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SBL-based Adaptive Sensing Framework
for WSN-assisted IoT Applications

Vini Gupta and Swades De

Abstract—Wireless sensor networks (WSNs) often have limited
battery capacity-sensor nodes which severely limit continuous
monitoring based Internet-of-Things (IoT) applications. To sub-
stantially increase the lifetime of a densely-deployed WSN for
monitoring spatio-temporally varying signal, this paper presents
a novel sparse Bayesian learning-based adaptive sensor selection
framework. The developed strategy selects an active sensor set
and turns off the remaining sensor nodes by jointly optimizing
two conflicting performance measures: sensing quality and energy
efficiency, while considering prevailing energy parameters of the
network. To achieve this, a multi-objective optimization problem
is formulated. Further, a joint Principal Component Analysis-
Sparse Bayesian Learning (PCA-SBL) scheme is presented which
uses PCA-based estimated transformation matrix to sparsify
the data sensed by sensors, and subsequently uses approxi-
mate overcomplete dictionary-based SBL scheme to estimate
it. Employing PCA-SBL based signal estimate, a closed loop
adaptive mechanism is developed which estimates variations of
the monitored signal to predict the number of active sensors
for next measurement cycle such that the sensing error remains
within an acceptable range. This predicted value is then used in
sensor selection problem to dynamically select the active set. The
sensor selection, signal recovery, and feedback loop use spatial
and temporal correlation inherent in the monitored phenomenon.
Extensive simulation studies validate the energy efficiency and
stable sensing performance of the proposed framework using
both synthetic and real data of a WSN.

Index Terms—Wireless sensor networks, adaptive sensor se-
lection, multi-objective optimization, sparse Bayesian learning,
principal component analysis, network residual energy.

I. INTRODUCTION

With the advent of Internet-of-Things (IoT), wireless sensor
networks (WSNs) [1], [2] have become indispensable for
numerous applications, such as, environment (air pollution)
monitoring [3], industrial process monitoring [4], health-care
surveillance [5], and smart cities [6]. However, the battery-
constrained sensor nodes (SNs) serve as performance bot-
tleneck since they limit lifespan of such networks. Thus, it
becomes mandatory to impart sufficient intelligence at the
sensor network level to reduce sensing, transmission, and
processing complexity at SNs and prolong their lifespan so
as to efficiently realize the concept of IoT.

For densely deployed WSNs monitoring a slowly varying
environmental/physical phenomenon, signals measured by SNs
often possess temporal and spatial correlations that induce
sparsity in them. In fact, this inherent redundancy in signals
across the SNs can allow their acquisition using a few SNs
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without significant data loss. In this way, the inter- and intra-
signal correlation can be capitalized to impart intelligence at
the data acquisition, representation, and reconstruction levels
of WSNs so as to save network energy resource without
compromising much on the sensing quality as demonstrated
in [7], [8]. Moreover, nowadays to save transmission and
processing energy required by the SNs, smart and powerful
mobile robot-based central controller is designed wherein the
mobile robot collects sampled data by moving to the SNs
and delivers it to the central controller which carries out all
computationally-intensive processing [9], [10]. Thus, the major
tasks left with the sensors is to sense the signal and transmit
it to a mobile robot present in its vicinity, when selected by
the central entity based on a sensor-selection criterion.

A. Related Works on Sensor Selection

Early works such as [11], [12] proposed to randomly
activate a predefined number of SNs. Thereafter, sensor selec-
tion criteria which guarantee certain performance measures,
such as sensing quality and energy efficiency, have gained
substantial research interest. In a greedy approach proposed
in [13], the SNs with maximum energy efficiency index γ are
selected, where γ is the difference between residual energy
and transmission energy of the SN.

Subsequently, several works have been reported in the liter-
ature that aim at a guaranteed sensing quality. In a pioneering
work [14], the authors proposed a sensor selection strategy
which chooses measurements of k out of total m SNs based on
a performance measure from experimental design, namely, D-
optimality which ultimately minimizes estimation error. Due
to NP-hard nature of the optimization problem, the authors
therein developed a convex relaxation method to sub-optimally
solve it. In [15] it was emphasized further that the opti-
mized sensor selection based sensing matrices offer superior
performance compared to those based on random selection.
Similarly, the authors in [8] developed D-optimality criterion
based iterative sensor selection algorithms for heterogeneous
sensing environment considering a Bayesian setting. Further,
the work in [16] formulated the sensor selection problem for
general non-linear measurement model employing Cramér-
Rao lower bound based performance measure.

In a recent extension [17], [18] a fixed number of sensors are
selected based on an optimization problem that simultaneously
minimize a lower bound on mean squared error (MSE) and
maximize the network’s energy efficiency. Unlike the above-
mentioned works [8], [11]–[14], [16], [17] which exploit only
the inherent spatial correlation, the scheme proposed in [18]
suggests to exploit the temporal correlation as well by using
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the estimated signal support of previous time instances, as
illustrated in work [7].

A more practical and intuitive approach for sensor selec-
tion is to adapt sampling rate (i.e., the ratio of number of
selected SNs and the total number of SNs) online based on
variations of signal being measured [19], [20]; the authors in
[21] experimentally validated this intuition. In this context,
a sensing, compression, and recovery (SCoRe) framework
was developed in [7] for WSNs using combined Principal
Component Analysis (PCA) [22] and Compressed Sensing
(CS) [23]. Similarly, the authors in [24] proposed an adaptation
mechanism which builds a hash table governing the sampling
rate for different variations in intensity of the monitored signal
such that a desired sensing quality is always achieved.

B. Related Works on Sparse Signal Recovery

A fundamental premise of the adaptive algorithms is the es-
timate of sensed signal which helps in providing near-accurate
feedback about variations of the monitored process to dynami-
cally adapt the sampling rate. Due to the use of limited number
of sensor measurements, this inherently sparse sensed signal
is recovered in a significantly challenging ill-posed estimation
scenario. The works such as [7], [17], [18], [24] employ
either Basis Pursuit (BP) [25] or its noisy counterpart: least
absolute shrinkage and selection operator (LASSO) [26], for
obtaining this critical estimate. Besides this, various relevant
state-of-the-art sparse signal recovery techniques that exist
in the literature are FOCal Underdetermined System Solver
(FOCUSS) [27] and Matching Pursuit (MP) [28]. However,
a major limitation with BP [25] and LASSO [26] schemes
is that they require fine tuning of a regularization parameter
which represent a critical trade-off between the estimation
accuracy and the level of sparsity of the underlying unknown
signal. Further, the iterative FOCUSS scheme [27] and the
greedy MP scheme [28] often yield less sparse solutions [25],
[29]. However, the reliable feedback requirement in adaptive
algorithms mandates the estimation algorithm to be devoid
of convergence errors and user parameters. Towards this end,
the sparse Bayesian learning (SBL) framework [29] has been
known to exhibit superior sparse signal recovery in various
fields such as sparse wireless channel estimation [30], bio-
medical signal processing [31], target imaging in MIMO
radars [32], etc. The SBL framework assigns a parameterized
Gaussian prior distribution to unknown weight vector and
employs a type-II maximum likelihood criterion to estimate
those hyperparameters. Unlike the schemes in [25]–[28], SBL
is a user parameter free scheme which provides maximally-
sparse solution, free from convergence errors [29].

C. Research Gap and Motivation

The random selection based approaches [11], [12] became
obsolete due to their limited achievable performance guaran-
tees as shown in [17]. The greedy selection approach in [13],
though guarantees energy efficiency, is often beset by poor
estimation performance especially for monitoring applications
as shown in [17]. The works such as [8], [14]–[16] surmount
the above-mentioned shortcoming by guaranteeing sensing

performance. However, these approaches assume a constant
residual energy cost associated with the individual sensors
which may lead to energy imbalance of nodes. The approaches
in [8] are energy-inefficient due to their iterative nature. The
works [17], [18] aim to provide both the sensing performance
and the energy efficiency to some extent. However, a major
limitation of the works in the existing literature is that, they
consider a fixed number of measurements based on the implicit
assumption of a constant sparsity of the sensed signal, while in
reality the sparsity may vary due to spatio-temporal variations
of the monitored signal. It is important to adapt the sampling
rate with the spatio-temporal dynamics of the to-be-sensed
phenomenon. Adaptive sampling rate will also help avoid the
possibilities of excessive energy consumption associated with
the fixed high-rate sampling and poor sensing performance
due to low-rate sampling.

Though the works in [7], [24] consider temporal dynamics
of the process to adapt the sampling rate, they leave a few
scopes of improvements. Firstly, random sampling employed
therein is expected to offer inferior performance. Secondly, the
considered same resource cost associated with each SN may
result in network residual energy imbalance and hence early
outage of network coverage. Thirdly and most importantly,
alike TCP congestion window adaptation, exponential increase
in sampling rate in [7] may offer good sensing quality but
at the cost of degraded energy efficiency. Lastly, the hash
table-based mechanism in [24] requires an extensive training
which demands data collection at a high sampling rate. Such
framework often becomes unviable for joint energy efficiency
and sensing quality maximization.

Thus it is observed that, so far none of the work collectively
considers process dynamics, sensing quality, and dynamic
energy resource of nodes for optimized sensor selection. In
fact, a training-free adaptive approach which can better quan-
tify the change in sampling rate to guarantee desired sensing
performance with minimal energy cost has not been studied
yet. To this end, motivated by higher recovery performance
of SBL, this work proposes an SBL-based adaptive sensing
framework, to better model the real-world sensing problem in
IoT applications.

D. Contributions

Key contributions of this work are as follows.
1) A joint PCA-SBL scheme is described for WSN wherein

PCA dynamically learns a transformation matrix that
characterizes the correlations inherent to the acquired
signal, and thereafter the SBL framework recovers it
using an overcomplete dictionary matrix (approximated
from the transformation matrix).

2) A multi-objective optimization problem (MOP) for sen-
sor selection is proposed which jointly optimizes a
critical trade-off between the estimation performance
(sensing quality) and the energy efficiency subject to
practical coverage constraints.

3) A novel adaptive sensing framework is developed which
predicts the sampling rate for the next measurement cy-
cle based on an estimate of underlying signal’s variations
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(using its current PCA-SBL estimate). This predicted
number is further dynamically updated by the MOP
using current energy parameters of SNs while ensuring
the required sensing quality.

4) The proposed framework is tested on both real and
synthetic data of a WSN. Simulation results clearly
illustrate that compared to the state-of-the-art sensing
schemes, the proposed adaptive sensing framework pro-
vides significant gain in energy saving while maintaining
the prescribed sensing quality. Thus, it can serve as
a benchmark for realization of diuturnal operations of
WSN-assisted IoT applications. Further, the numeri-
cal study provides insights on the impact of spatio-
temporal dynamics of the monitored process on the
duration of WSN operations, which have been missing
in the prior art. Superior recovery and reliable feedback
guarantees of the SBL over the widely-used sparse
recovery scheme, LASSO (basis pursuit denoising), are
also demonstrated.

Organization: The layout of the paper is as follows. The
data gathering model for WSN is presented in Section II,
followed by a description of joint PCA-SBL scheme for sparse
signal representation and recovery in Section III. Section IV
describes the proposed adaptive sensor selection framework,
followed by the simulation results and concluding remarks,
respectively in Section V and Section VI.
Notation: In this work, bold lowercase and uppercase letters
such as a and A denote vectors and matrices respectively. The
symbols 0M×N and IN represent a M × N matrix of zeros
and a N × N identity matrix respectively. For a matrix A,
A (m,n), A (m, :), and Tr {A} denote the (m,n)th element,
mth row, and trace of A respectively. For a vector a, a (m) and
‖a‖ denote the mth element and the standard l2-norm of a.
Throughout the paper, subscript k and superscript (l) refer to
the scalar/vector/matrix argument in kth measurement cycle
and their estimates in the lth iteration respectively. Further,
for matrix A and vector a, the quantities A ∈ RM×N ,A ∈
SN ,A ∈ SN++, and a ∈ RN×1 represent a real-valued matrix
of size M×N , a symmetric matrix of size N×N , a symmetric
positive definite matrix of size N × N , and a real vector
of size N × 1 respectively. The operators (.)

T , diag (·), |.|,
and

⋃
denote the transpose of the vector/matrix, the standard

diagonalization operation on a vector, the cardinality, and the
set union operation respectively. The set dom f represent
domain of the function f .

II. SYSTEM MODEL FOR DATA ACQUISITION

Consider a WSN architecture containing densely-deployed
battery-powered static sensor nodes which monitor a spatio-
temporally varying process, such as air pollution. A central
entity, equipped with mobile robot, collects the sensed infor-
mation from these SNs. Slow spatial variation of the sensed
process and dense deployment (spatially proximal SNs) result
in spatial correlation among the data sensed by SNs. Unlike
the conventional WSNs where all the SNs periodically monitor
the underlying process, the aforementioned spatial correlation
can be utilized to accurately monitor the process using a

subset of SNs while the remaining SNs can sleep. The central
controller chooses this subset of SNs, called active set, based
on an adaptive sensor selection framework proposed in Section
IV. Thereafter, it broadcasts a common signal containing
information about the active nodes. Subsequently, a mobile
robot collects the sensed data from those active nodes and
transmits it to the central entity for reconstructing the process
across the entire sensor field. During each cycle, it is assumed
that each SN senses the process in a synchronized manner.

Let zk = [zk (1) , . . . , zk (N)]
T ∈ RN×1 be a spatial signal

vector corresponding to pollution signals across N SNs during
kth measurement cycle. Let the central entity chooses the
active set of nodes Ak ⊆ {1, . . . , N} for sensing the signal
during the kth measurement cycle such that the number of
active nodes Mk = |Ak| ≤ N . Thus, the sampling rate,
defined as ratio of number of active SNs to total number
of SNs, is given by Mk

N . Since N is fixed, the sampling
rate is proportional to Mk. Let Ak ∈ RMk×N denote binary
sensing matrix which captures the active/sleep status of each
SN during the kth measurement cycle. Each row of the sensing
matrix Ak corresponds to one active SN. Thus, if mth row
of Ak, ∀ 1 ≤ m ≤ Mk, represents ith active SN, then
Ak (m, :)= [Ak (m, 1) , . . . ,Ak (m,N)]∈R1×N is given by,

Ak (m,n) =

{
1 , n = i s.t. i ∈ Ak
0 , n ∈ {1, . . . , N} \ {i} .

(1)

Thus, as in [8], [17], data gathering model is given by,

ỹk = Akzk + nk, (2)

where ỹk ∈ RMk×1 denotes measurement vector containing
measured signals collected from SNs belonging to the active
set Ak and nk ∈ RMk×1 is the additive white Gaussian noise
vector with independent and identically distributed (IID) com-
ponents having zero mean and variance σ2. The noise vector
nk combines both measurement and transmission noises, and
is independent of the sensing matrix Ak and the signal vector
zk corresponding to the monitored process.

III. JOINT PCA-SBL SCHEME FOR SPARSE SIGNAL
REPRESENTATION AND RECOVERY

The above monitoring scenario is ill-posed as the true
pollution signal vector across all SNs (zk) is to be estimated at
the central controller using the pollution signal measured by a
few active SNs (ỹk). However, the spatial correlation among
components of the signal vector zk induces sparsity which
allows its reconstruction in some transformed domain using
under-sampled measured data [23]. Thus, the signal vector zk
can be represented as a sparse vector xk ∈ RN×1 under some
sparsifying matrix Bk ∈ RN×N and estimated using a sparse
signal recovery technique as outlined in the subsections below.

A. PCA-based Sparse Signal Representation

In the existing literature [33], different sparsification matri-
ces have been used. However, as mentioned in [34], none of
them sufficiently sparsify the correlated signal vector zk. In
this work, as in [7], PCA is used for obtaining sparse represen-
tation of the vector zk. PCA [22] is a statistical procedure that
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uses an eigenvalue value decomposition of sample covariance
matrix to convert a set of correlated observations into a set of
uncorrelated ones.

Consider an initial training data set containing Ktr

instances of the spatial signal vector z i.e. T =
{zk−Ktr+1, . . . , zk−1, zk}. Sample mean vector z̄T ∈ RN×1

and sample covariance matrix Σ̂T ∈ RN×N are given by,

z̄T =
1

|T |
∑
j∈T

zk−j , (3)

Σ̂T =
1

|T |
∑
j∈T

(zk−j − z̄T ) (zk−j − z̄T )
T
. (4)

Let Bk ∈ RN×N be an orthogonal matrix such that its
columns are the orthogonal eigen-vectors of the matrix Σ̂T
and Γk be a diagonal matrix with eigen values of Σ̂T as its
diagonal elements, i.e. Σ̂T = BkΓkB

T
k . Due to the presence

of spatial correlation among components of the signal vector
zk,∀k and the temporal correlation among components of the
training set T , projection of zk onto vector space R (Bk)
results in a vector xk ∈ RN×1 having significant fraction of
its energy in a few components. Thus, during any measurement
cycle, the vector xk is obtained as xk = BT

k (zk − z̄T ) and
the resulting sparse representation of the vector zk is given by
zk = z̄T + Bkxk. The system model (2) becomes,

yk = Θkxk + nk, (5)

where Θk =AkBk ∈RMk×N is estimated equivalent sensing
matrix and yk = ỹk −Akz̄T ∈RMk×1 is equivalent measure-
ment vector.

Owing to unavailability of the spatial vector zk, it is difficult
to compute the exact matrix Bk at the kth measurement cycle.
Here, slowly-varying nature of the process monitored by the
densely-deployed SNs is exploited, where Bk is expected
to change slowly. Thus, the sparsifying matrix of previous
measurement cycle can be used as a coarse estimate of the
current sparsifying matrix, i.e. Bk ≈ Bk−1. Further, as in [7],
[34], this estimate of Bk is refined online using the initial
training set and the previously reconstructed signal vectors
ẑj ∀ j < k, i.e. T = {z−Ktr+1, . . . , z0, ẑ1, . . . , ẑk−1} such
that |T | = (Ktr + k − 1). The online refinement of Bk

eliminates the need for rigorous and frequent training of the
network and avoids the loss in reconstruction accuracy that
would have occurred due to usage of stale estimate of Bk in
recovering the unknown signal vector zk (or xk in (5)).

B. SBL-based Signal Recovery

This section outlines the sparse Bayesian learning scheme
which estimates the unknown vector xk using an approximate
overcomplete dictionary matrix Θk ≈ AkBk−1 and the equiv-
alent measurement vector yk during each kth measurement
cycle for the signal model (5). This SBL-based estimate is
later used to provide a near-accurate feedback to adapt sensor
selection algorithm with the varying monitored process.

The SBL framework assumes Gaussian likelihood model
for recovery of the monitored phenomenon [29]. During
each measurement cycle k, SBL framework [29] assigns a

parameterized Gaussian prior to the sparse weight vector xk
as,

p (xk;γk) =

N∏
n=1

(2πγk (n))
−1/2

e
− (xk(n))2

2γk(n) , (6)

where γk = [γk (1) , . . . , γk (N)]
T ∈ RN×1 is a hyperpa-

rameter vector whose each element γk (n) corresponds to
the variance of element xk (n) of the weight vector xk. The
Gaussian prior fits well a realistic signal sensed by a WSN.
This is due to central limit theorem [35], as the signal xk,
transformed from randomly distributed signal zk of WSN,
will have Gaussian distribution as N → ∞. Moreover, since
the Gaussian prior is a conjugate prior for the Gaussian
likelihood function, the closed form expression for posterior
density function can be readily obtained. Typically, the hyper-
parameter vector estimate γ̂k can be computed following the
maximum likelihood estimation procedure [36] wherein the
log-likelihood cost function is maximized as follows,

γ̂kML = arg max
γk�0

log p (yk;γk). (7)

However, due to intractability of the above optimization
problem as shown in [29], in this work iterative expectation
maximization (EM) algorithm is used to estimate the vector γk
by considering the weight vector xk as the latent variable. Let
the estimate of hyperparameter vector γk in lth EM iteration
be γ̂

(l)
k . The E-step in the lth iteration computes expectation

of the log-likelihood function as,

L
(
γk | γ

(l)
k

)
= E

xk|yk;γ
(l)
k

{log p (yk,xk;γk)}
= E

xk|yk;γ
(l)
k

{log p (yk | xk;γk)}+

E
xk|yk;γ

(l)
k

{log p (xk;γk)} . (8)

Here, the posterior distribution of xk in the lth iteration is
p
(
xk | yk;γ

(l)
k

)
∼ N

(
µ

(l)
xk ,Σ

(l)
xk

)
[29], with a posteriori

mean vector µ
(l)
xk ∈ RN×1 and covariance matrix Σ(l)

xk
∈

RN×N given by,

µ(l)
xk

= σ−2Σ(l)
xk

ΘT
k yk, (9)

Σ(l)
xk

=

(
σ−2ΘT

kΘk +

(
Γ̂

(l)

k

)−1
)−1

, (10)

with Γ̂
(l)

k = diag
(
γ̂

(l)
k (1) , . . . , γ̂

(l)
k (N)

)
. Employing the

matrix inversion lemma [37], the matrix Σ(l)
xk

is computed with
lesser complexity of O

(
M3
k

)
in contrast to the complexity

O
(
N3
)

associated with the equation (10), as

Σ(l)
xk

= Γ̂
(l)

k − Γ̂
(l)

k ΘT
k

(
Σ(l)
yk

)−1

ΘkΓ̂
(l)

k , (11)

where Σ(l)
yk

=

(
σ2IMk

+ ΘkΓ̂
(l)

k ΘT

)
. Further, the M-step

maximizes L
(
γk | γ

(l)
k

)
to obtain the hyperparameter vector
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estimate γ̂
(l+1)
k as:

γ̂
(l+1)
k (n) = arg max

γk(n)

(
E

xk|yk;γ
(l)
k

{log p (yk | xk;γk)}+

E
xk|yk;γ

(l)
k

{log p (xk;γk)}
)

= Σ(l)
xk

(n, n) +
(
µ(l)
xk

(n)
)2

. (12)

Finally, after iterating via E- and M-steps for LEM times, the
estimate of sparse signal vector is obtained as, x̂k = µ

(LEM )
xk .

At this juncture, it is worth to point out that, by employing
SBL-EM framework, as γ̂

(l)
k (n) → 0, the corresponding

x̂
(l)
k (n) → 0, which provides a maximally sparse estimate of

the signal vector xk without requiring any a priori knowledge
of its level of sparsity.

IV. PROPOSED ADAPTIVE SENSING FRAMEWORK

This section develops the proposed adaptive sensor selection
framework that jointly optimizes reconstruction performance
and utilization of network remaining energy based on a
feedback which is governed by estimated variability of the
monitored process.

A. Optimization Problem for Sensor Selection

The proposed sensor selection optimization is run by a
central entity to determine an active set Ak during the kth

measurement cycle by optimizing the trade-off between sens-
ing performance and network energy efficiency subject to the
practical system constraints. Intuitively, employing measure-
ments from all the SNs to estimate the underlying signal will
give the best sensing accuracy, however at an overwhelming
expenditure of energy. In contrast, activating a few SNs will
save network energy at the cost of information loss due to
decreased sensing accuracy. Hence, it is necessary to optimize
this crucial node selection trade-off especially when there is
redundancy in measurements of closely-spaced SNs.

Let f1 be the objective function corresponding to error in
estimation of the unknown vector xk which depends on the
error covariance matrix Σe = E

{
(xk − x̂k) (xk − x̂k)

T
}
∈

RN×N . The sensor selection problem developed herein is
based on A-optimality performance measure [14], [38]. Thus,
f1 represents the sum of eigen values of the matrix Σe, i.e.
the mean-squared error (MSE) in estimation of the vector xk
as given by,

f1 = Tr
{

E
[
(xk − x̂k) (xk − x̂k)

T
]}

= E
{
‖xk − x̂k‖2

}
= MSE. (13)

As noted in [17], [18], the performance measure f1 in
(13) depends on the actual estimator and does not have a
tractable closed form expression. Moreover, its dependence
on the unknown signal vector xk makes it unviable for
sensor selection problem in practical monitoring scenarios.
In this study, this shortcoming is overcome by capitalizing
on a theoretical lower bound, namely Bayesian Cramér-Rao
bound (BCRB) [36]. The BCRB expression for the PCA-SBL
based signal estimation which lower bounds the performance

measure f1

(
i.e. E

{
‖xk − x̂k‖2

}
≥ BCRB

)
is given in (14),

with detailed derivation outlined in appendix A,

BCRB = Tr

{(
1

σ2
BT
kAT

kAkBk + Γ−1
k

)−1
}
. (14)

Minimizing BCRB provides minimum achievable MSE perfor-
mance of a benchmark estimator under scenarios with large
number of measurements and σ2 → 0. Thus, minimizing
BCRB minimizes MSE, as shown in [16], [17]. Choice of
using BRCB stems from the fact that the SBL framework
assigns a parameterized Gaussian prior to the unknown signal
vector xk and the BCRB too considers the prior distribution
of the vector xk. Note that, knowledge of the prior associated
with the unknown vector xk can be obtained form previous
measurements [16], [36]. Besides this, BCRB is independent
of the unknown signal vector xk and even does not demand
availability of actual measurements ỹk of sensor nodes. This
has significant practical relevance as it enables the sensor
selection before the data acquisition. Most importantly, this
fundamental performance bound has a very appealing structure
which facilitates in posing the sensor selection problem as
a sensing matrix design problem. To see this, let Ãk be a
diagonal matrix defined as Ãk = AT

kAk ∈ RN×N such that
its structure is given by,

Ãk (n, n) =

{
1 , n ∈ Ak
0 , n /∈ Ak.

(15)

The matrix Ãk can be represented using row permutation

operation as, Ãk = Π

[
Ak

0(N−Mk)×N

]
[18] where Π and

0(N−Mk)×N denote row permutation matrix and a matrix of
(N −Mk) rows of N zero elements each respectively. Each
diagonal element Ãk (n, n) = 1 corresponds to the nth active
SN. Thus, the BCRB-based sensor selection problem can be
equivalently viewed as sensing matrix design problem. Further,
the matrix Bk in (14) characterizes the spatial and temporal
correlations of the monitoring process. The objective function
(14) is a convex function with detailed derivation of proof of
convexity given in appendix B.

Let the sparsity promoting objective function f2 be defined
as,

f2 =

N∑
n=1

ρk (n)

ηk (n)
Ãk (n, n) , (16)

where ρk (n) corresponds to total energy consumed by nth SN
in transmission and sensing operations and ηk (n) corresponds
to its remaining energy during the kth measurement cycle.
The energy consumption by each SN is assumed to be known
at the central entity. Motivation behind this assumption is
that the sensing energy can be estimated from strength of
the historical signals corresponding to the slowly varying
pollution process, while the transmission energy can be cal-
culated based on the distance between SN and mobile robot.
Minimization of the second objective function f2 considers
current network resources and aims to reduce the number of
active SNs, thereby reducing overall energy consumption of
network and prolonging its life. Penalty associated with each
SN promotes efficient utilization of network residual energy
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by less penalizing the selection of SN with high remaining
energy and low energy consumption requirement vis-à-vis the
SN with low remaining energy and high energy consumption.
Thus, jointly employing the BCRB and f2, multi-objective
optimization problem (MOP) for sensor selection during kth

measurement cycle is given by,

minimize
Ãk(n,n) ∀n

[BCRB, f2]

subject to Ãk (n, n) ∈ {0, 1}, n = 1, . . . , N, (17a)

Ãk (n, n) = 0, n ∈ {i | ηk (i) = 0} , (17b)∑
j∈Rr

Ãk (j, j) ≥ 1, r = 1, . . . , R. (17c)

Constraint (17a) has a straightforward implication of em-
ploying binary sensing matrix such that Ãk (n, n) = 1/0
signifies active/sleep state of nth SN. Constraint (17b) models
a practical scenario wherein nth SN will not participate in
sensing during kth cycle if its remaining energy ηk (n) = 0.
Constraint (17c), referred to as coverage constraint, provides
two-fold advantages. Firstly, it ensures activation of at least
one SN from each coverage region Rr,∀ 1 ≤ r ≤ R,
assuming that location-aware densely deployed static WSN
field is initially divided into total R fixed non-overlapping
regions such that

⋃R
r=1Rr = {1, . . . , N} with each region

containing spatially proximal SNs. For instance, this can aid
better monitoring of source(s) corresponding to the pollution
process. Secondly, it provides a good blend of different fea-
tures which represent the observed process more competently
and thus help to improve the accuracy of estimation of signal
across the entire field. The constraint (17c) along with the
objective function f2 prevents imbalance among selection of
SNs, thereby eliminating coverage holes creation and reduced
sensor lifetime problems. Note that, unlike the works [8], [17],
[18], the MOP (17) does not assume fixed number of active
SNs a priori. The active set Ak can be obtained from solution
of the minimization problem (17) as,

Ak =
{
n | Ãk (n, n) = 1, ∀ 1 ≤ n ≤ N

}
. (18)

Due to the binary constraint (17a), the optimization problem
(17) is non-convex in nature. Further, employing an exhaustive
search over

(
N
m

)
,∀ 1 ≤ m ≤ N combinations to optimize

(17) is evidently impracticable for densely deployed WSNs. To
reduce this computational complexity, the constraint (17a) is
relaxed to well known convex box constraint, i.e., Ãk (n, n) ∈
[0, 1] ,∀n, as demonstrated in [14], [39]. This converts the
ensuing function f2 from a non-convex weighted-l0 norm
function to a convex weighted-l1 norm function. To solve the
MOP (17), standard scalarization technique [40] is employed
wherein scalar weight in the kth cycle, λk ∈ [0, 1], is chosen
based on predicted value of Mk such that, considering current
network resources, the required reconstruction accuracy is
always achieved as described later. The relaxed and scalarized

optimization problem for sensor selection is now given by,

minimize
Ãk(n,n) ∀n

(1− λk) Tr

{(
1

σ2
BT
k ÃkBk + Γ−1

k

)−1
}

+

λk

(
N∑
n=1

ρk (n)

ηk (n)
Ãk (n, n)

)
subject to Ãk (n, n) ∈ [0, 1] , n = 1, . . . , N, (19a)

Ãk (n, n) = 0, n ∈ {i | ηk (i) = 0} , (19b)∑
j∈Rr

Ãk (j, j) ≥ 1, r = 1, . . . , R. (19c)

Note that the above optimization problem (19) is a convex
problem which can be readily solved using a standard solver,
such as CVX [41]. Further, the number of active SNs Mk and
the active set Ak can be obtained from solution of the problem
(19) as,

Mk = round

(
N∑
n=1

Ãk (n, n)

)
, (20)

Ak = Row indices of Mk largest elements of the ordered

set:
{
Ãk (n, n) |Ãk (n, n)≥ Ãk(m,m)∀n,m

}
. (21)

One can even resort to rounding scheme wherein
Ãk (n, n) ,∀n are first rounded to nearest integer followed by
computation of Mk and derivation of Ak as in [13], [16].

B. Feedback Mechanism for Adaptation
Intuition says that the sampling rate of a monitoring event

should be dynamically adapted online to the streaming input
signal variations. Even the authors in [21] experimentally
illustrated this intuition by showing that in order to achieve
relatively same error for different frequency sinusoidal input
signal, a higher sampling rate is required for a rapidly varying
(high frequency) signal and a low sampling rate suffice for
slowly varying (low frequency) signal. This innate argument
is emphasized in other pertinent works such as [7], [20], [24]
as well. Further, it can be seen that if the sampling rate is not
adapted (i.e. fixed λ is used in a way in MOP (19)), then as the
measurement cycle progresses the fixed λ would give relatively
more weightage to the decreasing energy based function f2,
due to which the BCRB value obtained on solving (19) and the
corresponding MSE will keep increasing. Thus, motivated by
these observations, the current section proposes a feedback-
based sampling rate adaptation mechanism which predicts
and updates the number of active SNs for the (k + 1)

th

measurement cycle, denoted by Mk+1|k, based on both the
estimation of signal variation (using the current kth PCA-
SBL based signal estimate x̂k) and the knowledge of network
energy resources ηk+1,ρk+1 such that the estimation error
always remains within the tolerance range of application. Note
that the feedback mechanism is based on the presupposition
that the underlying environmental phenomenon (air pollution
here, as an example) is slowly varying, i.e. spatio-temporally
correlated.

Let α and β be respectively the lower and upper limits
of BCRB set as per the application requirements. The pro-
posed adaptive feedback mechanism is built on the premise
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that during each (k + 1)
th measurement cycle, the active set

Ak+1, obtained by considering Mk+1|k based λk+1 in (19),
will always results in the corresponding BCRBk+1 ∈ [α, β].
Initially set Mk+1|k ←Mk. In the proposed work, a heuristic
(δ̂k) introduced in [7] is used to get an idea of signal variability.
It approximates signal variations and reconstruction error in
[7]. However, it cannot approximate the reconstruction error
in the current scenario as, unlike system model in [7], the
system model (5) herein considers noise as well. Therefore, the
proposed work considers BCRB along with δ̂k to approximate
both the signal variations and quality. Based on this, the
number of active nodes for next measurement cycle is adapted.
The heuristic δ̂k is given by,

δ̂k =

∥∥∥∥[ yk
yk−1

]
−
[
Θkx̂k−1

Θk−1x̂k

]∥∥∥∥∥∥∥∥[ yk
yk−1

]∥∥∥∥ . (22)

During the kth measurement cycle, the heuristic δ̂k is com-
puted using measurement vectors, estimated signal vectors,
and estimated overcomplete dictionary matrices of the current
kth and the past (k − 1)th measurement cycles. It is then
compared against a suitable threshold δth and the predicted
value Mk+1|k is set as Mk+1|k = (Mk + 1) if δ̂k > δth. Anal-
ogously, for δ̂k ≤ δth, Mk+1|k is obtained by appropriately
decreasing Mk as described later. Note that, in the former case
Mk+1|k is increased in unit steps because the main aim of the
proposed approach is to select sensors such that the network
residual energy is utilized as judiciously as possible and
the estimation performance remains within tolerance range.
The increment step is also motivated by the work in [21],
which experimentally demonstrated that sometimes for a large
increase in the sampling rate the achievable reduction in error
is small. Next, to quantify decrease in Mk for the latter case,
define a heuristic ε̂k called intracycle-variation as,

ε̂k =
∥∥x̂k − x̂k|Mk−i

∥∥ , (23)

where x̂k and x̂k|Mk−i respectively denote PCA-SBL estimate
of the sparse signal vector xk obtained by employing the
current active set Ak with |Ak| = Mk and pruned active
set Ak|Mk−i such that |Ak|Mk−i| = (Mk − i). The pruned
active set Ak|Mk−i is constructed by removing i SNs from
the set Ak having lowest magnitude of the reconstructed
signal ẑk (.) across them such that at least one SN from
each coverage region Rr,∀r is still present in the set. For
instance, consider N = 80 SNs divided into R = 8 coverage
regions, Rr = {(r − 1) 10 + i, 1 ≤ i ≤ 10} , ∀ 1 ≤ r ≤ 8,
and active set Ak = {1, 5, 12, 18, 24, 37, 43, 56, 62, 77, 80}
with |ẑk (1)| ≥ |ẑk (5)| ≥ |ẑk (12)| ≥ |ẑk (18)| ≥
|ẑk (24)| ≥ |ẑk (37)| ≥ |ẑk (43)| ≥ |ẑk (56)| ≥ |ẑk (62)| ≥
|ẑk (77)| ≥ |ẑk (80)|. Then, for i = 2 the pruned active set is
Ak|Mk−i = {1, 5, 12, 24, 37, 43, 56, 62, 77}. Let BCRBk|Mk−i
be the BCRB evaluated using Ak|Mk−i based on the set
Ak|Mk−i. Initially set i = 1 and compute the heuristic
ε̂k using (23) and the BCRBk|Mk−i using (14). Thereafter,
compare ε̂k against an appropriately chosen threshold εth and
if the conditions ε̂k ≤ εth and BCRBk|Mk−i ∈ [α, β] are

Algorithm 1 Modified Binary Search

Input: ρk+1,ηk+1,Bk+1,Mk+1|k.
Initialization: [λL, λU ]← [0, 1].
while λU − λL ≥ ∆ do

λk+1 = λL+λU
2 .

Obtain Ãk+1 by solving (19) using λk+1,ρk+1,
ηk+1,Bk+1.
if
∑N
n=1 Ãk+1 (n, n) > Mk+1|k then
λL ← λk+1.

else if
∑N
n=1 Ãk+1 (n, n) < Mk+1|k then

λU ← λk+1.
else

break.
end if

end while
Output: Ãk+1, λk+1.

satisfied simultaneously, then set Mk+1|k = (Mk − i). Iterate
the same process by increasing i in unit steps until either
BCRB condition is violated, i.e. BCRBk|Mk−i /∈ [α, β] or the
algorithm is unable to select at least one SN from R coverage
regions each, i.e. Mk − i < R. The idea is to assess the
extent to which the current value of Mk can be decreased
for the (k + 1)

th cycle so that the resulting estimate x̂k|Mk−i
is not much different from the prior available benchmark x̂k
and the corresponding BCRBk|Mk−i still lies in the window
[α, β]. Further, this heuristic gives a rough idea of the spatial
correlation of the process as it is observed in simulations
that ε̂k evaluates to even smaller values for scenarios with
a higher spatial correlation (discussed in Section V-C). Thus,
it can facilitate in tuning the adaptive framework according
to different scenarios as well. At this juncture, one can see
that consideration of the BCRB window is more generic as
it can serve applications with strict single upper BCRB limit
as well. However, considering too high/low single limit for
BCRB might cause under/over sampling, whereas considering
the BCRB window helps in adjusting the sampling rate ap-
propriately even if the initial cycles have over/under sampled
measurements.

So far, the number of SNs to be activated in the next mea-
surement cycle is predicted considering solely the currently
available and estimated signal vectors. Next, this predicted
number Mk+1|k is further updated considering the network
energy resources during the (k + 1)

th measurement cycle. For
this, the training set is updated as T = T

⋃
{ẑk} using

which the matrix Bk+1 is updated as outlined in Section
III-A. Thereafter, considering updated energy resource vectors
ηk+1,ρk+1, and the updated matrix Bk+1, the unknown scalar
λk+1 is found using modified binary search in [λL, λU ] =
[0, 1] to minimize the optimization problem (19) with λk+1

as an additional optimizing variable and λU − λL < ∆
or
∑N
n=1 Ãk+1 (n, n) = Mk+1|k as the stopping condition,

where ∆ is a small positive real number. Step-wise description
of the modified binary search is presented in Algorithm 1. The
active set Ak+1, obtained by solving (19) using Mk+1|k based
λk+1, is further used for data acquisition if the corresponding
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Algorithm 2 SBL-based adaptive sensing framework for WSN

Input: T = {z−Ktr+1, . . . , z−1, z0} ,Rr∀r, α, β, δth, εth.
Initialization: ρ1,η1, λ1, k = 1, exitflag = 0.
while exitflag == 0 do

if k = 1 then
-Calculate z̄T , Σ̂T using (3), (4), estimate Bk−1

using PCA scheme (Sec III-A); set Bk ≈ Bk−1.
-Solve (19) and construct Mk,Ak using (20), (21).
Obtain Ak using (1).

end if
Broadcast sensing schedule Ak and collect yk,ηk+1

from active SNs.
Set Θk = AkBk.
Compute x̂k using SBL scheme given in Section III-B.
Set ẑk = z̄T + BT

k x̂k.
if
∑N
n=1ηk+1(n)>0 then (Prediction starts)

Initialize Mk+1|k ←Mk.
Compute δ̂k using (22).
if δ̂k > δth then

Mk+1|k ←Mk + 1.
else

for i = 1, . . . ,Mk −R do
Construct Ak|Mk−i, Ak|Mk−i using (1).
Set Θk|Mk−i = Ak|Mk−iBk.
Obtain x̂k|Mk−iusing SBL (Section III-B).
Compute BCRBk|Mk−i using (14).
Compute ε̂k using (23).
if ε̂k ≤ εth and BCRBk|Mk−i∈[α, β] then

Mk+1|k ←Mk − i.
else if BCRBk|Mk−i /∈ [α, β] then break.
end if

end for
end if
Update: T = T

⋃
{ẑk}.(Update starts)

Compute z̄T , Σ̂T ,Bk+1 as given in sec. III-A.
do

Call Algorithm 1- Modified Binary Search.
if
∑N
n=1 Ãk+1 (n, n) == Mk+1|k then

Obtain Ak+1,Ak+1 using (21), (1).
Calc. BCRBk+1 using Ak+1,Bk+1 in (14).
if BCRBk+1 < α then

Mk+1|k ← max
{
Mk+1|k − 1, R

}
.

else if BCRBk+1 > β then
Mk+1|k ← min

{
Mk+1|k + 1, N

}
.

end if
else

exitflag ← 1.
break.

end if
while BCRBk+1 /∈ [α, β].
Update: Mk+1 ←Mk+1|k.

else
exitflag ← 1.

end if
Update: k ← k + 1.

end while
Output: K = k.

Fig. 1: Pictorial representation of spread of pollution signal in
1-dimensional space.

BCRB, denoted as BCRBk+1, belongs to [α, β] . Otherwise
for the cases BCRBk+1 < α and BCRBk+1 > β, the
value of Mk+1|k is decreased and increased by one unit
respectively and the process of searching λk+1 and Ak+1 is
iterated until the achieved BCRBk+1 satisfies the condition,
α ≤ BCRBk+1 ≤ β. Further, the adaptation/measurement
process stops during (k + 1)

th cycle either when the net-
work energy is exhausted, i.e.

∑N
n=1 ηk+1 (n) = 0 or when∑N

n=1 Ãk+1 (n, n) 6= Mk+1|k i.e. λU − λL < ∆ which
also models the scenario when even all the remaining alive
SNs (ηk (n) > 0) cannot fulfill the BCRB requirement. Note
that from the beginning of monitoring process, it is ensured
that BCRBk+1,∀k corresponding to the active set Ak+1 lies
within the desired window [α, β] irrespective of the amount
of increase or decrease in Mk to predict Mk+1|k. It is worth
noting here that even in the absence of availability of the
true MSE (13), the predicted feedback parameter Mk+1|k and
its updated version ensure that the network sensing quality
does not go haywire at any point of time. Thus, the proposed
adaptive framework for sensor selection has immense practical
applicability.

A concise description of the SBL-based adaptive sensor
selection framework is given in Algorithm 2 which outputs
the total number of measurement cycles K that can be carried
out by the proposed framework.

Complexity of the proposed adaptive framework is inves-
tigated in Section V-B, where the relative complexity of the
competitive arts are also discussed.

V. RESULTS AND DISCUSSION

This section illustrates the efficacy, tunability, and
widespread practicability of the proposed adaptive sensing
framework over the existing competitive ones in [7], [17], [18].

Consider a 1-dimensional WSN with N = 80 sensors
equipped with non-rechargable batteries, equi-space deployed
over a 400 m long field. S = 1 pollution source is located at
the origin of the field, as shown in Fig. 1. The WSN field is
divided into R = 8 continuous coverage regions each having
10 sensors, i.e. Rr = {(r − 1) 10 + i, 1 ≤ i ≤ 10} , ∀ 1 ≤
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Fig. 2: Comparison of (a) BCRB, (b) network residual energy, (c) sensing error, and (d) number of active SNs of the proposed
adaptive sensing framework with Chen’s framework (Mk = 15, ∀k measurement cycles) [17], [18]. Parameters are: [α, β] =[
0.13× 10−3, 64.19× 10−3

]
, δth = 0.11, εth = 2.5× 10−5, and λ1 = 0.52 in (19).
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Fig. 3: Comparison of (a) BCRB, (b) network residual energy, (c) sensing error, and (d) number of active SNs of the
proposed adaptive sensing framework with Quer’s framework (C1 = 1.2, C2 = 3, ptx = 0.1) [7]. The parameters are:
[α, β] =

[
0.13× 10−3, 3.14× 10−3

]
, δth = 0.11, εth = 2.5× 10−5, and M1 = 15.

r ≤ R. Note that, this equidistant deployment based 1-
dimensional simulation setting is considered just for simplicity
and better understanding of analysis. However this could be
easily extended to 2-dimensional setting with non-uniform
node deployment for monitoring multiple pollution sources
located anywhere in the field. For k = 1, the pollution signal
f1 (s) emitted from each monitored source s, 1 ≤ s ≤ S, is
generated as an independent univariate real Gaussian [29], [42]
with zero mean and variance σ2

f (s) = 1 except for simulation
Section V-E. For k > 1, the temporal samples of fk (s) are
generated using AR(1) process [43] as fk (s) = φfk−1 (s) +√

1− φ2wk (s), where wk (s) ∼ N
(

0, σ2
f (s)

)
and φ denotes

temporal correlation coefficient between two consecutive sam-
ples. The pollution signal sensed by the nth SN in kth cycle
is obtained as zk (n) =

∑S
s=1 e

−dn,s
θ fk (s) [44] where dn,s

and θ denote the distance between nth sensor and sth source
and the spatial diffusion/correlation parameter of the source,
respectively. Similarly as in [16], the noise variance is fixed as
σ2 = 10−5. This choice is required to guarantee a reasonable
sensing performance in the underlying severely ill-posed esti-
mation scenarios (N/Mk � 2) presented in the subsections
below. Except for the simulation settings in Section V-C,
dynamics of the pollution process are considered as θ = 100
and φ = 0.99. During each kth cycle, the sparsifying matrix

Bk is estimated using T = {z−4, z−3, . . . , z0, ẑ1, . . . , ẑk−1}
where Ktr = 5 cycles are used for initial training. Note that,
the works such as [8], [17], [18] generate the sparse signal xk
based on assumed sparsity and Gaussian matrix Bk separately.
However, the synthetic data used herein embody the effect of
the pollution process dynamics to generate the signal sensed by
SNs zk from which the matrix Bk is estimated. Subsequently
a sparse representation is given as zk = Bkxk without any a
priori assumption of sparsity. Thus, the framework validated
on this synthetic data can be readily applied to any real data
obtained from WSN monitoring slowly varying process. The
matrix Γk in (19) is set as a diagonal matrix having eigen
values of the matrix Σ̂T as its diagonal elements1. The initial
energy of each SN is set as η1 (n) ∈ [7000, 7100] units,
∀n and the combined sensing and transmission energy is
fixed as ρk (n) = 500 units, ∀n, ∀k. After each measurement
cycle k, the residual energy for next (k + 1)th cycle is
updated as ηk+1 (n) = ηk (n) − ρk (n) , ∀n,∀k. The initial
hyperparameter estimates and the convergence accuracy of the
SBL scheme are set respectively as, γ(0)

k (n) = 1,∀n,∀k [30]
and

∥∥∥γ(l+1)
k − γ

(l)
k

∥∥∥ ≤ 10−7. Performance metrics used in the

1E
{
xkxT

k

}
= E

{
BT

k zkzTk Bk

}
= BT

k E
{
zkzTk

}
Bk ≈

BT
k Σ̂T Bk = BT

k

(
BkΓkBT

k

)
Bk = Γk.
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simulation plots are, sensing error (MSE) = ‖xk − x̂k‖2 =
‖zk − ẑk‖2 and network residual energy =

∑N
n=1 ηk (n). For

each measurement cycle, the sensing performance is averaged
over 300 montecarlo iterations. Objective functions of the
scalarized multi-objective sensing problem (19) are normalized

using their smallest possible values as,
Tr( 1

σ2
BTk ÃkBk+Γ−1

k )
−1

Tr( 1
σ2

BTk INBk+Γ−1
k )
−1

and

(∑N
n=1

ρk(n)

ηk(n)
Ãk(n,n)

)
(∑

n∈E
ρk(n)

ηk(n)
Ãk(n,n)

) , where E is the set containing in-

dices corresponding to R highest remaining energy SNs, one
from each coverage region Rr. CVX optimization tool [41]
is used for solving the scalarized and relaxed convex sensing
problem (19). The parameter ∆ in the stopping criteria of
modified binary search is set as ∆ = 10−4.

A. Performance Comparison with Different Non-adaptive and
Adaptive Sensing Techniques

Figs. 2(a)-(c) compare performance of the proposed sensing
framework with that of the closest non-adaptive framework
developed by Chen et al. in [17], [18]. It can be observed from
the Figs. 2(a)-(c) that the proposed framework provides signif-
icant improvement in energy efficiency without compromising
on the sensing accuracy by increasing network’s lifetime by
≈ 40 measurement cycles over the other for the same range
of BCRB ∈

[
0.13×10−3, 64.19×10−3

]
. This gain, as shown

in Fig. 2(d), is due to the adaptation of sampling rate.
Similarly, Figs. 3(a)-(c) illustrate that the proposed adaptive

sensing framework achieves superior energy efficiency and
stable sensing quality over the closest adaptive framework
developed by Quer et al. [7]. As captured in Fig. 3(d),
the improvement in network lifetime (≈ 50 cycles) of the
proposed scheme is attributed to more accurate quantification
of increase or decrease in the sampling rate, while stable
sensing performance is due to optimized active set selection.

The sensing performance achieved in Figs. 2(c) and 3(c)
is within the acceptable working range as suggested in works
[17], [45], which further corroborates the appropriateness of
BCRB as one of the performance measures in problem (19).
Note that, in relative performance evaluations, the proposed
framework’s parameters [α, β] are set as per the minimum
and maximum BCRB achieved in the respective competitive
schemes; δth, εth are set such that the variations of the pollu-
tion signal are captured effectively; and λ1 in (19) is set such
that the active number of sensors during k = 1 measurement
cycle, i.e. M1, is same for all the schemes. Further, for
fair comparison of energy efficiency performance, SBL-based
recovery scheme is employed in both Chen’s and Quer’s
sensing frameworks as well, and correspondingly BCRB is
used as performance measure in Chen’s scheme.

Further, note that, slight increase in error in last measure-
ment cycles in Figs. 2(c) and 3(c) is due to the components of
active set selected in the last cycles. After execution of many
measurement cycles, remaining energy of the SNs near pollu-
tion source (cf. Fig. 1) is exhausted as they are activated more
frequently compared to far-off nodes. As a result, the nodes
away from the pollution source are progressively selected for
the sample measurement. The measurements of far-off nodes

selected in last few cycles do not recover the process across all
SNs as competently as done by the near-by SNs. Due to this
the sensing error increases slightly in the last few cycles. In
fact, in simulations with strict upper limit of BCRB (i.e., lesser
value of β), the slight increase in MSE in last measurement
cycles is not even seen, as observed from Figs. 4(c) and 5(c).
Remark 1. These performance results demonstrate that, the
proposed adaptive and optimized sparse sensor selection for
monitoring a slowly varying process helps in realizing energy-
efficient sensing for IoT applications.

B. Complexity Analysis

The main focus of the work is to propose an energy-efficient
adaptive sensing framework based on an efficient recovery
scheme. Therefore, let the generalized complexity of recovery
scheme be denoted by ORec. The complexity of the proposed
framework is obtained by calculating complexities of the
prediction and the update steps in one measurement cycle.
The prediction step involves computation of δ̂k and Mk+1|k
which have complexities O (MkN) and O

(
(Mk − 1)3

)
,

respectively. Note that the latter part considers the worst
case wherein the for loop corresponding to δ̂k ≤ δth
runs (Mk −R) times. Thus, the overall complexity of the
prediction step evaluates to ≈

(
O
(
(Mk − 1)3

)
+ORec

)
.

In the update step, calculation of z̄T , Σ̂T , and Bk+1 has
combined complexity O

(
N2
)
. The modified binary search

converges in log2

(
λ
(1)
U −λ

(1)
L

∆

)
iterations with each solving

sensor selection problem (19) using CVX tool. CVX employs
infeasible primal-dual predictor-corrector interior point
algorithm based on HKM search direction having complexity
≈ O

(
Ñ log

(
1
ν

))
[46], where Ñ denotes the number of

variables after converting problem (19) to standard form by
CVX and ν denotes the precision accuracy (10−8 by default).
Further, the update steps of Mk+1|k has O

(
(Mk+1|k)3

)
complexity. In the worst case, the update step will converge
in
(
Mk+1|k −R+ 1

)
iterations, and thus its complexity is ≈(

O
(
(Mk+1|k)3

)
+
(
Mk+1|k−R+ 1

)
log2

(
1
∆

)
O
(
Ñ log

(
1
ν

)))
.

Hence, the combined complexity of the proposed
adaptive sensing framework is ≈

(
ORec +

O
(
(Mk+1|k)3

)
+
(
Mk+1|k−R+1

)
log2

(
1
∆

)
O
(
Ñ log

(
1
ν

)))
.

Note that the number of iterations required for convergence
of the prediction and the update steps depend on the BCRB
window [α, β] required by application, especially during last
few measurement cycles when network energy is about to
exhaust. As observed in two simulation settings considered
in Section V-A, for a wide window these steps converge
fast compared to the case with a narrow window. Also,
the above complexities are computed by considering a less
complex expression for equation (14) which is obtained
by employing matrix inversion lemma [36] as BCRB =

Tr
{
Γk−ΓkB

T
kAT

k

(
σ2IMk

+AkBkΓkB
T
kAT

k

)−1
AkBkΓk

}
.

On the similar lines, the complexity of the closest non-
adaptive and optimized selection based Chen’s schemes [17],
[18] evaluate to ≈

(
ORec +O

(
Ñ log

(
1
ν

)))
and that of the
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Fig. 4: Performance of the proposed adaptive sensing framework in terms of (a) BCRB, (b) network residual energy, and (c)
sensing error at different temporal dynamics: φ = 0.5 and φ = 0.99 of the pollution process. The common parameters are:
[α, β] =

[
0.13× 10−3, 0.876× 10−3

]
, δth = 0.11, εth = 4× 10−5, λ1 = 0.52, and θ = 100.
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Fig. 5: Performance of the proposed adaptive sensing framework in terms of (a) BCRB, (b) network residual energy, and
(c) sensing error at different spatial diffusion parameter of the pollution process: θ = 100 and θ = 8000 with [α, β] =[
0.097× 10−3, 0.52× 10−3

]
and

[
0.2928× 10−3, 0.62× 10−3

]
, respectively. The common parameters δth = 0.11, εth =

1.25× 10−5, λ1 = 0.6, and φ = 0.99.

TABLE I: Comparison of network lifetime and complexity.
[α, β]× 10−3 Framework Network lifetime Tcomp Toverall

(K cycles) (min) (min)
[0.13, 64.19] Proposed 120 1.61 1.77

(wide window) Chen’s 80 0.63 0.63
[0.13, 3.14] Proposed 101 1.76 1.94

(narrow window) Quer’s 51 0.58 0.58

closest adaptive and random selection based Quer’s scheme
[7] evaluates to ≈ (ORec +O (MkN)).

In Table I, average time per cycle- comparison and
overall, denoted by Tcomp and Toverall, are calculated as

1
Kcase

∑Kcase
k=1 tk, where tk,Kcase represent time required in

execution of kth measurement cycle and total number of
considered cycles, respectively. For Toverall, Kcase = K,
while for Tcomp it is set as per total cycles of the scheme
with minimum lifetime, i.e. Kcase = 80 and Kcase = 51,
respectively, for comparison of the proposed scheme with
Chen’s and Quer’s schemes. The value of the parameters
mentioned in the Table I are obtained by simulating the WSN
model described in Sections V and V-A in Matlab R2015a on
Intel i7-6700 CPU with 3.4 GHz clock and 32 GB RAM.

The complexity expressions and the results in Table I
indicate that the intelligence imparted by the proposed SBL-

based adaptive sensing framework gives respectively 1.5 and
2 folds increase in energy efficiency/lifetime over Chen’s and
Quer’s schemes at the cost of an increased complexity as
seen from the values of parameter Tcomp. However, the com-
plexity can be handled by providing powerful computational
hardware to the central entity during the WSN deployment.
The energy efficiency is a critical aspect as network energy,
provided to SNs during deployment through high capacity
non-rechargeable batteries, once exhausted cannot be easily
replenished in a large scale WSN deployment.
Remark 2. Thus, the proposed framework trades-off complex-
ity at the central entity to increase lifetime of SNs.

C. Effect of Dynamics of the Monitored Pollution Process

Temporal dynamics: For this study, two scenarios are con-
sidered with temporal correlation coefficients of the pollution
process given by φ = 0.5 and φ = 0.99. Figs. 4(a)-(c) indicate
that the former case with higher temporal variations consumes
network energy at a faster rate than that in the latter case with
lower temporal variations, which is due to frequent required
adaptation in sampling rate while maintaining a predefined
sensing quality.
Spatial dynamics: This study compares two cases with the
spatial diffusion parameters set as θ = 100 and θ = 8000.
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Fig. 6: Comparison of the performance measures, namely, (a) BCRB, (b) network residual energy, and (c) sensing error,
achieved by integrating the proposed adaptive sensing framework with different recovery schemes: LASSO [26] and SBL [29].
The system parameters are: [α, β] =

[
0.13× 10−3, 64.19× 10−3

]
, δth = 0.11, εth = 2.5× 10−5, and λ1 = 0.52.
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Fig. 7: Comparison of (a) BCRB, (b) network residual energy, and (c) sensing error measures of the proposed SBL-based
adaptive sensing framework used for monitoring Laplacian and Gaussian pollution processes, with the parameters [α, β] =[
0.13× 10−3, 64.19× 10−3

]
, δth = 0.11, εth = 2.5× 10−5, and λ1 = 0.52.

To compare energy efficiency while maintaining same sensing
performance, the BCRB window ([α, β]) for θ = 100 is
set as

[
0.097× 10−3, 0.52× 10−3

]
, while it is considered as[

0.2928× 10−3, 0.62× 10−3
]

for θ = 8000 case. Figs. 5(a)-
(c) illustrate that the network energy efficiency and hence
the lifetime is more in the latter case with slow spatial
variations as compared to the former case. This observation
matches well with intuition that a low sampling rate suffices
to provide the desired reconstruction performance in a slowly
varying process. Further, this shows that the proposed sensing
framework is tunable to different practical scenarios. It is
experimentally observed that for θ = 8000 case, δ̂k evaluates
to value ≈ 10−6 in most of the measurement cycles. Thus,
the parameter δth is appropriately set as 1.25 × 10−5 for
comparing the considered cases with different θ. Another
interesting observation is that for θ = 8000, the active set Ak
obtained during each measurement cycle k has a comparatively
good mixture of SNs from all the coverage regions Rr,∀r due
to which the BCRB is obtained within the set limits until the
network energy resource is completely exhausted.
Remark 3. With the proposed approach, the WSN can appro-
priately adapt sensing of a spatio-temporally varying process
for increased network lifetime without compromising on the
sensing quality.

D. Sensitivity of the Proposed Framework to Different Recov-
ery Schemes

This section employs LASSO (basis pursuit denoising)
recovery scheme [26] with the proposed adaptive framework
and investigates its performance. It can be observed from
Figs. 6(a)-(c) that the LASSO-based adaptation provides poor
sensing quality (MSE) and lower energy efficiency compared
to the SBL-based adaptation. This observation emphasizes the
need of a recovery algorithm that provides maximally sparse
solution so that a reliable feedback can be provided in the
framework and thus validates the choice of SBL scheme for
the proposed framework.
Remark 4. An efficient recovery algorithm plays a vital role in
designing an energy-efficient adaptive sensing framework as
exemplified by the SBL scheme used in the proposed adaptive
framework.

E. Applicability of SBL-based Adaptive Sensing Framework
to Non-Gaussian Monitoring Process

Consider the pollution signal fk (s) drawn from an IID
Laplacian distribution [35]. It is observed from Figs. 7(a)-
(c) that employing parameterized Gaussian prior-based SBL
technique for adaptively sensing a non-Gaussian pollution pro-
cess gives the energy efficiency and the sensing performance
similar to the case of sensing Gaussian process.
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Fig. 8: Comparison of (a) network residual energy, and (b) sensing error of the proposed adaptive sensing framework with Chen’s
framework (Mk = 15, ∀k measurement cycles) [17], [18]. Parameters are: [α, β] =

[
2.1383× 10−5, 14.9× 10−3

]
, δth =

0.03, εth = 0.5, and η1 (n) = 4500 units ∀n.
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Fig. 9: Comparison of (a) network residual energy, and (b) sensing error of the proposed adaptive sensing framework with
Quer’s framework (C1 = 1.2903, C2 = 1.2, ptx = 0.125) [7]. The parameters are: [α, β] =

[
2.1628× 10−5, 0.0522

]
, δth =

0.03, εth = 0.5, M1 = 15, and η1 (n) = 4500 units ∀n.

Remark 5. This result has widespread practical applicability,
as it shows that the proposed SBL-based adaptive sensing
framework does not necessarily fail altogether in continuously
monitoring pollution process with different prior distributions.

F. Performance study of the proposed approach using real
WSN data set

For performance comparison using real signal, humidity
data collected by a WSN located in Intel Berkeley research
lab [47] is considered. Measurements of a subset of 32 nodes
sensed over the same time duration are used. The lab area
covered by the considered 32 nodes is divided into R = 4
regions. The noise variance is set as σ2 ≈ 10−6. Other
parameters such as η1 (n) , ∀n, δth, and εth are respectively
set as 4500 units, 0.03, and 0.5. Performance metric used
in the simulation plots are NMSE= ‖xk−x̂k‖2

‖xk‖2
and network

residual energy=
∑N
n=1 ηk (n). The NMSE is used herein

as it gauges the energy in error against the signal’s energy.
However, it is important to note that the metric NMSE has

not been used in the framework directly as the WSN signal
xk is unknown. It is used just for comparative performance
study of the proposed framework. It can be observed from
Figs. 8 and 9 that the proposed adaptive sensor selection
framework is more energy-efficient compared to the existing
non-adaptive framework developed by Chen et al. [17], [18]
and adaptive one developed by Quer et al. [7]. It can also be
noted that, in the proposed framework sensing quality has not
been compromised/sacrificed to improve network lifetime.

VI. CONCLUSION

This paper has proposed a novel SBL-based adaptive sens-
ing framework for a densely deployed static WSN. The
framework exploits spatial and temporal correlation of the
underlying monitored phenomenon to dynamically adjust the
instance of sampling event at the sensors for smart data
acquisition in IoT applications. For sensor selection, a multi-
objective optimization problem has been formulated which
jointly maximizes two conflicting performance measures: sens-
ing quality and energy efficiency of the network. For online
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adaptation, a feedback mechanism has been embedded which
predicts and updates the set of participating sensors for the
next measurement cycle based on the estimation of signal
variability and current energy parameters of the sensors such
that the sensing error is within an acceptable limit. Further,
this work has investigated efficacy of the joint PCA-SBL
scheme in providing a good estimate of the inherently sparse
signal of WSN which determines reliability of the feedback
mechanism in the adaptation framework. Through simulation
study that uses both real and synthetic data of a WSN, it has
been illustrated that the proposed sensing framework provides
superior energy efficiency which significantly increases the
network lifespan while maintaining a stable sensing quality.
Further, it has been demonstrated that the proposed scheme
is easily tunable to different application requirements and
dynamics of the monitored phenomenon. Future work may
reduce complexity of the proposed adaptive sensing framework
and explore its implementation in a decentralized manner.

APPENDIX A
BAYESIAN CRAMÉR-RAO BOUND (BCRB)

Using the signal model in (5), the BCRB, which character-
izes the MSE in estimate of the unknown vector xk ∈ RN×1,
is computed as BCRB = Tr

{
J−1
B

}
, with JB ∈ RN×N being

the Bayesian Fisher information matrix (FIM) [36] given by,

JB =−E(yk,xk)

{
∂2L(yk|xk; Γk)

∂xk∂xTk

}
︸ ︷︷ ︸

JD

−E(xk)

{
∂2L(xk;Γk)

∂xk∂xTk

}
︸ ︷︷ ︸

JP

, (24)

where the quantities L (yk|xk; Γk) ,L (xk; Γk) and JD,JP
denote the log-likelihood functions of the vectors yk, xk
parameterized by Γk and (N ×N) sized FIMs with respect
to yk,xk respectively. Using the prior distribution of the
vector xk from (6), the log-likelihood evaluates to L (xk) =(
k̃ − 1

2xTkΓk
−1xk

)
, where k̃ denotes a parametric constant.

Further, considering the second order derivative of L (xk; Γk)

with respect to xk yields ∂2L(xk)

∂xk∂xTk
= Γ−1

k , and thus the

FIM matrix JP evaluates to JP = Γ−1
k . Next, the log-

likelihood function L (yk; xk) for the measurement vector yk
after ignoring the constant terms is given as, L (yk|xk; Γk) =

1
2σ2 ‖yk −AkBkxk‖2. Thus, the FIM JD can be evaluated
as, JD = 1

σ2 BT
kAT

kAkBk with the final BCRB expression
given by,

BCRB = Tr

{(
1

σ2
BT
kAT

kAkBk + Γk
−1

)−1
}
. (25)

APPENDIX B
CONVEXITY OF BCRB OBJECTIVE FUNCTION

BCRB expression in (14) can be written as f (JB) =
Tr
(
J−1
B

)
. Convexity of f (JB) can be proved using propo-

sition outlined in [39] which states that the function f is
convex iff for all JB ∈ dom f = SN++ and all V ∈ SN ,

the function g (t) = f (JB + tV) is convex in its domain
{t|JB + tV ∈ dom f}. Now,

g (t) = Tr
(

(JB + tV)
−1
)

= Tr
(

J
−1/2
B

(
IN + tJ

−1/2
B VJ

−1/2
B

)−1

J
−1/2
B

)
= Tr

(
J−1
B Q (IN + tΛ)

−1
QT
)

= Tr
(
QTJ−1

B Q (IN + tΛ)
−1
)

=

N∑
n=1

(
QTJ−1

B Q
)
n,n

(1 + tλn)
−1
, (26)

where eigenvalue decomposition J
−1/2
B VJ

−1/2
B = QΛQT

[36] and matrix trace property Tr (CD) = Tr (DC) [37]
are used. The function g (t) is convex since it is expressed
as weighted sum of convex functions (1 + tλn)

−1 where the
weights

(
QTJ−1

B Q
)
n,n

are positive.
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in applied research,” Sankhyā: The Indian Jour. of Statistics, Series A,
pp. 329–358, 1964.

[23] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, 2006.

[24] J. Hao, B. Zhang, Z. Jiao, and S. Mao, “Adaptive compressive sensing
based sample scheduling mechanism for wireless sensor networks,”
Pervasive and Mobile Computing, vol. 22, pp. 113–125, 2015.

[25] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM review, vol. 43, no. 1, pp. 129–159, 2001.

[26] R. Tibshirani, “Regression Shrinkage and Selection via the LASSO,”
Jour. of the Royal Statistical Society. Series B (Methodological), pp.
267–288, 1996.

[27] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from
limited data using FOCUSS: A re-weighted minimum norm algorithm,”
IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600–616, Mar. 1997.

[28] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–
3415, Dec. 1993.

[29] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selection,”
IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153–2164, Aug. 2004.

[30] R. Prasad, C. R. Murthy, and B. D. Rao, “Joint channel estimation and
data detection in MIMO-OFDM systems: A sparse Bayesian learning
approach,” IEEE Trans. Signal Process., vol. 63, no. 20, pp. 5369–5382,
Oct. 2015.

[31] Z. Zhang, T.-P. Jung, S. Makeig, Z. Pi, and B. D. Rao, “Spatiotemporal
sparse Bayesian learning with applications to compressed sensing of
multichannel physiological signals,” IEEE Trans. Neural Sys. and Rehab.
Engg., vol. 22, no. 6, pp. 1186–1197, Nov. 2014.

[32] V. Gupta, A. Mishra, S. Dwivedi, and A. K. Jagannatham, “SBL-based
joint target imaging and Doppler frequency estimation in monostatic
MIMO radar systems,” in Proc. IEEE Intl. Conf. Acoustics, Speech and
Signal Processing (ICASSP). Shanghai, China, Mar. 2016, pp. 3011–
3015.

[33] G. Quer, R. Masiero, D. Munaretto, M. Rossi, J. Widmer, and M. Zorzi,
“On the interplay between routing and signal representation for compres-
sive sensing in wireless sensor networks,” in IEEE Information Theory
and Applications Workshop, 2009, pp. 206–215.

[34] R. Masiero, G. Quer, D. Munaretto, M. Rossi, J. Widmer, and M. Zorzi,
“Data acquisition through joint compressive sensing and principal
component analysis,” in Proc. IEEE Global Telecommunications Conf.
Honolulu, HI, USA, 2009, pp. 1–6.

[35] A. Papoulis and S. U. Pillai, Probability, random variables, and stochas-
tic processes. Tata McGraw-Hill Education, 2002.

[36] H. L. Van Trees, Detection, estimation, and modulation theory. John
Wiley & Sons, 2004.

[37] K. B. Petersen, M. S. Pedersen et al., “The matrix cookbook,” Technical
University of Denmark, vol. 7, p. 15, 2008.

[38] A. Nayebi-Astaneh, N. Pariz, and M.-b. Naghibi-Sistani, “Adaptive node
scheduling under accuracy constraint for wireless sensor nodes with
multiple bearings-only sensing units,” IEEE Trans. Aerosp. and Electron.
Sys., vol. 51, no. 2, pp. 1547–1557, 2015.

[39] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[40] Z. Fei, B. Li, S. Yang, C. Xing, H. Chen, and L. Hanzo, “A survey
of multi-objective optimization in wireless sensor networks: metrics,
algorithms, and Open Problems,” IEEE Commun. Surveys and Tutorials,
vol. 19, no. 1, pp. 550–586, 2017.

[41] I. CVX Research, “CVX: Matlab software for disciplined convex
programming, version 2.0,” http://cvxr.com/cvx, Aug. 2012.

[42] J. V. Zidek, W. Sun, and N. D. Le, “Designing and integrating composite
networks for monitoring multivariate Gaussian pollution fields,” Jour. of
the Royal Statistical Society: Series C (Applied Statistics), vol. 49, no. 1,
pp. 63–79, 2000.

[43] R. Prasad, B. N. Bharath, and C. R. Murthy, “Joint data detection
and dominant singular mode estimation in time varying reciprocal
mimo systems,” in Proc. IEEE Intl. Conf. Acoustics, Speech and Signal
Processing (ICASSP). Prague, Czech Republic, 2011, pp. 3240–3243.

[44] M. Leinonen, M. Codreanu, and M. Juntti, “Sequential compressed sens-
ing with progressive signal reconstruction in wireless sensor networks,”
IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1622–1635, 2015.

[45] D. Hooper, J. Coughlan, and M. Mullen, “Structural equation modelling:
Guidelines for determining model fit,” The Electronic Jour. Business
Research Methods, vol. 6, pp. 53–60, 2008.

[46] Y. Zhang, “On extending some primal–dual interior-point algorithms
from linear programming to semidefinite programming,” SIAM Jour. on
Optimization, vol. 8, no. 2, pp. 365–386, 1998.

[47] P. Bodik, W. Hong, C. Guestrin, S. Madden, M. Paskin, and R. Thibaux,
“Intel lab data,” Online dataset, 2004.

Vini Gupta received the B.Tech. degree in Elec-
tronics and Communication Engineering from Indira
Gandhi Institute of Technology, Guru Gobind Singh
Indraprastha University, New Delhi, India, in 2013
and the M.Tech. degree in Signal Processing and
Communication from the Department of Electrical
Engineering, IIT Kanpur, Uttar Pradesh, India, in
2016. She worked in Tata Consultancy Services Lim-
ited, New Delhi, as an Assistant System Engineer,
from 2013 to 2014. She is currently working toward
the Ph.D. degree in the Department of Electrical

Engineering, IIT Delhi, New Delhi, India. Her research interests include
design of energy efficient centralized and distributed sensing framework for
wireless sensor networks-based IoT applications, sparse signal processing,
application of Bayesian learning in wireless sensor networks, devise of trade-
off optimization schemes in sensor networks, estimation and detection theory,
radar signal processing. She is a recipient of TCS RSP Fellowship (2016-
present).

Swades De (S’02-M’04-SM’14) received his
B.Tech. degree in Radiophysics and Electronics from
the University of Calcutta in 1993, the M.Tech. de-
gree in Optoelectronics and Optical communication
from IIT Delhi in 1998, and the Ph.D. degree in
Electrical Engineering from the State University of
New York at Buffalo in 2004.

Dr. De is currently a Professor with the Depart-
ment of Electrical Engineering, IIT Delhi. Before
moving to IIT Delhi in 2007, he was a Tenure-
Track Assistant Professor with the Department of

ECE, New Jersey Institute of Technology, Newark, NJ, USA, from 20042007.
He worked as an ERCIM Post-doctoral Researcher at ISTI-CNR, Pisa, Italy
(2004), and has nearly five years of industry experience in India on telecom
hardware and software development, from 19931997, 1999. His research
interests are broadly in communication networks, with emphasis on perfor-
mance modeling and analysis. Current directions include energy harvesting
sensor networks, broadband wireless access and routing, cognitive/white-
space access networks, smart grid networks, and IoT communications. Dr. De
currently serves as a Senior Editor of IEEE COMMUNICATIONS LETTERS,
and an Associate Editor of IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY, IEEE WIRELESS COMMUNICATIONS LETTERS, IEEE
NETWORKING LETTERS, and IETE Technical Review Journal.


