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Abstract—In this letter we consider resource allocation for
OFDMA-based secure cooperative communication by employing
a trusted Decode and Forward (DF) relay among the untrusted
users. We formulate two optimization problems, namely, (i) sum
rate maximization subject to individual power constraints on
source and relay, and (ii) sum power minimization subject to a
fairness constraint in terms of per-user minimum support secure
rate requirement. The optimization problems are solved utilizing
the optimality of KKT conditions for pseudolinear functions.

Index Terms—DF cooperative communication, pseudolinear
optimization, secure OFDMA, resource allocation

I. INTRODUCTION

Relaying along with OFDMA is being considered as a
promising technology for providing high data rate connectivity
anywhere, anytime [1]. Physical layer security aspects in relay-
assisted communication has recently gathered considerable
attention in the research community [2]. Based on the relay-
ing strategy, e.g., amplify-and-forward (AF) or decode-and-
forward (DF), resource allocation problems are formulated
differently and are thus investigated separately. Broadly, there
exist two kinds of wire tapping scenarios: single eavesdropper
with trusted users [3]–[5] and untrusted users [6]. The study
in [3] considered subcarrier and power allocation problems in
an AF relay-assisted OFDM system with single eavesdropper.
Assuming availability of direct path, [4] considered sum rate
maximization problem under total system power constraint in
DF relay-assisted secure cooperative communication (DFSCC)
for a single source-destination pair with a single eavesdrop-
per. Multiuser resource allocation problem in OFDMA-based
DFSCC with single eavesdropper was solved in [5]. Recently,
resource allocation problems for improving secure capacity
and system fairness in OFDMA system with untrusted users
and single friendly jammer have been considered in [6]. To the
best of our knowledge, OFDMA-based DFSCC with multiple
untrusted users has not yet been considered in the literature.

We consider two resource allocation problems. First, sum
secure rate maximization is studied subject to individual power
constraints on source and relay, due to their geographically
apart locations. Second, sum power minimization is solved
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subject to the fairness constraint in terms of per-user minimum
support secure rate. The key contributions are as follows: (i)
We derive secure rate positivity constraints for each subcarrier,
which includes the optimal subcarrier allocation policy. (ii)
We prove that the two problems described above belong to
the class of generalized convex problems which can be solved
optimally. (iii) We show that the optimal secure rate for a user
is achieved when rates of source-relay and relay-user links
over a subcarrier are equal. (iv) We also present analytical
and graphical interpretation of the derived optimal solutions.

II. SYSTEM MODEL

We consider the downlink of an OFDMA-based cooperative
communication system with a trusted DF relay controlled by
a base station (hereafter referred as source S). The users have
mutual untrust and request secure communication from S.
The subcarriers on S-to-R and R-to-mth user (Um) links are
assumed to follow quasi-static Rayleigh fading. Availability of
perfect CSI for each link is assumed. All nodes are equipped
with single antenna, and R operates in half-duplex mode [3],
[4]. There is no direct connectivity between S and Um [5].

DFSCC with trusted R and M untrusted users is a multiple
eavesdropper scenario, where for each user there exist M − 1
eavesdroppers, and the strongest of them is considered as the
equivalent eavesdropper. Over a subcarrier n, the secure rate
Rmsn of Um is defined as the non-negative difference of the rate
Rmn of Um and the rate Ren of the equivalent eavesdropper Ue
[6]. Mathematically, the secure rate is expressed as:

Rmsn =

{
Rmn − max

o∈{1,2,···M}\m
Ron

}+

= {Rmn −Ren}+ (1)

where x+ = max{0, x}. In half-duplex DF cooperative com-
munication, Rmn = 1

2 min {Rsrn , Rrmn }, where Rsrn and Rrmn
respectively denote the rates of S-to-R and R-to-Um links
over subcarrier n. Using this, (1) can be simplified as [4]:

Rmsn = (1/2) {min (Rsrn , R
rm
n )−Rren }+ . (2)

Next, we discuss the sum secure rate maximization problem.

III. SUM SECURE RATE MAXIMIZATION IN DFSCC
Denoting P sn and P rn respectively as powers of S and R

over subcarrier n, the optimization problem can be stated as:

P0 : maximize
πm
n ,P

s
n,P

r
n

[
Rs (πmn , P

s
n, P

r
n) =

M∑
m=1

N∑
n=1

πmn R
m
sn

]

s.t. C1 :

M∑
m=1

πmn ≤ 1 ∀n, C2 : πmn ∈ {0, 1} ∀m,n,
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C3 :

N∑
n=1

P sn ≤ PS , C4 :

N∑
n=1

P rn ≤ PR,

C5 : P sn ≥ 0, P rn ≥ 0 ∀n (3)

where πmn is a subcarrier allocation variable, indicating
whether subcarrier n is allocated to Um or not. Constraints
C1 and C2 ensure that a subcarrier is allocated to only one
user. Power budgets PS and PR at S and R are respectively
incorporated in C3 and C4. C5 includes positivity constraints.
For each subcarrier, there are two real variables P sn, P rn , and
one binary variable πmn . Because of log and max functions
in objective, P0 is a mixed integer non-linear programming
problem, which is NP hard. To solve P0, first we determine
subcarrier allocation and then we complete power allocation.

A. Subcarrier Allocation
The feasibility of achieving positive secure rate by Um over

a subcarrier n is described by the following proposition.

Proposition 1. In DFSCC with untrusted users, positive
secure rate over a subcarrier n can be obtained if and only
if (i) the subcarrier is allocated to the best gain user, and
(ii) R-to-Ue link of the eavesdropper Ue is the bottleneck link
compared to the S-to-R link over that subcarrier.

Proof: Rmsn in (2) can be restated as:

Rmsn =
1

2


Rsrn −Rren if Rren < Rsrn < Rrmn
Rrmn −Rren if Rren < Rrmn < Rsrn
0 otherwise.

(4)

From (4) we note that, conditions for positive secure rate are:
(a) Rren < Rrmn and (b) Rren < Rsrn . Let γsrn , γrmn , and γren
respectively denote the channel gains of S-to-R,R-to-Um, and
R-to-Ue links over subcarrier n. The rates Rsrn , Rrmn , and Rren
are given by log2

(
1 + P snγ

sr
n /σ

2
)
, log2

(
1 + P rnγ

rm
n /σ2

)
,

and log2

(
1 + P rnγ

re
n /σ

2
)
, respectively. Here σ2 is the addi-

tive white Gaussian noise (AWGN) variance. Condition (a)
Rren < Rrmn , simplified as γren < γrmn , indicates the optimal
subcarrier allocation policy which can be stated as:

πmn =

1 if γrmn > γren , max
o∈{1,2,···M}\m

γron

0 otherwise.
(5)

Condition (b) Rren < Rsrn , simplified as P rnγ
re
n < P snγ

sr
n ,

should be incorporated as a power optimization constraint. �
Following the observations Rren < Rrmn and Rren < Rsrn in

Proposition 1, Rmsn can be rewritten without max operator as:

Rmsn =
1

2

log2

1 + min
(
P s

nγ
sr
n

σ2 ,
P r

nγ
rm
n

σ2

)
1 +

P r
nγ

re
n

σ2

 . (6)

B. Power Allocation
Ensuring Rren <Rrmn through optimal subcarrier allocation

(5) and enforcing Rren <Rsrn as a constraint, equivalent power
allocation problem for P0 using (6) can be formulated as:

P1 : maximize
P s

n,P
r
n,tn

[
R̂s(tn, P

r
n) ,

N∑
n=1

1

2

{
log2

(
1 + tn

1 +
P r

nγ
re
n

σ2

)}]

s.t. C1 : tn ≤
P snγ

sr
n

σ2
∀n, C2 : tn ≤

P rnγ
rm
n

σ2
∀n,

C3, C4, C5, as in (3), C6 : P rnγ
re
n ≤ P snγsrn ∀n. (7)

Constraints C1 − C2 come from the definition of min {·},
C6 comes from secure rate positivity requirements given by
Proposition 1. Due to non-concave objective function R̂s, P1
is non-convex. However, via the following lemma, we show
that P1 belongs to the class of generalized convex problems.

Lemma 1. The objective function of P1 is pseudolinear on
the feasible region defined by the constraints, and the solution
obtained from the KKT conditions is the global optimal.

Proof: The objective function R̂s (tn, P
r
n) of P1 is a pseu-

dolinear function [7] of tn and P rn , with ∂R̂s

∂tn
= 1

2(1+tn)
, an

and ∂R̂s

∂P r
n

=
−γre

n

2(σ2+P r
nγ

re
n ) , bn, because ∂R̂s

∂tn
, ∂R̂s

∂P r
n
6= 0 in

the entire feasible region defined by the linear constraints
C1−C6. Moreover, the bordered Hessian is given as: BH =

0 ∂R̂s

∂tn
∂R̂s

∂P r
n

∂R̂s

∂tn
∂2R̂s

∂t2n

∂2R̂s

∂tn∂P r
n

∂R̂s

∂P r
n

∂2R̂s

∂P r
n∂tn

∂2R̂s

∂P r
n

2

 =

 0 an bn
an −a2n 0
bn 0 b2n

 = 0.

Following this and [8, Theorem 4.3.8], along with the knowl-
edge that constraints are linear and differentiable, it can be
inferred that the KKT point is the global optimal solution. �

The optimal power allocation (P sn, P rn) obtained after solv-
ing KKT conditions is characterized by following Theorem.

Theorem 1. In DFSCC, maximum secure rate over a subcar-
rier is achieved when the following relationship holds

P snγ
sr
n = P rnγ

rm
n . (8)

Proof: Lagrangian L1 of the problem P1 can be stated as:

L1 =

N∑
n=1

1

2

{
log2

(
1 + tn

1 +
P r

nγ
re
n

σ2

)}
−

N∑
n=1

xn

(
tn −

P snγ
sr
n

σ2

)

−
N∑
n=1

yn

(
tn −

P rnγ
rm
n

σ2

)
−

N∑
n=1

zn

(
P rnγ

re
n

σ2
− P snγ

sr
n

σ2

)

− λ
(

N∑
n=1

P sn − PS
)
− µ

(
N∑
n=1

P rn − PR
)
. (9)

Here, xn, yn, zn, λ, and µ are Lagrange multipliers. Using
(7) and (9), the KKT conditions for P1 are given by

∂L1

∂P sn
= xn

γsrn
σ2

+ zn
γsrn
σ2
− λ = 0 (10a)

∂L1

∂P rn
=

−γren
2 (σ2 + P rnγ

re
n )

+ yn
γrmn
σ2
− zn

γren
σ2
− µ = 0 (10b)

∂L1

∂tn
=

1

2 (1 + tn)
− xn − yn = 0 (10c)

xn

(
tn −

P snγ
sr
n

σ2

)
= 0; yn

(
tn −

P rnγ
rm
n

σ2

)
= 0 (10d)

zn (P rnγ
re
n − P snγsrn ) = 0 (10e)

λ

(
N∑
n=1

P sn − PS
)

= 0; µ

(
N∑
n=1

P rn − PR
)

= 0. (10f)
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Next we consider the following three cases.

tn =


P snγ

sr
n /σ

2 if P snγ
sr
n < P rnγ

rm
n

P rnγ
rm
n /σ2 if P snγ

sr
n > P rnγ

rm
n

P snγ
sr
n /σ

2 = P rnγ
rm
n /σ2 otherwise.

(11)

Case 1: tn = P snγ
sr
n /σ

2; xn > 0 and yn = 0. From (10b)
we get γre

n

2(σ2+P r
nγ

re
n ) +µ+zn

γre
n

σ2 = 0, which cannot be satisfied
for any positive finite P rn and σ2. Thus, this case is infeasible.

Case 2: tn = P rnγ
rm
n /σ2; xn = 0 and yn > 0, it gives

λ = znγ
sr
n /σ

2 and yn = 1/ {2(1 + tn)}. Substituting in (10b),

µ+ λ
γren
γsrn

+
γren

2 (σ2 + P rnγ
re
n )
− γrmn

2 (σ2 + P rnγ
rm
n )

= 0. (12)

Since P rnγ
rm
n /σ2 < P snγ

sr
n /σ

2, and we know that γrmn > γren .
Thus, P rnγ

re
n /σ

2 < P rnγ
rm
n /σ2 < P snγ

sr
n /σ

2 which indicates
that zn = 0 (c.f. (10e)). Since zn = 0, so λ = 0. Thus, (12)
results in a quadratic equation in P rn , having following form

(P rn)
2
γrmn γren + P rn (γrmn + γren )σ2 + σ4 −∆n = 0 (13)

where ∆n = σ2

2µ (γrmn − γren ). For a fixed µ, the optimal P rn ,
obtained as the only positive real root of (13) is given by

P rn =
−σ2(γrmn +γren )+

√
σ4 (γrmn −γren )

2
+4γrmn γren ∆n

2γrmn γren
.(14)

For a known P rn , we set P sn = P rn
γrm
n

γsr
n

+ δ, where δ is a very
small positive number, because allocating more P sn does not
provide a higher secure rate. The optimum µ can be found
using subgradient method [9], such that

∑N
n=1 P

r
n = PR.

Case 3: tn = P rnγ
rm
n /σ2 = P snγ

sr
n /σ

2; xn > 0 and yn > 0.
Replacing xn = λ σ2

γsr
n
− zn (from (10a)), in (10c) we get

yn= 1
2(1+tn)

−λ σ2

γsr
n

+zn. On substituting tn and yn in (10b),

γre
n

2 (σ2+P r
nγ

re
n )
−

γrm
n

2 (σ2+P r
nγ

rm
n )

+µ+λ

(
γrm
n

γsr
n

)
= zn

(
γ
rm
n − γre

n

)
. (15)

The complimentary slackness condition (10e) can be simpli-
fied as zn

(
P rnγ

re
n /σ

2 − P rnγrmn /σ2
)

= 0, which indicates
zn = 0 because γrmn > γren . After simplifications, (15) results
in a quadratic equation in P rn similar to (13) with ∆n =
σ2γsr

n (γrm
n −γre

n )
2(µγsr

n +λγrm
n ) . For fixed λ and µ, the optimal P rn is given

by (14). The optimal λ and µ are obtained using subgradient
method [9] such that

∑N
n=1 P

r
n = PR and

∑N
n=1 P

s
n = PS .

Since with δ → 0 case 2 is inherently contained in case 3, (8)
provides an energy-efficient global optimal solution. �

C. Analytical and Graphical Interpretations

Writing (15) with zn = 0 in a compact form we get
γrm
n −γre

n

σ2

2
(

1 +
P r

nγ
rm
n

σ2

)(
1 +

P r
nγ

re
n

σ2

) = µ+ λ

(
γrmn
γsrn

)
∀n. (16)

From (6) and (8), it appears intuitive that P rn should be
allocated according to the relative gain (γrmn −γren ). However
on closely observing (16), we note that P rn depends not only
on relative gain, but also on absolute gains γsrn , γrmn , and γren .

Utilizing the secure rate definition (4), the result (8) ob-
tained from Theorem 1 can be explained graphically using Fig.

0
P r
nγ

re
n /σ2 P r

nγ
rm
n /σ2

P s
nγ

sr
n /σ2 P s

nγ
sr
n /σ2

P r
nγ

re
n /σ2 P r

nγ
rm
n /σ2

0

Rm
sn

Rm
sn

SNR SNR

(a) S-to-R link is bottleneck (b) R-to-Um link is bottleneck

Fig. 1. Graphical interpretation of Theorem 1.

1. When S-to-R link is the bottleneck as compared to R-to-
Um link i.e., P snγ

sr
n < P rnγ

rm
n (case 1 in (11), and case (a) in

Fig. 1), the secure rate is given as Rmsn = log2

(
σ2+P s

nγ
sr
n

σ2+P r
nγ

re
n

)
.

This case is infeasible because Rmsn can be improved by either
increasing P sn or reducing P rn . If there is enough PS budget,
then P sn could be increased till (8) gets satisfied, beyond which
R-to-Um link becomes the bottleneck (considered separately
as case (b) in Fig. 1). However, if PS is limited, then P rn should
be reduced till (8) gets satisfied. With further lowered P rn , R-
to-Um link becomes the bottleneck. Thus, at KKT point P snγ

sr
n

cannot be less than P rnγ
rm
n , and hence case 1 is infeasible.

When R-to-Um link is bottleneck compared to S-to-R link
i.e., P rnγ

rm
n < P snγ

sr
n (case 2 in (11), and case (b) in Fig. 1),

Rmsn = log2

(
σ2+P r

nγ
rm
n

σ2+P r
nγ

re
n

)
, which is an increasing function of

P rn . In order to improve Rmsn , P rn can be increased till (8) gets
satisfied, beyond which the S-to-R link becomes bottleneck.
If PR is limited then just enough P sn should be utilized so as
to satisfy (8). Higher P sn, though feasible, does not improve
secure rate, as Rmsn is independent of P sn. Thus, case 2 can
have multiple solutions but with the same optimal value.

Remark 1. Using (8) in (6), at KKT point Rmsn is concave
increasing in P rn , and is bounded by (1/2) log2 (γrmn /γren ).

IV. SUM POWER MINIMIZATION IN DFSCC
For the sum power minimization problem, considering sum

secure rate constraint over OFDMA system is not significant
from fairness point of view. Actually it would utilize power
resources over those subcarriers where higher secure rate can
be achieved, which may lead to scarcity of power resources
and eventually very small secure rate for some users. For
handling this issue, we consider a minimum support secure
rate requirement Rssr for each user. This results in a more
complicated problem with M rate constraints, instead of one.

Following Proposition 1, first, subcarrier allocation is done
based on (5). Since the maximum secure rate achievable over
a subcarrier is bounded (cf. Remark 1), before optimal power
allocation, it is checked whether Rssr for each user can be
achieved. If it can be achieved, that user is selected for power
allocation, otherwise not. Considering Ua as the set of selected
users for resource allocation and Nm as the set of subcarriers
of Um, the sum power minimization problem is given by:

Q0 : minimize
P s

k ,P
r
k

∑
Um∈Ua

∑
k∈Nm

(P sk + P rk )

s.t. C1:
∑
k∈Nm

Rmsk ≥ Rssr ∀Um∈Ua, C2 : P sk , P
r
k ≥ 0. (17)

Since all subcarriers are independent, per-user rate constraints
can be handled in parallel. Thus, the optimization problem
can be decomposed at user level and solved in parallel. The
individual user level problem for each Um ∈ Ua is stated as:
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Q1 : minimize
P r

k ,P
s
k

∑
k∈Nm

(P sk + P rk )

s.t. C1 :
∑
k∈Nm

1

2
log2

(
1 + tk

1 +
P r

k γ
re
k

σ2

)
≥ Rssr,

C2 : tk ≤
P skγ

sr
k

σ2
∀k, C3 : tk ≤

P rk γ
rm
k

σ2
∀k,

C4 : P rk γ
re
k ≤ P skγsrk ∀k,C5 : P sk ≥ 0, P rk ≥ 0 ∀k. (18)

The objective function of Q1 is linear, C1 is pseudolinear
(Lemma 1), and C2 − C5 are linear. So, the KKT point
gives the optimal solution [8]. The Lagrangian L2 of Q1 with
xk, yk, zk, and λ as the Lagrange multipliers is given by:

L2 =
∑
k∈Nm

(P sk + P rk ) +
∑
k∈Nm

xk

(
tk −

P skγ
sr
k

σ2

)
+
∑
k∈Nm

yk

(
tk −

P rk γ
rm
k

σ2

)
+
∑
k∈Nm

zk

(
P rk γ

re
k

σ2
− P skγ

sr
k

σ2

)

− λ
[ ∑
k∈Nm

1

2

{
log2

(
1 + tk

1 +
P r

k γ
re
k

σ2

)}
−Rssr

]
. (19)

The stationarity KKT conditions for Q1 are given by:

∂L2

∂P sk
= 1− xk

γsrk
σ2
− zk

γsrk
σ2

= 0 (20a)

∂L2

∂P rk
= 1 +

λγrek
2 (σ2 + P rk γ

re
k )
− yk

γrmk
σ2

+ zk
γrek
σ2

= 0 (20b)

∂L2

∂tk
= xk + yk −

λ

2 (1 + tk)
= 0. (20c)

Additionally, there are four complimentary slackness condi-
tions, three are similar to (10d)-(10e), and fourth is given as:

λ

[ ∑
k∈Nm

1

2

{
log2

(
1 + tk

1 +
P r

k γ
re
k

σ2

)}
−Rssr

]
= 0. (21)

Here also there exist three cases similar to (11). Considering
the cases one by one, in case 1, xk > 0 but yk = 0. This
case is infeasible because, if yk = 0, then (20b) cannot be
satisfied. Considering case 2, xk = 0, yk > 0, and zk = 0
(by the same argument as explained in the proof of Theorem
1); thus (20a) cannot be satisfied, and hence this case is also
infeasible. The only feasible case is case 3, in which, using
zk = 0 and on simplifying (20a)-(20c), we obtain a quadratic
equation in P rk similar to (13) where ∆n is replaced with
∆k =

λσ2γsr
k (γrm

k −γre
k )

2(γsr
k +γrm

k )
. The optimal P rk is given by (14) for

a fixed value of λ, and the optimal λ is found using subgradient
method [9] such that C1 in Q1 is satisfied with equality.

V. NUMERICAL RESULTS

Here we present numerical results of OFDMA-based DF-
SCC with M = 8 users and N = 64 subcarriers. S and R
are assumed to be respectively located at (0, 0) and (1, 0). The
users are uniformly distributed inside a unit square, centered at
(2, 0). With σ2 = 1, we consider quasi-static Rayleigh fading.
Large scale fading is modeled using path loss exponent = 3.
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Fig. 2.(a) Secure rate versus source power; (b) Sum power versus support rate.

Fig. 2(a) presents the variation of optimal sum secure rate
R∗s (or R̂∗s) with source power budget PS , for different relay
power budgets PR. At low PR, R∗s is limited by PR itself and
increasing PS does not improve R∗s significantly. Interestingly,
at high enough PR, R∗s increases with diminishing returns
before saturating at high PS . This indicates the existence of
an upper bound on R∗s . The monotonicity of R∗s corroborates
pseudolinearity with respect to P sn and P rn . Fig. 2(b) shows
that sum power required per-user increases exponentially with
Rssr. Sum power required for a fixed Rssr increases with
number of users, due to effectively lesser number of subcar-
riers per-user. The performance improvement achieved by the
proposed solutions over a benchmark scheme, namely, uniform
power allocation, is also demonstrated in Figs. 2(a) and 2(b).

VI. CONCLUDING REMARKS

To summarize, we have investigated resource allocation in
OFDMA-based DFSCC with multiple untrusted users. Global
optimal solutions for secure rate maximization and sum power
minimization problems have been obtained by exploiting the
concepts of generalized convexity and pseudolinearity. Nu-
merical results have offered insight into the optimal power
required for realizing an energy-efficient DFSCC system.
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