threshold is set 3 dB higher than the
saddle point after the peak noise power.

Fig. 4 shows probability density function (pdf) of the
samples for busy/idle periods in general environment. The pdfs
in interference-controlled environment look similar. Each pdf
is noted to consist of multiple Gaussian components. This led
to our intuition of GM for channel occupancy modeling. GM
model [10] is a pdf with weighted sum of multiple Gaussian
components. K-component GM (K-GM) is expressed as:

fK(x)=

K∑
j=1

wjN (x|µj , σj),with wj≥ 0 and
K∑
j=1

wj = 1. (1)

N (x|µj , σj)= 1√
2πσj

e
−

(x−µj)
2

2σ2
j is the jth component, and wj

is the mixing weight. Consider that N i.i.d. sample points
x={x1, x2, · · · , xN} are observed. The goal is to obtain the
optimal parameters (K and µj , σj , wj ,∀j ∈ {1, · · · ,K}) such
that likelihood of the samples matching the proposed model
is maximized. The log-likelihood function is defined as:

L(x, fK) , LK =

N∑
i=1

ln


K∑
j=1

wjN (xi|µj , σj)

 . (2)

C. Model parameter estimation

An iterative Expectation Maximization (EM) algorithm
[11] is used to find the optimal parameters (µj , σj , wj) (cf.
Algorithm 1). Each iteration has 2 steps: E and M. In the E

Algorithm 1: EM algorithm for K-GM model.

1. Initialize µj , σj , wj and evaluate LK from (2)
do

2. E step: Evaluate p(j|xi) for each xi in x as:

p(j|xi) =
wjN (xi|µj , σj)∑K
j=1 wjN (xi|µj , σj)

3. M step: Maximize LK by equating its partial
derivative with respect to µj , σj , and wj to 0 for new
estimate of the parameters. Updated parameters are:

wnewj =

∑N
i=1 p(j|xi)
N

, µnewj =

∑N
i=1 p(j|xi)xi∑N
i=1 p(j|xi)

,

and σnewj =

∑N
i=1 p(j|xi)(xi − µnewj )2∑N

i=1 p(j|xi)
4. Compute the new log-likelihood LnewK

while |LnewK − LoldK | > ε;

step, posterior probability p(j|xi) of each GM component j is
evaluated for each data point xi using the current parameters.
In the M step, p(j|xi)’s from E step are used to obtain new
estimates of the parameters.

EM algorithm guarantees convergence and its complexity
is O(KN2). However, the algorithm is sensitive to the initial
parameter values and it can converge to a local maxima.

To achieve global optimality, a greedy learning heuristic
was proposed in [12]. For faster convergence, we propose the
following modifications: initialization using observations from
the available data set, and exploitation search for obtaining
candidate Gaussian component.

In the modified algorithm (Algorithm 2), initialization is
carried out by identifying the significant peaks in the empirical
pdf of the data (e.g., 2 significant peaks in Fig. 4(a)), each
peak forming a Gaussian component. Starting with this initial
number, the algorithm is iterated. At each iteration, a new
optimal Gaussian component is added to the existing GM
model and the EM algorithm is applied to maximize LK .

Kolmogorov-Smirnov (KS) test (a goodness-of-fit measure)
[13] is used as a stopping criterion for fitting a model. KS
distance is the maximum distance between empirical cumula-
tive distribution function (CDF), G(x) and the estimated CDF,
F (x;K) for K-GM model, which is defined as D(K) =
maxx |G(x) − F (x;K)|. The algorithm is stopped when the
change in KS distance between two successive GM models is
below a threshold ε.

To obtain a new optimal component in step 4 of Algorithm
2, (m + 1)k candidate components are generated from the
current k-GM mixture. Data set x is divided in k disjoint
sets Zn = {xi ∈ x : n = argmaxj p(j|xi)}. m + 1
candidate components are constructed for each set Zn. Two
search techniques, exploration and exploitation, are used. In
exploration search, m candidates are generated by randomly
picking two data points xnl and xnr from Zn at a time. Zn
is partitioned in two disjoint subsets Znl and Znr based on
the closeness of the data points in Zn to xnl and xnr. The
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Algorithm 2: Modified greedy learning algorithm.

1. Identify k significant peaks in the data pdf
2. Obtain µj , σj , wj ∀j ∈ {1, · · · , k} for k-GM as:
(i) µj ← time of occurrence of the jth peak in the pdf
(ii) σj ← xσ

N , where xσ is the sample variance
(iii) wj =

yj∑k
i=1 yi

where yj is the amplitude of the jth
Gaussian peak identified in step 1
3. Apply EM algorithm without initialization to compute
optimal µj , σj , wj in k-GM; obtain D(k)
do

4. Obtain a new optimal component N (x|µ∗, σ∗)
with mixing weight β∗ such that:

{µ∗,σ∗,β∗}= argmax
{µ,σ,β}

N∑
i=1

ln[(1−β)fk(xi)+βN(xi|µ, σ)]

5. Add the optimal component to the k-GM. Set:
fk+1(xi)← (1−β∗)fk(xi)+β∗N(xi|µ∗,σ∗)∀xi ∈ x
6. Apply EM algorithm to update fk+1(x)
7. Set k ← k + 1 and compute D(k)

while |D(k)−D(k − 1)| > ε;

mean and variance of sets Znl and Znr give the parameters
µ and σ of the two candidate components. In a similar way,
other m − 2 components are generated. One component is
generated from the exploitation search by subtracting the nth
estimated Gaussian component pdf from the empirical pdf
over the set Zn. The mean and variance of the resulting
difference give µ and σ of the (m+1)th candidate component
in the set Zn. The initial mixing weights β for the candidate
components of set Zn are set to wn

2 . In this way, we generate
total (m + 1)k candidate components and search over those
candidates with parameters {µ, σ, β} in step 4, to obtain the
optimal component.

Complexity of the algorithm is O(NK2) [12], where K is
the number of Gaussian components. Simulations indicate that
our proposed modified greedy learning algorithm is on average
6% faster than the conventional greedy algorithm with m = 6.

D. Model fitness results

CDFs of busy/idle periods in general environment are
plotted in Fig. 5. For fitting the empirical CDF with exponen-
tial and generalized Pareto distributions maximum likelihood
estimation is used, while the parameters of hyper-Erlang
distribution are obtained by EM approach. K-GM is noted to
fit the empirical CDF more accurately than any other models.
The results in interference-controlled environment are similar.

Table I shows D values for various traffic in both envi-
ronments (average of 3 experiments). Significance level of
1% is considered. In 4-GM and 5-GM, KS test does not
reject the null hypothesis, while for others it rejects the null
hypothesis. Compared to GM model with K ≥ 4, D for
exponential, generalized Pareto, and hyper-Erlang are noted
to be large - hence showing poor fit. GM model performance
nearly saturates for K ≥ 4. So, we choose K = 4 to fit the
empirical data. Table II presents the GM parameters in general
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TABLE I: D for various fitting model distributions.

M
od

el Interference-controlled environment General
VoIP Skype FTP environment

Busy Idle Busy Idle Busy Idle

D

Exp 0.5635 0.6810 0.1800 0.5100 0.4743 0.4766
GP 0.2593 0.1946 0.2110 0.2780 0.2811 0.2227
HE 0.3069 0.3174 0.1930 0.3910 0.3206 0.2709
1-GM 0.4947 0.4912 0.3890 0.5260 0.4816 0.4297
2-GM 0.2804 0.1675 0.3890 0.4080 0.2042 0.1741
3-GM 0.0952 0.1675 0.1650 0.2870 0.1998 0.1546
4-GM 0.0952 0.1372 0.1650 0.2250 0.1417 0.1333
5-GM 0.0952 0.1356 0.1460 0.2250 0.1263 0.1109

TABLE II: GM model parameters in general environment.

Components 1 2 3 4

B
us

y µj (ms) 0.18 0.19 0.74 1.5
σj (ms) 1.57x10−5 1.57x10−5 5.21x10−5 4.17x10−4

wj 0.45 0.44 0.06 0.05

Id
le

µj (ms) 0.085 0.93 4 10.8
σj (ms) 5.41x10−6 3.21x10−4 3.76x10−3 2.92x10−2

wj 0.51 0.18 0.21 0.10

environment. The other PU activity parameters, such as,
channel occupancy ratio, PU’s channel access probability, can
be predicted from the discussed PU occupancy distribution.

III. PERFORMANCE ANALYSIS OF GM MODEL

To study the GM model we consider two MAC protocols
[1], [2] that require to estimate PU traffic for their operation.

A. Description of MAC protocols and performance measures
In [1], the proposed eDSA V.2 protocol was to maximize the

unused PU channel utilization, where the PU busy/idle periods
were considered exponentially distributed. The SU vacates the
channel for optimal length v each time it senses the channel
busy, while it transmits a data packet of optimal length l on
sensing the channel idle. CR performance is measured in terms
of SU goodput G (data transmitted per unit time) and energy
efficiency E (data transmitted per unit energy consumption)
while maintaining the fraction of overlapping time Rc (fraction
of time the SU transmission interferes with PU transmission)
below a threshold r0. For the GM model, these metrics are
found as:

Rc(l, v) ≈
l

2(E[I] + E[B])
;G(l, v) ≈

∫∞
0

(1− F̃I(x))dx− l
E[I] + E[B]

;

E(l, v)≈
∫∞
0

(1− F̃I(x))dx− l∫∞
0

(
(φt+

φs
l )(1−F̃I(x))+(φi+

φs
v )(1−F̃B(x))

)
dx
.
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Expected SU transmission time in a busy-idle cycle is
∫∞
0

(1−
F̃I(x))dx, of which

∫∞
0

(1 − F̃I(x))dx − l is successful.
Expected time the SU spends in sensing and idling in a busy
period is

∫∞
0

(1 − F̃B(x))dx. φt and φi are respectively the
data transmission and idling power consumption, while φs is
the energy consumption per channel sensing. E[I] and E[B]
are respectively the expected idle and busy periods, and F̃I(x)
and F̃B(x) are respectively the CDFs of residual idle and busy
period, given as:

F̃I(x) = p(X ≤ x+
v

2
|X >

v

2
) =

FI(x+ v
2 )− FI(

v
2 )

1− FI( v2 )
,

F̃B(x) = p(X ≤ x+
l

2
|X >

l

2
) =

FB(x+ l
2 )− FB(

l
2 )

1− FB( l2 )
.

FI(x) = 1 −
∑K
i=1 wiQ

(
x−µi
σi

)
is the CDF of idle period

obtained from K-GM model, where Q(·) is the Q-function.
FB(x) is the CDF of busy period, obtained similarly.

The optimization problems (G∗; E∗) are formulated as:

G∗ = max
l,v

G(l, v);E∗ = max
l,v

E(l, v), s.t. Rc(l, v) ≤ r0

Obtaining closed-form expressions for G∗ and E∗ is difficult.
Hence, we use derivative-free numerical optimization tech-
nique (Nelder-Mead method) to compute G∗ and E∗.

In RIBS [2], for a new frame transmission, an SU generates
exponentially distributed random back-off times to decide
sensing instants. When the channel is sensed idle, it transmits
the data based on its estimated maximum duration ymax so that
PU interference probability is below a threshold η. Denoting
the residual idle time CDF as FRI , ymax is obtained as:

FRI(y)=

∫ y

0

1− FI(z)
E[I]

dz; ymax= max{y :FRI(y) ≤ η}. (3)

To obtain ymax for K-GM model, we equate FRI(ymax) =
η (reduced to equality constraint). We then have:
K∑
i=1

wi(ymax − µi)
σi

Q

(
ymax − µi

σi

)
−

K∑
i=1

wi√
2π
e
− (ymax−µi)

2

2σ2
i

+

K∑
i=1

wi

[
µi
σi
Q

(
−µi
σi

)
+

1√
2π
e
− µ2i

2σ2
i

]
= ηE[I]. (4)

Having no closed-form solution for ymax in (4), numerical
method is used. Since FRI(y) is an increasing function in y,
we use bisection method to obtain ymax. RIBS performance
measures are SU goodput and energy efficiency.

B. Performance results and remarks

Key simulation parameters are [14]: data rate 6 Mbps, slot
size 11.64 µs; energy/slot for sensing 14 µJ, transmission 24.3
µJ, and idling 5.9 µJ.

Figs. 6(a) and 6(b) show, G∗ and E∗ of the eDSA V.2 in
[1] with the GM model clearly performing better compared to
exponential model. Specifically, at r0 = 0.1 GM model yields
respectively 17.3% and 6.8% higher G∗ and E∗. At r0 = 0.2,
these gains are 10.9% and 6.5%. We remark that, the GM
model performs better because it captures the WLAN activity
much accurately as compared to the exponential model.
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Fig. 6: Performance of eDSA V.2 in [1] with the two PU channel
models. (a) SU goodput; (b) energy efficiency. Exp: Exponential.
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Fig. 7: RIBS [2] performance: (a) SU goodput; (b) energy efficiency.

Figs. 7(a) and 7(b) show SU goodput and energy efficiency
in RIBS [2]. GM model offers respectively 30.8%, 10.7%, and
4.2% higher goodput on average, compared to exponential,
generalized Pareto, and hyper-Erlang. For energy efficiency,
the respective gains are 11.4%, 5.1%, and 2.1%.

These results further corroborate the observations from Fig.
5 that, the K-GM with K ≥ 4 models the WLAN channel much
better, aiding the CR performance.
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