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Abstract— In this letter, a probabilistic analysis is presented
that captures the bounds on hop count from a given Euclidean
distance between two nodes and vice versa in a greedy forwarding
in wireless ad hoc networks. Accuracy of the analysis is verified
via network simulations. The results could be useful in ad hoc
and sensor network design and performance evaluation.

Index Terms –ad hoc networks, sensor networks, greedy
routing, probabilistic bounds

I. I NTRODUCTION

Wireless ad hoc networks are generally characterized by
randomly located nodes and peer-to-peer multihop connec-
tions. Geographic location aware greedy routing is one of
the widely studied ad hoc routing protocols [1],[2]. Although
greedy routing may not guarantee minimum energy or high
capacity routes, its importance lies in its simplicity and
scalability. Moreover, in miniaturized network nodes, such as
sensors, processing overhead is comparable to, or even higher
than, the transmission related power consumption [3], and
due to limited power saving and added protocol complexity,
transmit power control may not be cost-effective. As a result,
in ad hoc network applications greedy forwarding may still
remain an important routing candidate. The random nature of
node distribution implies that for a given source-to-destination
Euclidean distance, the number of hops is non-deterministic,
and similarly, the Euclidean distance coverage in a given
number of hops is not fixed. A few recent papers (e.g., [4],[5])
addressed the problem of establishing the relationship between
Euclidean distance and hop count. However, the evaluation of
tight bounds relating these distances has not been reportedyet.

In this paper, the relationship of hop count and Euclidean
distance between two nodes is analyzed. A greedy routing ap-
proach - calledleast remaining distance (LRD) forwarding- is
considered that attempts to minimize the remaining distance to
the destination in each hop. LRD forwarding is different from
the maximum forwarding with fixed radius (MFR) [6],[7],[8],
and the maximum forwarding with variable radius (MVR)
[8] approaches. In particular, as observed in [7], although
MFR and MVR ensure the maximum progress towards the
destination, they do not guarantee minimizing the remaining
distance to the destination. The LRD forwarding captures the
cases for nodes with fixed as well as variable transmission
radius, i.e., without and with transmission power control.
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II. A NALYSIS ON BOUNDS

In the following analysis, the nodes are considered uni-
formly randomly placed in a two-dimensional space. All nodes
have equal, omnidirectional transmission pattern of rangeR.
As in [8], LRD approach tries to avoid “backward movement”
if no forwarding node closer to the destination is found. For
simplicity of the analysis, a node is considered to be a potential
forwarder if it is in the half circle of the transmission range
of a node towards the destination (the entire shaded region in
Fig. 1). Precisely, this approach does not guarantee that the
remaining distance would be always lesser than the current
distance. Referring to Fig. 1, if the selected forwarding node P
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Fig. 1. In the LRD approach, a potential forwarding node P can be
located anywhere inside the shaded region.

is located in the densely shaded region, the remaining distance
to the destination D would be larger than the current distance
between S and D. However, via simple geometry it can be
shown that with a reasonably high node density the potential
of backward movement is very insignificant – even when the
densely shaded region is included. For example, with average
10 neighbors (average number of nodes within the coverage
region of a node), the maximum probability of backward
movement is 0.013, whereas with average 20 neighbors, this
probability is 3.56 × 10−4. Note that the average number of
neighbors required to ensure only one-connectivity was shown
in [7] to be 8.

A. Least remaining distance (LRD)

Denote the distance between a node S and the destination D
by l. Let P be a potential forwarder of S, randomly located at
a distancer and angleθ, and let the remaining distance from
P to D bez. With respect to the node S, the random position
of P is characterized by the following joint probability density
function (pdf) of the random variables (RVs)r andθ:

frθ(r, θ) =

{

2r
πR2 , 0 ≤ r ≤ R and − π

2 ≤ θ ≤ π
2

0, elsewhere.
(1)

From geometry,z =
√

(l − x)2 + y2, wherex = r cosθ and
y = r sin θ. Using the method of transformation of variables,
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we have the pdf ofz given in (2). The corresponding cumu-
lative distribution function (cdf) isFz(z) =

∫ z

−∞
fz(t)dt.

Let the remaining distances fromn potential forwarding
nodes bez1, z2, · · · , zn, where n is a RV. By Poisson
approximation of uniformly random node distribution,

Pr[n = n]
∆
= P (n) =

(ρa)n

n!
e−ρa (3)

whereρ is the node density anda = πR2/2. The average of
n is n = ρa. In each hop, the next forwarding node P to D
has the least remaining distanceξ, that satisfies the relation:
ξ = min {z1, z2, · · · , zn|n = n} . Since the nodes are
uniformly random distributed,zi ∀ i = 1 to n are independent
and identically distributed (iid) RVs. Moreover, sincen is also
a RV with the distribution given in (3), by Bayes’ theorem,

fξ(·) =

∞
∑

n=0

P (n)nfz(·)Rn−1
z (·) (4)

wherefz(z) is given in (2), andRz = 1 − Fz .

B. One hop progress

With the known characteristic of least remaining distance
ξ, the maximum forward progressε can be obtained from the
relationε = l− ξ. The pdf ofε is fε(ε) = fξ(l− ε), and the
cdf is Fε(ε) = 1 − Fξ(l − ε). Using (2)–(4) and simplifying,
we get the exact expression offε(ε). It can be easily verified
that at moderately high node density (e.g.,n ≥ 8), fε(ε) ≈ 0,
for l −

√
l2 + R2 ≤ ε ≤ 0 (also see Fig. 2). Accordingly, the
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Fig. 2. Pdf of distance progress in one hop.n = 8, R = 10, l = 100.

approximate expression of the pdffε(·) is shown in (5).
The k-th moment ofε can be calculated fromfε(·) via

numerical integration,εk =
∫ R

0
εkfε(ε)dε, from where the

meanε and standard deviationσ =

√

ε2 − (ε)
2 are obtained.

TABLE I

MEAN (ε) AND STANDARD DEVIATION (σ) OF ONE-HOP PROGRESS AS A

FUNCTION OF NODE DENSITY AND DISTANCE.

n = 5 n = 20 n = 35
l ε σ ε σ ε σ

50 6.982 2.074 8.82 0.812 9.19 0.565
100 7.066 2.037 8.86 0.788 9.217 0.547
200 7.106 2.018 8.878 0.776 9.231 0.539

As shown in Table I, the mean (ε) and standard deviation
(σ) of one-hop progress are slowly varying functions of dis-
tance to the destination, and can be considered approximately
constants, estimated based on the expected distance between a
source-destination pair in a given network area. Hence, fora
given Euclidean distancel, the approximate average hop count
is h = ⌈ l

ε
⌉. The bounds on hop count for a given Euclidean

distancel can be numerically computed from (5).

C. Bounds on distance coverage

Let us denote the total number of hops between two end
nodes ash+1. Observe that the LRD forwarding approach is
active in firsth hops, and the distance coverage in the last hop
to the destination is uniformly distributed in(0, R]. While the
last hop statistics can be easily accommodated in the bounds,
for the sake of concise presentation of the LRD forwarding,
henceforth only firsth-hop statistics will be considered.

Assume that the forward progress in each hop is indepen-
dent of the previous hops. Then, the total progress inh hops
is a RV: ε

′

= ε1 + ε2 + · · · + εh, whereεi, ∀ i = 1 to h,
are iid RVs with meanε and varianceσ2. For moderately
large network (withh > 3), by central limit theorem,ε

′

is
normal distributed with meanhε and variancehσ2. Sinceε

′

is normal distributed, a proper multiplication factork can be
chosen such that the distance coverage in firsth hops always
lies within the regionk

√
hσ around the mean value with very

high probability. In other words, by proper choice ofk it can
be ensured that the distance covered inh hops lies between

dl = hε − k
√

hσ and du = hε + k
√

hσ. (6)

For e.g., withk = 4, probability that the distance covered in
h hops is beyondhε ± k

√
hσ is nearly10−5.

The limiting case is studied to verify the intuition that
the difference between bounds on distance coveragedu − dl

tends to zero as the node density increases. From (5), we
have the cdf ofε in (7). First, note from (3) that at large
node density (i.e., whenn = ρa ≫ 1), the probability
P (n) → 0 and henceFε(ε) → 0, for small n. To compute
Fε(ε) for largen (i.e., whenP (n) is non-zero), denotex =

2
πR2

{

1
2

√

4R2l2 − (R2 − ε2 + 2lε)
2 − (l − ε)2 arccos
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. We have,0 ≤ x ≤ 1
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when 0 ≤ ε ≤ R. By the property of cdf,∀ 0 ≤ ε < R
(i.e., 0 ≤ x < 1), Fε(ε) < 1, and ∀ ε ≥ R, Fε(ε) = 1.
Since limn→∞ xn = 0 ∀ x < 1, the cdf Fε(ε) is a step
function at largen, i.e., at n → ∞, Fε(ε) = 0 ∀ ε < R
and Fε(ε) = 1 ∀ ε ≥ R. Thus, in the limit, the pdf
fε(ε) = δ(ε − R), a shifted delta function, i.e.,

lim
n→∞

fε(ε) =

{

1 at ε = R
0 elsewhere,

which implies that at infinitely large node density,ε → R
(constant), and the standard deviation ofε, σ → 0. Hence
from (6), for a finite network size (i.e., finiteh) the difference,
du − dl → 0.

III. R ESULTS

The analytic and numerically computed bounds are verified
via network simulations in C. In the simulations, nodes are
uniformly random distributed in a400 × 400 location space.
The transmission range of a node is fixed atR = 10. The
total number of nodes is varied appropriately to attain a
desired node densityρ = 2n

πR2 . To minimize the boundary
effect, the end nodes are chosen along the diagonals of the
rectangular space, at least unit range inside the edges. In
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Fig. 3. Bounds on Euclidean distance.n = 15, R = 10.

Fig. 2, the analytic distributions of one-hop progress are
verified by simulation. Fig. 3 shows the average and bounds
on Euclidean distance at different hop counts. Bounds from
network simulations show very good match with the analysis
(cf. (6)), and the results are verified to hold at any node density
that ensures network connectivity. Also note the tighter upper

bound of distance coverage compared to the deterministic
upper boundhR. Numerically computed hop bound results
are also verified to match well with the simulation.

IV. CONCLUDING REMARKS

In this letter, the relationship of Euclidean distance and
hop count in greedyleast remaining distanceforwarding was
characterized. It was shown that the moments of one-hop
distance progress are slowly varying functions of the distance
to the destination, and can be considered nearly constant for
a given node density and network size. From these results,
the average hop count was obtained for a given Euclidean
distance. Further, from hop count, the average and bounds of
Euclidean distance were derived. Network simulations verified
correctness of the analysis.

The bounds on Euclidean distance and hop count could
be useful in many ad hoc network applications, such as es-
timating end-to-end delay and jitter, total power consumption
along the route, relative distance from hop counts in GPS-
less positioning and routing approaches [4],[9]. In practice,
the effects of network congestion, residual power awareness,
wireless channel conditions, etc. can be added on top of these
basic estimates.
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