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Abstract— In this letter, a probabilistic analysis is presented Il. ANALYSIS ON BOUNDS
that captures the bounds on hop count from a given Euclidean he followi vsis. th d idered .
distance between two nodes and vice versa in a greedy forwardy In the following analysis, the nodes are considered uni-

in wireless ad hoc networks. Accuracy of the analysis is veied formly randomly placed in a two-dimensional space. All n@de
via network simulations. The results could be useful in ad ho have equal, omnidirectional transmission pattern of raRge

and sensor network design and performance evaluation. As in [8], LRD approach tries to avoid “backward movement”
Index Terms -ad hoc networks, sensor networks, greed;f/, no fqrwardlng node .closer to t.he de;tlnatlon is foun.d. For
routing, probabilistic bounds Simplicity of the analysis, a node is considered to be a fiaten

forwarder if it is in the half circle of the transmission rang
of a node towards the destination (the entire shaded region i
I. INTRODUCTION Fig. 1). Precisely, this approach does not guarantee tleat th
remaining distance would be always lesser than the current
Wireless ad hoc networks are generally characterized Bigtance. Referring to Fig. 1, if the selected forwardinge®
randomly located nodes and peer-to-peer multihop connec-
tions. Geographic location aware greedy routing is one of
the widely studied ad hoc routing protocols [1],[2]. Althgiu
greedy routing may not guarantee minimum energy or high
capacity routes, its importance lies in its simplicity and
scalability. Moreover, in miniaturized network nodes, lsas
sensors, processing overhead is comparable to, or evearhigh
than, th.e _transm|SS|on r(.elated power consumption [3], aln_% 1. In the LRD approach, a potential forwarding node P can be
due to limited power saving and added protocol complexit

) ’ ¥cated anywhere inside the shaded region.
transmit power control may not be cost-effective. As a resul

in ad hoc network applications greedy forwarding may Stifl |ocated in the densely shaded region, the remainingrdista
remain an important routing candidate. The random naturegfihe gestination D would be larger than the current distanc

node distribution implies that for a given source-to-de®ion  patwveen S and D. However. via simple geometry it can be

Euclidean distance, the number of hops is non-determinisii, oy, that with a reasonably high node density the potential
and similarly, the Euclidean distance coverage in a givej hackward movement is very insignificant — even when the

number of hops is not fixed. A few recent papers (€.g., [4],[5)ensely shaded region is included. For example, with agerag
addressed the problem of establishing the relationshipeset neighbors (average number of nodes within the coverage

Euclidean distance and hop count. However, the evaluaﬁonrggion of a node), the maximum probability of backward
tight bounds relating these distances has not been repgted ., ovement is 0.013, whereas with average 20 neighbors, this

In this paper, the relationship of hop count and EUC”de%ﬁobabiIity is3.56 x 10~%. Note that the average number of

distance between two nodes is analyzed. A greedy routing @ighbors required to ensure only one-connectivity wasvsho
proach - calledeast remaining distance (LRD) forwardinds i [7] to be 8.

considered that attempts to minimize the remaining digtdoc
the destination in each hop. LRD forwarding is differentnfro . )
the maximum forwarding with fixed radius (MFR) [6],[7],[8], A= Least remaining distance (LRD)

and the maximum forwarding with variable radius (MVR) Denote the distance between a node S and the destination D
[8] approaches. In particular, as observed in [7], althoudly . Let P be a potential forwarder of S, randomly located at
MFR and MVR ensure the maximum progress towards thedistance- and angled, and let the remaining distance from
destination, they do not guarantee minimizing the remainiP to D bez. With respect to the node S, the random position
distance to the destination. The LRD forwarding captures tf P is characterized by the following joint probability cty
cases for nodes with fixed as well as variable transmissifunction (pdf) of the random variables (Rv8)and 6:

radius, i.e., without and with transmission power control.
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we have the pdf ok given in (2). The corresponding cumu-

lative distribution function (cdf) is. (z) = [~ __ fx(t)dt.

Let the remaining distances from potential forwarding
nodes bez;, =z,
approximation of uniformly random node distribution,

A

=P(n) = (pa)"” e P

Prln = n] ;
n!

®3)

wherep is the node density and = 7R?/2. The average of

1z ’

2.2 p2
% [arcsin (é) — arcsin (l +§l;R )] , 1< 2<VI2+ R?

-, zn, Wheren is a RV. By Poisson

I-R<z<l

@

elsewhere.

TABLE |
MEAN (€) AND STANDARD DEVIATION (o) OF ONEEHOP PROGRESS AS A
FUNCTION OF NODE DENSITY AND DISTANCE

mn=>5 n=20 n=235
l € o € o € o
50 | 6.982 2.074] 8.82 0.812] 9.19 0.565
100 | 7.066 2.037| 8.86 0.788| 9.217 0.547
200 | 7.106 2.018| 8.878 0.776| 9.231 0.539

n is m = pa. In each hop, the next forwarding node P to D As shown in Table I, the mearZ) and standard deviation
has the least remaining distangethat satisfies the relation: (o) of one-hop progress are slowly varying functions of dis-

& = min{z, 29, -

, zn|ln =n}. Since the nodes aretance to the destination, and can be considered approxjmate

uniformly random distributedy; Vi = 1 to n are independent constants, estimated based on the expected distance betwee

and identically distributed (iid) RVs. Moreover, sinpgs also

a RV with the distribution given in (3), by Bayes’ theorem,

fe()=>_ Pn)nf=(RZ() (4)
n=0

where f,(z) is given in (2), andR, =1 — F.

B. One hop progress

source-destination pair in a given network area. Henceafor
given Euclidean distande the approximate average hop count
ish = (é}. The bounds on hop count for a given Euclidean
distancel can be numerically computed from (5).

C. Bounds on distance coverage

Let us denote the total number of hops between two end
nodes as + 1. Observe that the LRD forwarding approach is
active in firsth hops, and the distance coverage in the last hop

With the known characteristic of least remaining distan@e the destination is uniformly distributed {0, R]. While the
&, the maximum forward progregscan be obtained from the last hop statistics can be easily accommodated in the bpunds

relatione = [ — £. The pdf ofe is fc(e) = fe(I —¢€), and the

for the sake of concise presentation of the LRD forwarding,

cdf is Fo(e) =1 — F¢(l —¢). Using (2)—(4) and simplifying, henceforth only firsk-hop statistics will be considered.

we get the exact expression fif(<). It can be easily verified

that at moderately high node density (em@.> 8), f(¢) ~ 0,

Assume that the forward progress in each hop is indepen-
dent of the previous hops. Then, the total progress hops

for I — /12 + R? < e < 0 (also see Fig. 2). Accordingly, theis a RV:e' = &, + €3 + --- + €5, wheree;, Vi = 1to0 h,
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Fig. 2. Pdf of distance progress in one hap= 8, R = 10, I = 100.

approximate expression of the pdlf(-) is shown in (5).
The k-th moment ofe can be calculated fronf.(-) via
numerical integrationg® = fOR ¥ fo(¢)de, from where the

meanz and standard deviation = 1/ — () are obtained.

are iid RVs with mearg and variances?. For moderately
large network (withh > 3), by central limit theoremg’ is
normal distributed with meahg and variance:o2. Sincee’

is normal distributed, a proper multiplication factbrcan be
chosen such that the distance coverage in firebps always
lies within the regionkv/ho around the mean value with very
high probability. In other words, by proper choice /oft can
be ensured that the distance coveredihops lies between

d; = hg — kvho and d,, = hg + kvho. (6)

For e.g., withk = 4, probability that the distance covered in
h hops is beyondig + kv/ho is nearly10—°.

The limiting case is studied to verify the intuition that
the difference between bounds on distance covetage d;
tends to zero as the node density increases. From (5), we
have the cdf ofe in (7). First, note from (3) that at large
node density (i.e., whem pa > 1), the probability
P(n) — 0 and henceF.(e) — 0, for smalln. To compute
F.(¢) for largen (i.e., whenP(n) is non-zero), denote =

% {%\/4}3212 —(R?2—e2+ 215)2 — (I — &)*arccos (1—!—

—512(1_7}12)) + R?arcsin (RQ%QRT%) } We have,0 < z <1



n
S P(n)2n (ﬁ) (I — &) arccos (1 + %) [% \/4R2l2 — (R2 — 2 4 2le)?

€) = 2 52 2_ 2 n—1 5
F=(€) —(1 — €)? arccos <1+§z(17—f;)) + R? arcsin (R%RJFQZE)] , 0<e<R ®
0, elsewhere.
07 e<0
2_p2 2_ 2 "
Fe(e)=4¢ 35, P(n) |:7\'_]2?2 {%\/4R2l2 — (R2? — &2 4+ 2£)? — (I — £)2 arccos (1 + Sl(l;—Rs) + R? arcsin (R%HT%) 0<e<R
17 e > R.
™

when(0 < ¢ < R. By the property of cdfv 0 < ¢ < R bound of distance coverage compared to the deterministic
(e, 0 <z < 1), Fe(e) < 1, andV ¢ > R, Fc(e) = 1. upper boundhR. Numerically computed hop bound results
Since lim, 2™ = 0V z < 1, the cdf F.(¢) is a step are also verified to match well with the simulation.

function at largen, i.e., atn — oo, F.(¢) = 0V e < R
and F.(e) = 1V e > R. Thus, in the limit, the pdf
fe(e) = d(e — R), a shifted delta function, i.e.,

1 ate=R
0

elsewhere,
which implies that at infinitely large node density, — R
(constant), and the standard deviationegfc — 0. Hence
from (6), for a finite network size (i.e., finitg) the difference,
du - dl — 0.

IV. CONCLUDING REMARKS

In this letter, the relationship of Euclidean distance and
hop count in greedyeast remaining distanctorwarding was
characterized. It was shown that the moments of one-hop
distance progress are slowly varying functions of the dista
to the destination, and can be considered nearly constant fo
a given node density and network size. From these results,
the average hop count was obtained for a given Euclidean
distance. Further, from hop count, the average and bounds of
Euclidean distance were derived. Network simulationsfieeti

HI. correctness of the analysis.

The analytic and numerically computed bounds are verifiedThe bounds on Euclidean distance and hop count could
via network simulations in C. In the simulations, nodes atge useful in many ad hoc network applications, such as es-
uniformly random distributed in @00 x 400 location space. timating end-to-end delay and jitter, total power constiampt
The transmission range of a node is fixedfat= 10. The along the route, relative distance from hop counts in GPS-
total number of nodes is varied appropriately to attain lass positioning and routing approaches [4],[9]. In piati
desired node density = 2. To minimize the boundary the effects of network congestion, residual power awamenes
effect, the end nodes are chosen along the diagonals of #ieeless channel conditions, etc. can be added on top o thes
rectangular space, at least unit range inside the edges.b&sic estimates.

lim fe(e) =

n—oo
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