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Low Complexity Dimensioning of Sustainable
Solar-enabled Systems: A Case of Base Station

Suraj Suman and Swades De

Abstract—Solar-enabled systems are becoming popular for provisioning pollution-free and cost-effective energy solution.
Dimensioning of a solar-enabled system requires estimation of appropriate size of photovoltaic (PV) panel as well as storage capacity
while satisfying a given energy outage constraint. Dimensioning has strong impact on the user’s quality of experience and network
operator’s interest in terms of energy outage and revenue. In this paper, dimensioning problem of solar-enabled communication nodes
is analyzed in order to reduce the computation overhead, where stand-alone solar-enabled base station (SS-BS) is considered as a
case study. For this purpose, hourly solar data of last ten years has been taken into consideration for analysis. First, the power
consumption model of BS is revised to save energy and increase revenue. Using the hourly solar data and power consumption profile,
the lower bounds on panel size and storage capacity are obtained using Gaussian mixture model, which provides a reduced search
space for cost-optimal system dimensioning. Then, the cost function and energy outage probability are modeled as functions of panel
size and number of battery units using curve fitting technique. The cost function is proven to be quasiconvex, whereas energy outage
probability is proven to be convex function of panel size and number of battery units. These properties transform the cost-optimal
dimensioning problem into a convex optimization framework, which ensures a global optimal solution. Finally, a
Computationally-efficient Energy outage aware Cost-optimal Dimensioning Algorithm (CECoDA) is proposed to estimate the system
dimension without requiring exhaustive search. The proposed framework is tested and validated on solar data of several cities; for
illustration purpose, four cities, New Delhi, Itanagar, Las Vegas, and Kansas, located at diverse geographical regions, are considered. It
is demonstrated that, the presented optimization framework determines the system dimension accurately, while reducing the
computational overhead up to 94% and the associated energy requirement for computation with respect to the exhaustive search
method used in the existing approaches. The proposed framework CECoDA takes advantage of the location-dependent unique solar
profile, thereby achieving cost-efficient solar-enabled system design in significantly less time time.

Index Terms—Sustainable solar-enabled system, solar energy harvesting, cost-optimal system dimensioning, energy outage,
Gaussian mixture model, curve fitting, convex optimization, computation efficiency
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1 INTRODUCTION

Renewable sources of energy, such as solar and wind, are con-
sidered to be promising alternatives for powering the wireless
nodes for sensing, communication, and processing activities in
sensor networks [1], agricultural systems [2], home appliances [3],
cellular base stations (BSs) [4], and data centers [5]. Environmen-
tally friendly, cost-effective, and less maintenance requirement are
some key features, which encourage to adopt the renewable energy
based solution. Easy sunlight availability at most of the places,
less costly, and noiseless operation are some important attributes,
which suggest preference of solar over wind energy. Solar energy
is beneficial in reducing greenhouse gas emission associated with
electricity generation and achieving energy security.

A solar-enabled system requires a suitably-sized solar-energy
harvesting panel and an appropriate energy storage capacity for its
uninterrupted operation in absence of sufficient harvested energy.
These two dimensioning requirements are interdependent. An
optimal dimensioning should ensure a minimum energy outage
and system cost while dealing with load profile that could be of
stochastic nature. The energy harvesting and storage dimensioning
principles are broadly the same for various applications, such
as in wireless access infrastructure and sensor networks. In this
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work, we focus on stand-alone solar-enabled BSs (SS-BSs), where
energy requirement profile for BS is highly time-varying due to the
nature of communication traffic that the BS has to serve over 24
hours of a day.

Motivation behind our consideration of SS-BS dimensioning
lies in its complexity and more generalized system configuration
in terms of very long-term operation (typically, 10-15 years),
replacement cost of system components (e.g., battery), and real-
time traffic handling while satisfying stringent quality of service
(QoS) requirements. Therefore, the analysis of cost-optimal SS-BS
dimensioning covers the dimensioning related analysis of other
solar-enabled systems, such as, water-pumping system, home
energy, data center, sensor network, etc. Furthermore, there are a
large number of geographical pockets especially in the developing
countries, where the cellular BSs are not connected to power
grid. In such cases, a typical BS consumes about 1500 liters of
diesel per month [6]. Hence, cost-optimal energy system design
of SS-BS is expected to have a high impact in realization of green
communications.

The energy consumption in information and communications
technology infrastructure provisioning is becoming a severe issue
in terms of economy as well as environment. To address these
issues, SS-BS has been gaining significant interest and is being
deployed worldwide to mitigate this issue. While dimensioning
the SS-BS, it requires to process very large volume of solar data
for accurate dimensioning of the system, which leads to very high
computation overhead and hence energy consumption. Therefore,
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design of algorithms for optimally reducing the computation
overhead in SS-BS dimensioning is of great importance.

2 BACKGROUND AND MOTIVATION

SS-BSs are equipped with photovoltaic (PV) panel and storage
device, i.e., rechargeable battery. As the energy is harvested during
the day-time only, the excess energy is required to be stored in
the battery for night-time operation when no energy harvesting
takes place. In SS-BSs, it is important to accurately dimension
the required panel size and the number of battery units for
sustainable operation in the long run while minimizing energy
outage. Energy outage refers to an event when the energy required
by the load exceeds the available energy in the system, and as
a result routine activities of the wireless node are interrupted.
Dimensioning has significant importance in terms of QoS as well
as quality-of-experience (QoE) of the users’ perspective - that
seek minimum energy blackout, and economics from network
operator’s perspective - that wishes to have minimum investment
and recurring costs to achieve revenue. The investment in the
given context comprises capital expenditure (CapEx), operational
expenditure (OpEx), and implementation expenditure (ImpEx).
CapEx accounts for initial investment, OpEx accounts for the cost
of replacement of system components, whereas ImpEx accounts
for the rental cost. Rental cost refers to the rent of SS-BS
deployment site, where cell tower, control room, and array of solar
panels are being installed [7]. The solar panels cover significant
space, for example, a reference solar panel of size 1 KW covers
approximately 5 m2 area. Hence, the space requirement depends
upon the dimension of solar panel, because cell tower and control
room have fixed dimension. This factor is important, because SS-
BS is deployed for long run operation. It requires replacement of
some life-limited components due to long period of operation, e.g.,
battery units. Over-dimensioning leads to unnecessary increased
investment, whereas under-dimensioning leads to frequent energy
outage.

2.1 State-of-the-Art
In cellular systems, user traffic variation is highly random. There-
fore, BS dimensioning requires to capture the randomness of
harvested energy as well as traffic-dependent energy consumption.
Random nature of energy generation by PV panel and dynamic
energy flow behavior due to day-night cycle pose major prob-
lem while dimensioning the system. Dimensioning studies can
be classified into two major categories: numerical methods [6],
[8], [9], [10], [11], [12], [13], [14], [15], [16] and analytical
methods [17], [18], [19], [20]. Numerical methods are based on
system simulation; and they offer better accuracy but involve
extensive computation. In [6], the month with minimum energy
generation is considered as a critical parameter, which leads to
over-dimensioning. In [8], [9], [10], [11], the CapEx is minimized
for a given loss of power supply probability but OpEx is not
taken into consideration, whereas constant OpEx is considered in
[12]. Markov chain based models are presented for estimation of
energy outage in [13], [14], [15], [16]. Daily solar irradiance data
is used for constructing Markov chain in [13], [14], which leads to
inaccurate dimensioning. Also, these works do not consider OpEx
while dimensioning. Hourly solar irradiance data is suggested as a
reasonable choice for dimensioning in [21]. The energy harvested,
load, and battery levels are modeled using discrete-time Markov
chain with hourly solar data profile in [15]. Markov chain based

model for energy outage and energy excess probability estimation
is presented in [16], where the excess energy that can not be stored
is sold to the power grid to earn revenue. CapEx and OpEx both
are taken into consideration for obtaining the cost-optimal system
dimension in [15], [16]. Days of autonomy criteria, defined as
the consecutive number of days over which the energy generated
is less than a predefined threshold, is used for dimensioning the
storage capacity for a given panel size in [22], [23]. This is not a
cost-optimal system; instead it leads to over-dimensioning.

Markov model [24] and Artificial Intelligence [25] based
methods are also used to generate solar radiance data for places
having no dataset or where large dataset is unavailable. In analyt-
ical methods, the random solar data and load data are assumed to
follow some well-known distributions, such as Beta distribution
[17], exponential distribution [26], and Poisson distribution [27].
Regression based techniques are also reported for dimensioning
in [18], [19], [20]. The study in [18] did not consider the battery
dynamics, which is a strong assumption, because battery dynamics
influences the system performance. The authors in [19], [20]
did not consider the randomness of data, which may lead to
inaccurate dimensioning. Moreover, the cost-optimality aspect is
not discussed in these studies.

To sum up, although a few methods have been reported in the
literature on dimensioning of SS-BS, the procedure of estimation
of cost-optimal system dimension and the corresponding compu-
tational overhead have not been investigated yet. To this end, we
also note that the daily solar data used for dimensioning incurs
less computation but its accuracy is questionable, whereas hourly
data provides better accuracy, but the computational cost incurred
is very high.

2.2 Motivation and Contributions
As discussed above, SS-BS dimensioning approaches were studied
[13], [15], [16], however the considered power model for SS-BS
has been the same as that for the BSs with hybrid power supply.
We argue that, there is a scope of energy as well as revenue saving
in SS-BS system dimensioning, because AC-to-DC conversion is
not required in SS-BS system. Moreover till now, cost-optimal
system dimension is estimated via the following formulation,

minimize
(System Dimension)

COST

s. t.: OUTAGE ≤ outage threshold.

Energy outage probability for given system parameters, i.e., panel
size and battery, was studied in [13], [14], [15], [16], but the
methodology to select cost-optimal system dimension has not
been discussed. In the existing practice, exhaustive search is
used to estimate the optimal system dimension while satisfying
a given energy outage constraint, which is computationally ex-
tensive. The existing deployments only consider CapEx optimal
system [13], [14]. In contrast, for SS-BS, jointly CapEx, OpEx,
and ImpEx optimal system is preferred [15], [16]. However,
as compared to only CapEx-optimal dimensioning, computation
issue is more severe in case of CapEx, OpEx, and ImpEx optimal
dimensioning. The tradeoff for system dimensioning process lies
in the accuracy, volume of data used, and computation time.
For accurate dimensioning, volume of data with fine granularity
is used, which involves high computational time. Accuracy of
dimensioning has significant importance in terms of energy outage
performance and revenue, whereas the computational overhead
translates to processing-related energy consumption. Therefore, a
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computationally-efficient framework on optimal dimensioning of
the SS-BS is of practical interest.

Key contributions of this work are as follows:

• A power consumption model is presented for SS-BS that
relies only on solar energy; the model aids in achieving
cost-effective green communication system design. The
cost saving up to 12% has been observed by using this
model.

• Lower bounds on system dimension, namely, panel size
and the number of batteries, are obtained using Gaussian
mixture model (GMM).

• By curve fitting technique, battery life is modeled as a
function of panel size and number of batteries. The total
cost, comprising of CapEx, OpEx, and ImpEx, is proved
to be quasiconvex, whereas the energy outage is proved to
be a convex function of system dimension. Accordingly,
the cost-optimal dimensioning problem is transformed into
a convex optimization framework, where the objective
function (total cost) is quasiconvex and the constraints
(energy outage and lower bound on system dimension)
are convex. Convexity ensures the global optimal solution.

• A Computationally-efficient Energy outage aware Cost-
optimal Dimensioning Algorithm (CECoDA) is presented
for system dimensioning for a given energy outage con-
straint. CECoDA is initialized with obtained lower bound.

• We have investigated the performance of proposed analyt-
ical framework with data from several cities of India (New
Delhi, Itanagar, Ahmedabad, Kolkata, Jaipur, Mumbai,
Hyderabad) and USA (Las Vegas, Kansas, Denver, Texas,
Missouri, Illinois, Indiana, New York) situated at diverse
geographical locations with different traffic profiles. For
brevity of presentation, four cities New Delhi, Itanagar,
Las Vegas, and Kansas are considered for illustrative
numerical performance results. A comparative study of
dimensioning performance of the proposed optimization
framework with respect to the exhaustive search method,
which is used in existing practice, demonstrates significant
reduction in computation overhead with accurate system
dimension estimation. Reduction in computation time up
to 94% has been noticed.

2.3 Scope and Significance

Reduction in computation time is very crucial issue, not only for
speeding up the system performance, but also to reduce the energy
consumption. As noted in [28], computation of 1 bit data requires
approximately 0.1 µJoule of energy. For an SS-BS deployed at
a given location, even with the same solar radiation profile, any
change in system parameters, such as, energy outage constraint,
cost of solar panel, cost and capacity of battery, traffic profile,
site rent, etc., exhaustive search process needs to be repeated,
which is expensive. Moreover, solar irradiance, user traffic profile,
and other system parameters could be location-specific, hence
site-specific computation overhead has to be incurred, which is
expected to further increase with proliferation of cellular coverage
using small cells and large-scale solar-enabled monitoring applica-
tions. Therefore, light-weight solar-enabled system dimensioning
is expected to have a wide interest.

Although only SS-BS has been discussed here due to lack of
space, the analysis presented can be applied to characterize other

solar-enabled systems, such as, home appliances, agricultural
systems, and sensor networks.

2.4 Paper Organization
The paper is organized as follows. Section 3 presents a new
power consumption model for SS-BS and lower bounds on system
dimension. The cost function is modeled in Section 4, and the
energy outage probability is analyzed in Section 5. The proposed
CECoDA is presented in Section 6, followed by the results and
discussion in Section 7. The paper is concluded in Section 8.

Table 1: List of important variables along with their descriptions
nPV Size of PV panel
NB Number of battery
e1KWH Energy harvested by PV panel size of 1 KW
enPV

H Energy harvested by PV panel size of nPV
nc Charging efficiency of battery
nd Discharging efficiency of battery
nPV LB

Lowe bound of PV panel
NBLB

Lower bound on number of battery
CCapEx Capital expenditure
COpEx Operational expenditure
CImpEx Implementation expenditure
CEx Total expenditure
CPV Cost of reference PV panel size of 1 KW
CB Cost of a battery
APV Area of reference PV panel size of 1 KW
Y Duration of operation of BS
CR Rental cost of unit area land
DoD Depth-of-discharge of battery
Pout Energy outage probability
L Lifetime of battery

3 EVALUATION OF LOWER BOUND ON SYSTEM
DIMENSION

SS-BS system model shown in Fig. 1 consists of PV panels as
energy harvester, a set of battery as energy storage device, and BS
as energy consumer or load. Energy can be extracted from battery
whenever the harvested energy by the PV panel is less than the
required consumption. If instead, the energy harvested is more
than the required consumption, energy is added to the battery.
Solar energy profile and power consumption profile of BS are
required to be analyzed for cost-effective system dimensioning.

Solar radiation data provides information on how much of the
Sun’s energy strikes the solar panel surface during a particular
time period. For this purpose, statistical solar data of last 10 years
has been accessed from National Renewable Energy Laboratory
(NREL). This large volume of data over such a long period also
incorporates the seasonal variations. This data is fed into the Sys-
tem Advisor Model (SAM) to get the hourly energy generated by a
panel of 1 KW rating i.e., e1KWH with default settings [29]. SAM is
a performance modeling software designed for renewable energy
industry. For analysis and illustration, a few geographically diverse
locations having different solar energy generation capabilities are
considered. Here, two cities from India (New Delhi and Itanagar)
and two cities from USA (Las Vegas and Kansas). Itanagar is
a hilly area that exhibits significant hourly irradiance variation,
whereas New Delhi is a plain land area. Las Vegas has more sunny
days than Kansas, whereas Kansas has more rainy days than Las
Vegas.
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Figure 1: System model for stand-alone solar-enabled base station
(SS-BS).

Table 2: Power consumption of different components and nature of
their operating voltage for Macro BS

Component name Power consumption Operating voltage
Power amplifier 128.2 W DC
RF transceiver 13.5 W DC
Baseband 29.5 W DC
DC-DC 13.5 DC
Cooling 22.5 W DC, AC both
Main supply 18 W AC

Table 3: The parameters of power model for SS-BS
BS type Ntrx Pmax (W) P SS-BS

o (W) ∆
Macro 6 20 112 4.7
Micro 2 6.3 50 2.6
Pico 2 0.13 6 4
Femto 2 0.05 4.25 8

3.1 Proposed Power Consumption Model of SS-BS

The basic power consumption model for BS is given by [30]:

PBS(t) = Ntrx · (Po + ∆ · ρ(t) · Pmax), (1)

where Ntrx is the number of transceiver, Po is the power con-
sumption at zero RF output power, ∆ is the slope of load depen-
dent power consumption, Pmax is the maximum RF output power
at maximum load, and 0 ≤ ρ(t) ≤ 1 is the normalized traffic at
time t. The values of these parameters are different for different
type of BSs. For macro BS, which is considered for analysis in
this work, Ntrx = 6, Po = 130 W,∆ = 4.7, Pmax = 20 W,
and the hourly normalized traffic profile ρ(t) is shown in Fig. 2.
The traffic profile considered has been generated from the data
collected from LTE macro BS of Vodafone mobile operator with
coverage radius of 500 m [21].

The model given in (1) comprises power consumption by
several components, namely power amplifier, radio frequency (RF)
transceiver, baseband, DC-DC, cooling, and AC-DC (main sup-
ply). Power consumed by each component and the nature of their
operating voltage are listed in Table 2 for a typical macro BS [31],
[32]. It may be noted that, main supply contributes approximately
8 % (18 W), which primarily due to AC to DC power conversion.
Then DC-DC converter supplies the required DC voltage to the
other components, i.e., power amplifier, RF transceiver, baseband.
The cooling system can operate on AC as well as DC supply.
Table 2 indicates that the DC power supply is sufficient to operate
the SS-BSs, as they are not connected to grid; PV panels generate
the required DC power. Therefore, by removing the main supply
unit and operating only by the DC power generated from the PV
panel can save significant amount of energy in normal as well as

sleep mode of operation. This mechanism can also save significant
amount of energy in other types of SS-BSs, such as micro, pico
and femto BS, where the main supply consumes approximately
8 %, 11%, and 11 %, respectively [33]. Considering the above
modification by removing the main supply unit, the new power
consumption model for SS-BS suggested here is given as,

P SS-BS(t) = Ntrx · (P SS-BS
o + ∆ · ρ(t) · Pmax). (2)

Parameters of the new power consumption model are listed in
Table 3.
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Figure 2: Variation of hourly traffic profile during weekdays and
weekends.

3.2 Evaluation of Lower Bound on System Dimension

Using the hourly solar data and power consumption profile (cf.
(2)), the lower bound on system dimension (PV panel and storage)
is estimated. Let the charging and discharging efficiency of the
lead acid battery be denoted by ηc and ηd, respectively. Assume
that the system has sufficient storage, such that the energy is avail-
able in the battery whenever required. This is a valid assumption
while evaluating the lower bounds. Let econs denotes the hourly
energy consumption by BS obtained from (cf. (2)) using the hourly
traffic profile shown in Fig. 2.

3.2.1 Modeling of Leftover Energy
Energy harvested by the PV panel of size nPV (i.e., having nPV
units of solar cells in the panel) is given as,

enPV

H (t) = nPV · e1KWH (t), (3)

where t denotes the hour index, as hourly data is available.
The battery energy dynamics, which involves charging-

discharging phenomena, is given by,

B(t) = B(t− 1) + enPV

L (t), (4)

where enPV

L (t) is the leftover energy at time instant t and given
by,

enPV

L (t) =

{
ηc
(
enPV

H (t)− econs(t)
)
, enPV

H (t) ≥ econs(t)
1
ηd

(
enPV

H (t)− econs(t)
)
, enPV

H (t) < econs(t)
.

(5)

Positive leftover energy indicates that, the harvested energy is
greater than energy usage by the load, and the excess energy is
added to the battery. Negative leftover energy indicates that, the
harvested energy is less than the energy demand by the load, and
the required energy is withdrawn from the battery.

Empirically obtained probability distribution function (PDF)
of leftover energy at a SS-BS in Las Vegas city is shown in Fig.
3(a). The variation of pdf of leftover energy does not follow any
standard distribution; it has several peaks. Therefore, we model
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Figure 3: (a) Empirical pdf, and (b) cdf obtained empirically and by
GMM for Las Vegas city, with nPV = 5 KW, 8KW, and 11 KW;
ηc = 0.9, ηd = 0.9.

it by Gaussian mixture model (GMM). GMM is a probabilistic
model that assumes all the data points are generated from a
mixture of a finite number of Gaussian distributions. Each Gaus-
sian component is associated with a normalized weight, which
indicates its proportion in the distribution [34]. The hourly data for
all the years solar energy generation is considered to parameterize
the leftover energy. Large volume of dataset offers better fitting
accuracy; it also incorporates the seasonal variations.

Let EnPV

L denote the random variable that captures the varia-
tion of hourly leftover energy enPV

L for a given nPV . The GMM
modeled distribution of EnPV

L in (5), i.e., the distribution of the
random variable EnPV

L , is expressed as:

fEnPV
L

(e) =
K∑
i=1

αnPV
i√

2π · σnPV
i

· exp
(−(e− µnPV

i )2

2 · (σnPV
i )2

)
, (6)

where K is the number of Gaussian components used to model
the data. αnPV

i , µnPV
i , and σnPV

i are respectively weight, mean,
and standard deviation of the ith Gaussian component for a given
panel size nPV . The weights of all components in GMM satisfies∑K
i=1 α

nPV
i = 1.

In Fig. 3(a), the negative index of EnPV

L denotes the energy
extracted from the storage, whereas positive index denotes the
energy added to the storage. Kolmogorov-Smirnov (KS) test is
used to identify the suitable number of Gaussian components (K)
for fitting [35]. KS distance is the maximum distance between
empirical cumulative distribution function (CDF) and estimated
CDF using GMM. When the change in KS distance between
two successive GM models is below a threshold, then addition
of number of components is stopped. The CDF of empirical data
and GMM are shown in Fig. 3(b) for different panel size at a SS-
BS in Las Vegas city. For a given KS distance threshold 0.05, the
best GMM fit for the four cities, New Delhi, Itanagar, Las Vegas,
and Kansas, with nPV = 5 KW are achieved with K = 5, 7, 6,
and 6, respectively.

3.2.2 Lower Bound on System Dimension
Using the developed GMM distribution of leftover energy in (6),
the mean of hourly leftover energy is obtained as,

E
[
EnPV

L

]
=

∫ ∞
−∞

e · fEnPV
L

(e) · de =
K∑
i=1

αnPV
i · µnPV

i . (7)

For a sustainable system in the long run, the mean of hourly
leftover energy should be positive to avoid the energy outage
in each hour on an average. This indirectly indicates the energy
neutrality on hourly basis, and overall, the energy is added to
storage in each hour. If instead the mean leftover energy is

negative, then on average the energy is extracted from storage
in each hour, thereby leading to depletion of stored energy and
subsequent energy outage.

Thus, for a green sustainable system in long run, E
[
EnPV

L

]
≥

0. Accordingly, the lower bound on PV panel size nPVLB
is

expressed as:

nPVLB
= inf

{
nPV |

K∑
i=1

αnPV
i · µnPV

i ≥ 0
}
, (8)

where inf indicates the infimum.
The mean energy extracted from storage in each hour SnPV

h
for a given panel size nPV corresponds to the negative index of
leftover energy profile and is expressed as:

SnPV

h =

∫ 0

−∞
e · fEnPV

L
(e) · de

=

∫ 0

−∞
e ·

K∑
i=1

αnPV
i√

2π · σnPV
i

· exp
(−(e− µnPV

i )2

2(σnPV
i )2

)
· de,

=
K∑
i=1

αnPV
i√
2π
·
[√

2π · µnPV
i ·

(
1−Q(

−µnPV
i

σnPV
i

)
)
−

σnPV
i · exp

(−(µnPV
i )2

2(σnPV
i )2

)]
,

(9)
where Q(·) denotes the Q-function.

Typically, solar radiation is available during day hours only.
The 24 hours period constitutes a cycle over which charging and
discharging occurs. On average, the total energy extracted in each
cycle is SnPV

d = 24.SnPV

h .
Therefore, for a panel size npV , the storage capacity required

SnPV is governed by,

SnPV ≥ |SnPV

d |

=24 ·
∣∣∣∣ K∑
i=1

αnPV
i√
2π
·
[
σnPV
i · exp

(−(µnPV
i )2

2(σnPV
i )2

)
−

√
2π · µnPV

i ·
(

1−Q(
−µnPV

i

σnPV
i

)
)]∣∣∣∣ = SnPV

LB .

(10)

where SnPV

LB is the lower bound on storage. It indicates that, at
least this amount of energy should be available, such that whenever
harvested energy is less than the required consumption, the storage
is able to supply. SnPV

LB also depends on the panel size. Thus, the
lower bound on number of battery units can be obtained as,

NBLB
=

⌈
SnPV

LB

δ ·Bcap

⌉
. (11)

where Bcap is the capacity of each battery and δ is the depth-of-
discharge of each battery.

Remark 1. For very large panel size, the storage required during
radiation hours reduces to very small or insignificant value,
whereas storage requirement remains vital during absence of
radiation. Let us denote energy storage requirement in absence
of radiation by NBth

; it can be obtained as,

Sth = lim
nPV→∞

SnPV

LB ⇒ NBth
=

⌈
Sth
δ.Bcap

⌉
. (12)

It is notable that, unlike NBLB
, NBth

is independent of panel
size with NBLB

≥ NBth
, and due to its independency from nPV ,
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it is used in the formulation of optimization problem in subsequent
sections.

4 MODELING OF COST FUNCTION

In green sustainable system, it is important to choose the number
of PV panels and battery units in cost-optimal sense, such that the
long-run energy outage remains within an acceptable range. The
expenditure in the given context refers to the cost of PV panel
and battery, which comprises of mainly three parts: CapEx, OpEx,
and ImpEx. Other costs, such as, components, manpower, and
transportation are supposed to be constant and have no impact on
system dimensioning.

4.1 CapEx

CapEx accounts for the initial investment, which includes the
dimensioning-related costs, namely, the cost of PV panel, battery,
and equipment. Accordingly, CapEx of SS-BS is captured as:

CCapEx(nPV , NB) = CPV · nPV + CB ·NB + C0, (13)

where CPV and CB denote the cost of reference panel of size
1 KW and cost of a battery unit, respectively. C0 captures the
constant costs.

C0 includes the cost of BS components, such as digital signal
processor, power amplifier, transceiver, antenna, cellular tower,
etc. The cost of these components do not depend on nPV and
NB . Also, they have sufficiently long lifetime and hence these
are deployed once, unlike the battery units which have limited
lifetime. Thus, C0 is not influenced by the system dimension and
is treated as constant in the given context. Therefore, for compact-
ness the actual cost of these components are not considered in the
optimization framework.

4.2 OpEx

Usually, SS-BSs are installed for long period of operation, i.e.,
for 10 to 20 years. Hence, it involves replacement of life-limited
components, i.e., battery in the current context. OpEx accounts for
this cost, which is explored as:

COpEx(nPV , NB) = CB ·NB ·
Y

L(nPV , NB)
−CB ·NB +C1,

(14)
where Y denotes the period of operation in years and
L(nPV , NB) denotes the lifetime of battery with system dimen-
sion (nPV , NB). C1 is a constant, which includes other costs.
CB · NB term is deducted from OpEx, because it is included in
CapEx at the time of installation.

Battery life is an important factor in renewable energy based
systems, because it has a strong impact on OpEx. In general,
lifetime depends on the number of cycles and depth-of-discharge
(DoD) in each cycle. DoD indicates the percentage of charge
extracted from the battery. A lower DoD per cycle offers a higher
lifetime, and vice-versa. Due to random nature of energy harvested
and absence of solar irradiance during night hours, the DoD varies
significantly over each cycle, which causes degradation of battery
life. Rainflow counting algorithm [36] is a widely used technique
to count the total number of cycles for a given battery energy
dynamics. The number of cycles against DoD data given in the
data-sheet of battery [37] is used here to obtain the lifetime of a
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Figure 4: Variation of number of cycles against depth-of-discharge
(DoD).

set of battery units. Using curve fitting technique, the number of
cycles against the DoD is found to vary as:

Nc(DoD) = 7855·exp(−9.48·DoD)+2508·exp(−1.605·DoD).
(15)

The variation of fitted and original number of cycles against the
DoD is shown in Fig. 4, which depicts excellent fitting with R-
squared value 0.9994.

The temperature dependence of number of cycles is captured
as:

Nc(DoD, T ) = Nc(DoD) ·
(
37.68 · T−1.101 − 0.3897), (16)

where T denotes the temperature in ◦C. Here, T = 27◦C is
considered, where full battery capacity is available [37] and this
temperature can be maintained using cooling system.

The battery life for a given system dimension (nPV , NB) is
evaluated as,

L(nPV , NB) =
1

NC∑
k=1

1
Nc(DoDk,T=27◦c)

, (17)

where NC is the total number of cycles obtained from Rainflow
counting algorithm [36] and Nc(DoDk) is the number of cycles
corresponding to DoD of kth cycle. Battery life depends on the
panel size as well as the number of battery units, because the
energy harvested by panel dictates the DoD of battery.

4.3 ImpEx

ImpEx accounts for the cost to rent a site, construction, and
installation. The rental cost depends on the area of site required to
set up the BS as well as to install PV panel. Thus, the ImpEx of
SS-BS is expressed as,

CImpEx(nPV , NB) = APV · nPV · Y · CR + C2, (18)

where APV denotes the area covered by a reference panel of size
1 KW rating,CR denotes the rent per unit area per year, Y denotes
the number of years for operation.C2 is a constant, which includes
the other costs, namely, construction and installation costs. The
area covered by BS set up is incorporated in constant part and
only PV panel size dependent rent is taken into consideration.
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4.4 Characterization of Cost Function

The total expenditure, i.e., cost function is given as,

CEx(nPV , NB) = CCapEx(nPV , NB) + COpEx(nPV , NB)+

CImpEx(nPV , NB)

= CPV · nPV + CB ·
Y

L(nPV , NB)
·NB+

CR · nPV ·APV · Y + Call,
(19)

where Call = C0 + C1 + C2 accounts for all constants.
The cost function depends upon nPV , NB , and L(nPV , NB).

The expression of battery life in (17) is not analytically tractable,
because it depends upon the depth-of-discharge of each cycle and
the number of cycles. Both of these quantities have no closed
form expression as function of nPV and NB , because the depth-
of-discharge as well as number of cycle is dictated by the battery
dynamics. Therefore, the battery life for each system combination
(nPV , NB) is calculated, and its nature is explored using an
empirical equation obtained from curve fitting technique [38].
In order to examine the accuracy of fitting, two goodness-of-fit
parameters R-square and root mean square error (RMSE) have
been used.

Battery life for different system dimension (nPV , NB), where
each battery has capacity rating 12 V, 205 Ah with δ = 0.7, is
obtained and fitted using curve fitting technique. The following
empirical equation captures the battery life as function of nPV
and NB ,

L(nPV , NB) = a00 + a10 · nPV + a01 ·NB + a11 · nPV ·NB
+ a20 · nPV 2 + a02 ·N2

B + a21 · nPV 2 ·NB+

a12 · nPV ·N2
B + a30 · nPV 3 + a03 ·N3

B .
(20)

The fitting coefficients aij ,s for four different cities are listed in
Table 4 along with the values of goodness-of-fit parameters. The
R-square value close to 1 and very small RMSE value indicate the
accuracy of curve fitting.

Remark 2. We restrict our analysis for system dimension in
the range: nPV LB

≤ nPV ≤ 20 KW, NBth
≤ NB ≤ 75,

which is sufficient for practical deployment perspective of SS-
BS. Consideration of a higher system dimension does not have
practical consequence, although the presented analysis remains
valid for higher system dimension as well.

Remark 3. The panel size nPV and the number of battery units
NB are considered as continuous variables for characterization
of the cost-optimal dimensioning problem. Actually, storage and
panel size are continuous variables; but in practical deployment
scenario, the number of battery units is integer-valued and some
fixed increment in panel size, e.g., 0.5 KW or 1 KW is considered.
This assumption is used only to characterize the cost-optimal
dimensioning problem; it will not affect the cost-optimal solution.

Theorem 1. The total expenditure CEx(nPV , NB) is quasicon-
vex function of system dimension, i.e. panel size nPV and the
number of battery units NB .

Proof: See Appendix A.
Theorem 1 can be interpreted as follows: When the deployed

number of PV cells nPV and battery units NB are small, the
CapEx is less. However, this small value of nPV and NB lead

Table 4: Fitting coefficients and the values of goodness-of-fit param-
eters for battery life, for different cities

New Delhi
a00 = −20.77, a10 = 5.421,
a01 = −0.04516 , a20 = −0.4413,
a11 = 0.05719, a02 = −0.00314,
a21 = −0.00148, a12 = −0.0001483
a30 = 0.01104, a03 = 2.338× 10−5

RMSE = 0.5296, R-square = 0.9788

Itanagar
a00 = −23.25, a10 = 5.496,
a01 = −0.2862 , a20 = −0.4133,
a11 = 0.07376, a02 = −0.001004,
a21 = −0.001811, a12 = −0.0001966
a30 = 0.009762, a03 = 1.493× 10−5

RMSE = 0.3221, R-square = 0.9919

Las Vegas
a00 = −10.47, a10 = 3.177,
a01 = −0.05632, a20 = −0.2839,
a11 = 0.05388, a02 = −0.002656,
a21 = −0.001407, a12 = −0.0001344,
a30 = 0.00751, a03 = 1.195× 10−5,
RMSE = 0.4316, R-square = 0.9847

Kansas
a00 = −4.273, a10 = 1.525
a01 = −0.1649, a20 = −0.1442,
a11 = 0.0527, a02 = −0.001224,
a21 = −0.001251, a12 = −0.000132,
a30 = 0.00389, a03 = 1.229× 10−5

RMSE = 0.1918, R-square = 0.9964

to frequent discharge of the battery units due to lesser energy
generation and energy storage capacity. Consequently, this causes
a higher DoD in charging cycles which results in effectively less
number of tolerable charging cycles of battery units, and hence
its lifetime is reduced. Thus, more frequent requirement of battery
replacement causes a higher OpEx. On the other hand, CapEx
is very high when the deployed numbers of nPV and NB are
high. However, the battery does not discharge severely, i.e., DoD
is lesser due to high energy generation as well as energy storage
capacity. A lesser DoD in a charging cycle in turn offers effectively
a high number of charging cycles. Hence, the lifetime of a battery
unit is longer, which leads to a lesser OpEx. These extreme
cases exist at boundary; the cost decreases in between them, thus
offering a quasiconvex nature of the total expenditure.

5 ANALYSIS OF ENERGY OUTAGE PROBABILITY

Energy outage happens when neither PV panel nor storage is able
to supply the required energy. Energy availability, which is the
complement of energy outage, is measured using number of 9’s
[39]. For example, two 9’s indicate 99% availability, or 1% energy
outage, which means about 15 minutes of energy blackout daily.
Up to 1% energy outage is considered acceptable in cellular BS
operation [4]. Maintaining a low energy outage is also important
because a BS takes several minutes to start functioning after a
shut-down [40]. The energy outage probability for a given panel
size and the number of battery is calculated from (21) using the
hourly harvested energy. Here B(t) is the energy level of battery
at time t,NB is the number of battery,Bcap is the capacity of each
battery unit, enPV

H (t) is the hourly energy harvested by panel of
size nPV , econs(t) is the hourly energy consumed by BS at time
t, and δ is the depth-of-discharge of battery. I(·) is an indicator
function, given as:

I(x) =

{
x, if x ≥ 0
0, if x < 0.
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B(t) =


NB ·Bcap, if B(t) ≥ NB ·Bcap
B(t− 1) + ηc · I

(
enPV
H (t)− econs(t)

)
+ 1

ηd
· I
(
econs(t)− enPV

H (t)
)
, if (1− δ) ·NB ·Bcap < B(t) < NB ·Bcap

(1− δ) ·NB ·Bcap, if B(t) ≤ (1− δ) ·NB ·Bcap.
(21)

Table 5: Fitting coefficients and the values of goodness-of-fit param-
eters for energy outage probability, for different cities

New Delhi
b00 = 0.01413, b10 = 20.28,
b01 = −0.0006561, b20 = 7372,
b11 = −0.2659, b02 = 6.71× 10−6,
RMSE = 0.0043, R-square = 0.9434

Itanagar
b00 = 0.01413, b10 = 121.83,
b01 = −0.001797, b20 = 11391,
b11 = −0.1121, b02 = 1.691× 10−5,
RMSE = 0.00109, R-square = 0.9664

Las Vegas
b00 = 0.01888, b10 = 38.80,
b01 = −0.0008892, b20 = 2886
b11 = −0.2997, b02 = 9.023× 10−6

RMSE = 0.0047, R-square = 0.9667

Kansas
b00 = 0.01729, b10 = 17.21
b01 = −0.0006997, b20 = 1378,
b11 = −0.1327, b02 = 6.582× 10−6,
RMSE = 0.0027, R-square = 0.9384

Here also, highly random nature of harvested energy and
battery dynamics restrict the analytical tractability of variation of
outage probability as a function of system dimension, i.e. nPV and
NB . Equation (21) is an iterative expression, where the batteries
can be charged up to its maximum capacity and discharged up to
its DoD. The operation is not allowed beyond this range.

A closed-form expression of energy outage probability as a
function of nPV and NB is not available. To this end, in this work
curve fitting technique is used to obtain an empirical expression
for analyzing the system dimensioning further. For this purpose,
energy outage probability for each system dimension is calculated,
and its variation as a function of nPV and NB is obtained. Energy
outage probability as a function of system dimension is captured
using the following empirical equation:

Pout(nPV , NB) = b00 + b10 · e−nPV + b01 ·NB+

b11 · e−nPV ·NB + b20 · e−2nPV + b02 ·N2
B .

(22)

The fitting coefficients bij’s for four different cities are listed in
Table 5 along with the goodness-of-fit values. The R-square values
are close to 1 and RMSE values are very small, which indicate the
accuracy of the empirical expression.

It may be noted from (22) that, the energy outage probability
decreases with increase in nPV and NB values, but the decay
is exponential with increase of nPV . Larger PV panel generates
higher energy, which leads to sufficient energy availability in the
battery units, and thus it reduces the outage probability.

Theorem 2. The energy outage probability Pout(nPV , NB) is
convex function of system dimension, i.e., PV panel size nPV and
number of battery units NB .

Proof: See Appendix B.
Theorem 2 can be interpreted as follows: For smaller nPV

and NB deployment, frequent energy outage happens due to
lesser energy generation and energy storage capacity. On the other
hand, larger nPV and NB avoid energy outage due to higher

energy generation and energy storage capacity. Also, with increase
in either npV or NB , the harvested energy or storage capacity
increases, which reduces the energy outage. This indicates that, the
energy outage will improve significantly with increase in system
dimension, which leads to the convex nature.

6 COMPUTATIONALLY-EFFICIENT COST-OPTIMAL
DIMENSIONING

Till now, the feasible search space is identified in Section 3, and
cost function and energy outage are characterized in Sections
4 and 5, respectively. In this section, the cost-optimal system
dimensioning is performed using the analysis in previous sections.
The optimization problem for cost-optimal dimensioning while
satisfying the energy outage constraint is formulated as:

(P1) : minimize
(nPV ,NB)

CEx(nPV , NB)

subject to: Pout(nPV , NB) ≤ p,
− nPV ≤ −nPV LB

,

−NB ≤ −NBth
,

where CEx(nPV , NB) = CCapEx(nPV , NB) +
COpEx(nPV , NB) +CImpEx(nPV , NB) = CPV ·nPV +CB ·

Y
L(nPV ,NB) ·NB + CR · nPV ·APV · Y + Call.

Theorem 1 and Theorem 2 reveal that, the objective function
(total expenditure or total cost) is quasiconvex function of system
dimension and the constraints (energy outage probability and
lower bounds) are convex functions of system dimension. Thus,
Theorem 1 and Theorem 2 transform the optimization problem
(P1) into a convex optimization framework [41], which ensures a
global optimal.

Remark 4. The cost-optimal dimensioning problem while satis-
fying the energy outage constraint is convex. Therefore, the local
optimal solution overlaps with the global optimal solution.

The emphasis is on characterizing the optimization problem
(P1) rather than solving it, because it provides the clue about the
variation of function, and indicates where to stop the process. In
this work, we will take the advantage of convexity of (P1) to
reach the optimal solution in computationally efficient way. On
the other hand, one needs the empirical equations (20) and (22) in
order to solve (P1) for a given city. This requires computation
of battery life (cf. (17)) and outage probability (cf. (21)) by
exhaustive search, involving significant overhead. Also, the cost-
optimal system dimension should be integer valued from real
life deployment perspective, but (P1) does not provide integer
solution. Rounding the non-integer value to integer value will lead
to over-dimensioning or under-dimensioning. Thus, solving (P1)
is neither computationally efficient nor serves the purpose. On the
other hand, the empirical equations (20) and (22) are obtained to
characterize the system behavior, which remains valid in general.

Although convexity ensures the global optimal solution, our
aim is to reach this cost-optimal solution (noptPV , N

opt
B ) in min-

imum time. Therefore, we need to come up with a procedure
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such that the minimum number of system combinations could be
traversed while achieving an optimal solution. The path to optimal
solution can be traversed in depth first search fashion due to the
discrete nature of variables (nPV and NB), where the search for
optimal battery dimension can be performed for a given panel
size. This restricts the search process in one-dimensional space
rather than in two-dimension; only one variable changes, the other
remains constant. Therefore, for a given panel size nPV = nPV0

,
the optimal number of battery units can be obtained from the
following optimization problem:

(P2) : minimize
NB

CB ·
Y

L(nPV0
, NB)

·NB + CPV · nPV 0+

APV · nPV 0
· Y · CR + Call

subject to: Pout(nPV 0
, NB) ≤ p,

−NB ≤ −NBth
.

It is important to characterize the optimization problem (P2) in
order to find the optimal solution efficiently, as the nature of
optimization problem will provide the clue to reach the optimal
solution in a lesser time.

Lemma 1. The total expenditure CEx(nPV , NB) is a quasicon-
vex function of number of battery units NB for a given panel size.

Proof: See Appendix C.

Lemma 2. The outage probability Pout(nPV , NB) is a convex
function of number of battery units NB for a given panel size.

Proof: See Appendix D.

Lemma 1 and Lemma 2 assure that (P2) is also a convex
optimization problem, as the objective function is quasiconvex
function of NB and the constraints are convex function of NB .
Hence the optimal number of battery obtained from (P2) is global
optimal for a given panel size, and there is no need to search for
all values of NB .

Remark 5. For a given panel size, an optimal number of battery
units obtained while satisfying the energy outage constraint is
also global optimal due to convex nature of the optimization
framework.

Computationally-efficient Energy outage aware Cost-optimal
Dimensioning Algorithm (CECoDA) is proposed in Algorithm 1
by taking advantage of convexity of the optimization problems
(P1) and (P2). If energy outage constraint is not satisfied, then the
total expenditure, which includes computation of battery life, is
not calculated in order to save time. The optimal selection process
starts from the lower bound of panel size nPVLB

. Then the optimal
number of battery units is estimated while satisfying the energy
outage probability for this given panel size. The search stops when
increase in cost function is noticed due to convex nature of (P2)
(cf. Remark 5). Then, the panel size is increased by5nPV and the
optimal number of battery units is obtained. The cost of optimal
combination with present panel size is compared with that of the
previous panel size, and this process is repeated till the decrease
in cost is noticed. This procedure yields optimum result due to
convex nature of problem (P1) (cf. Remark 4). The search process
stops due to convexity of (P1) and (P2), which ensure a global
optimal solution. 5nPV is the incremental value of the PV panel
size; 5nPV = 1 KW is considered in this work.

Algorithm 1 Computationally-efficient Energy outage aware
Cost-optimal Dimensioning Algorithm (CECoDA)

1: Required : energy harvesting data, traffic profile,
ηc, ηd, p, CPV , CB , CR, APV ,5nPV

2: Ensured :
(
noptPV , N

opt
B

)
3: start with nPV = nPV LB

4: start with NB = NBth

5: calculate Pout(nPV , NB) for given nPV and NB
6: if Pout(nPV , NB) ≤ p then
7: compute CEx(nPV , NB)
8: else
9: break

10: end if
11: if CEx(nPV , NB) < CEx(nPV , NB − 1) then
12: NB = NB + 1
13: else
14: break
15: end if
16: N(nPV ) = NB − 1
17: if CEx(nPV ,N(nPV )) < CEx(nPV −5nPV ,N(nPV −
5nPV )) then

18: nPV = nPV +5nPV
19: goto step 4
20: else
21: stop
22: end if
23: Cost optimal system dimension: noptPV = nPV −5nPV and

Nopt
B = N(noptPV )

24: Optimal cost: CoptEx = CEx(noptPV , N
opt
B )

7 RESULTS AND DISCUSSION

Four cities New Delhi, Las Vegas, and Kansas located at different
geographical locations as well as having diverse solar potential
are considered for presenting validation results of the proposed
framework. NREL data for several other cities, namely, Ahmed-
abad, Itanagar, Kolkata, Jaipur, Texas, Denver, Missouri, Illinois,
Indiana, New York, have also been used for extensive testing
and validation purpose. For brevity of presentation, the results on
these cities are not included here. The values of battery efficiency
parameters are ηc = 0.9 and ηd = 0.9. The power model for
macro SS-BS is given in (2). The equation parameters are listed
in Table 3 and traffic profile is shown in Fig. 2. Flooded lead acid
battery with 12 V, 205 Ah capacity having depth-of-discharge
δ = 0.7 is considered. The cost of 1 KW rating PV panel is
CPV = $1000; the cost of one battery is CB = $280. The time
duration for long-run operation is considered as Y = 10 years.

7.1 Validation of Lower Bounds
The lower bound on PV panel size for different cities are obtained
as: nPVLB

= 6 KW for New Delhi, 8 KW for Itanagar, 5 KW for
Las Vegas, and 7 KW for Kansas. The variation of energy outage
probability for four different PV panel sizes in the neighborhood
of lower bound, i.e., nPV = nPVLB

− 1, nPVLB
, nPVLB

+ 1,
and nPVLB

+ 2 against the number of battery units for the four
cities are shown in Fig. 5. The panel size nPV = nPVLB

− 1
is not able to harvest sufficient energy required by load and
frequent energy outage occurs due to this. The energy outage
probability saturates for nPV = nPVLB

− 1 and no improvement
in energy outage is observed even for higher number of battery
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Figure 5: Variation of energy outage probability versus number of battery units, with three panel sizes nPVLB − 1, nPVLB , nPVLB + 1, and
nPVLB + 2 for four different cities.
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Figure 6: Lower bound on storage capacity for four different cities.

units due to lack of sufficient energy harvested. On the other
hand, for the system with PV panel size nPVLB

, nPVLB
+ 1,

and nPVLB
+ 2, the energy outage probability tends towards

acceptable range (≤ 1% = 0.01) [4], [39] and even becomes zero
at higher value of NB . Significant improvement in energy outage
probability is observed with increase in storage capacity as PV
panel size increases, because the energy generated is stored in the
battery, which is not possible when nPV = nPVLB

− 1. Here, for
validating the bounds, simulation up to 75 batteries (approximately
185 KWh energy storage) are shown. In spite of such huge storage,
the energy outage probability is far from acceptable range for
system with nPV < nPVLB

.
The lower bound on storage capacity against the number of PV

panels (nPV ≥ nPV LB
) is plotted in Fig. 6 for the four cities.

It can be observed that, as the PV panel size increases, the lower
bound on storage capacity decreases. If the storage is divided in
two parts: one in presence of solar radiation (day hours) and other
in absence of solar radiation (night hours). The required storage
decreases during day hours with increase in panel size, whereas no
effect on storage is observed during night hours. It can be noted
that, the minimum storage required for all four cities tend towards
the same value with increase in the number of PV panels, and
the difference is much less at nPV = 20 KW compared to the
capacity of a battery unit (approximately 2.46 KWh). This realizes
the existence of NBth

, and NBth
= 8 for all the cities.

The variation of energy outage probability with four different
number of battery units in the neighborhood of lower bound, i.e.,
NB = NBLB

− 1, NBLB
, NBLB

+ 1, and NBLB
+ 2 against

the number of PV panels for the four cities are shown in Fig.
7. It can be observed that, for NB = NBLB

− 1, the energy
outage probability is very high and faraway from acceptable range,
whereas for NB = NBLB

it tends towards acceptable range.
System dimension with NBLB

+ 1 and NBLB
+ 2, outage lies

in acceptable range and even nearly zero for higher nPV . The
energy outage probability improves significantly as PV panel
size increases and saturates at higher PV panel size due to lack
of storage capacity. The simulations are shown up to 20 KW
PV panel size, which is well sufficient from practical SS-BS
deployment.

Based on the above discussion, it is deduced that for green sus-
tainable system, the system dimension must satisfy (nPV , NB) ≥
(nPV LB

, NBLB
). It is also observed that, very high energy stor-

age is required for smaller PV panel size with acceptable energy
outage and vice-versa. But, such type of system dimension will
be very costly, which demands for cost-optimal system dimension
estimation.

Remark 6. If the PV panel size is less than its lower bound, i.e.
nPV < nPV LB

, energy outage is faraway from acceptable range
in spite of very large storage deployment.

Remark 7. If the number of battery units is less than its lower
bound, i.e. NB < NBLB

, energy outage is faraway from accept-
able range in spite of very large PV panel deployment.

7.2 Accuracy of Cost-optimal System Dimensioning
The cost-optimal system dimension using the proposed CECoDA
is obtained for three different energy outage probability con-
straints: p = 1%, 0.1%, and 0.01%; and the dimension estimates
are compared with those offered by three different competitive di-
mensioning methods: CapEx-OpEx-ImpEx optimal dimensioning
[15], [16], CapEx optimal dimensioning [19], and dimensioning
based on days of autonomy criteria [23]. In Table 6, the estimated
system dimension with these competitive methods are listed,
with CR = 0, i.e., the effect of implementation expenditure is
not considered. It is noted that, CECoDA estimates the system
dimension very accurately, and the optimal system dimension
matches closely with that in [15], [16]. The cost of optimal system
dimension using the methods reported in [19] and [23] is much
higher compared to that offered by CECoDA. This indicates that,
system dimensioning based on CapEx-optimality and that with
days of autonomy criteria are not good choices for long-run
operation of SS-BS. The impact of site rent on optimal system
dimension is listed in Table 7 with CR = $10 and APV = 5 m2.
In this scenario also, the approaches in [19] and [23] lead to over-
dimensioning of SS-BS. In case of non-zero rent cost, the optimal
panel size is relatively lower than that with zero rent cost. It may
be observed that, relatively larger system dimension is required
to satisfy the stringent energy outage constraint in both the cases,
i.e., with CR = $0 and with CR = $10. The cost-optimal system
dimension also indicates that, the solar potential of New Delhi
is higher than Itanagar, whereas the solar potential of Las Vegas
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Figure 7: Variation of energy outage probability versus PV panel size, with number of battery units NBLB − 1, NBLB , NBLB + 1, and
NBLB + 2 for four different cities.
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Figure 8: Saving in computation energy to find the cost-optimal
system dimension in the CECoDA over exhaustive search for four
different cities having different energy outage constraint.

is higher than Kansas. It requires to install relatively large PV
panel and storage capacity to satisfy the same energy outage
constraint for city having lesser solar potential, which incurs
higher expenditure. Deployment of large PV panel and storage
capacity overcome the lack of solar radiation by supplying more
energy from PV panel and reserving more energy in the storage.

The discussion presented above reveals that optimal selection
changes significantly with location, site rent, and energy outage
constraint. This validates usefulness of the proposed framework.
Total expenditure is minimum at the optimal solution, which is
also the global minimum of expenditure; the search process stops
here due to convex nature of the optimization problem.

7.3 Computation Efficiency of CECoDA

The cost-optimal system dimension estimation with the proposed
CECoDA matches perfectly with the method used in [15], [16],
where exhaustive search method is used. The time taken by
CECoDA and that using exhaustive search [15], [16] to estimate

Table 6: Comparison of system dimension and cost estimates obtained
by CECoDA with respect to the existing competitive methods, with
CR = $0

p CECoDA [15], [16] [19] [23]

New Delhi

1%
(9,15) (9,15) (9,21) (12,17)
$19,360 $19,360 $19,640 $24,320

0.1%
(10,29) (10,29) (11,22) (13,28)
$20,360 $20,360 $20,520 $24,760

0.01%
(13,32) (13,32) (15,19) (15,35)
$22,800 $22,800 $23,680 $27,360

Itanagar

1%
(12,17) (12,17) (13,18) (16,19)
$23,200 $23,200 $23,360 $28,320

0.1%
(13,29) (13,29) (14,25) (17,30)
$23,640 $23,640 $24,080 $29,040

0.01%
(13,39) (13,39) (15,29) (17,38)
$24,480 $24,480 $25,080 $29,600

Las Vegas

1%
(9,19) (9,21) (10,18) (11,29)
$19,920 $19,920 $20,360 $27,240

0.1%
(11,43) (11,43) (12,39) (16,53)
$23,320 $23,320 $23,760 $31,960

0.01%
(13,74) (13,74) (16,61) (18,73)
$29,520 $29,520 $30,280 $36,480

Kansas

1%
(12,24) (12,24) (11,27) (16,31)
$24,600 $24,600 $ 24,720 $35,320

0.1%
(13,50) (13,50) (17,33) (20,44)
$28,120 $28,120 $28,480 $36,800

0.01%
(16,52) (16,52) (19,39) (18,65)
$30,040 $30,040 $30,760 $39,000

the cost-optimal system dimension (cf. Table 6 and Table 7 ) are
listed in Table 8 and Table 9 for CR = $0 and CR = $10,
respectively. The simulation is carried out in Matlab 2015 software
with Intel Core i7, 64-bit, 3.40 GHz processor having 16 GB
random-access memory (RAM). The power consumption of the
computer is 240 W. Significant saving in computation time up to
68%-94% by CECoDA is observed, which shows its importance
in speeding up the dimensioning process. As the energy outage
constraint becomes more stringent, time elapsed in computation
increases due to requirement of relatively larger cost-optimal
system dimension to satisfy the stringent energy outage constraint.
The saving in computation time leads to huge amount of energy
saving, which is shown in Fig. 8. Reduction in computation time
or energy ranges in 68%-94%.

7.4 Cost Saving by using Modified Power Model
The cost saving, which is the difference of total cost of cost-
optimal dimension from power model in (1) and the proposed
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Table 7: Comparison of system dimension and cost estimates obtained
by CECoDA with respect to the existing competitive methods, with
CR = $10

p CECoDA [15], [16] [19] [23]

New Delhi

1%
(8,20) (8,20) (9,21) (11,21)
$23,760 $23,760 $24,140 $30,220

0.1%
(10,29) (10,29) (11,22) (13,28)
$25,360 $25,360 $26,020 $31,260

0.01%
(11,49) (11,49) (14,43) (16,28)
$28,820 $28,820 $29,960 $34,640

Itanagar

1%
(11,21) (11,21) (11,25) (15,23)
$28,820 $28,820 $29,100 $36,220

0.1%
(12,35) (12,35) (13,29) (16,34)
$30,040 $30,040 $30,640 $37,160

0.01%
(12,46) (12,46) (13,38) (16,43)
$30,380 $30,380 $30,980 $38,000

Las Vegas

1%
(8,23) (8,23) (9,18) (10,33)
$24,040 $24,040 $24,140 $33,200

0.1%
(10,50) (10,50) (11,43) (11,75)
$28,720 $28,720 $28,820 $38,060

0.01%
(13,74) (13,74) (18,73) (18,73)
$36,020 $36,020 $37,120 $45,480

Kansas

1%
(11,27) (11,27) (10,32) (15,35)
$30,220 $30,220 $30,400 $43,780

0.1%
(13,50) (13,50) (14,47) (16,62)
$34,620 $34,620 $35,280 $47,240

0.01%
(14,63) (14,63) (16,52) (17,70)
$37,520 $37,520 $38,640 $48,180
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Figure 9: Cost saving for four different cities having different rent
costs and different energy outage constraint.

modified power model for SS-BS in (2), is shown in Fig. 9 for
four different cities and different energy outage constraints. The
results indicate an appreciable saving of revenue by using the

proposed power model. Cost saving ranges in 9%-15%, which
becomes noteworthy in case of bulk deployment. This is because
a smaller number panels and lesser number of battery units are
required in case of modified power model to satisfy the same
outage constraint.

7.5 Advantage of Proposed Framework
The amount of solar radiation reaching to the earth’s surface varies
greatly from location to location because of changing atmospheric
conditions. Clouds are the predominant atmospheric condition,
which determine the amount of solar radiation arriving to the
earth surface. Local geographical features, such as mountains,
oceans, and large lakes influence the formation of clouds [42].
Aerosols also lead to significant impairment on the solar radiation
due to the scattering and absorption. Due to these reasons, even the
places located nearby away may receive very different amount of
solar energy. The dependency of solar radiation on several factors
mentioned above do not allow to generalize the solar radiation pro-
file. Instead, it is required to analyze the dimensioning procedure
separately for each individual locations, which is computationally
intensive. Towards this, the proposed framework will be useful,
which overcomes the location dependency of solar profile from
computation point of view while dimensioning. To investigate the
location dependency of solar profile, we have selected two sets
of locations from India; they belong to the same solar potential
region classified by NREL. NREL has classified the regions of
India by considering all the influencing factors mentioned above,
and evolved a colored heat map, which indicates the solar potential
of different regions [https://www.nrel.gov/]. The cities of the first
set are Nashik, Pune, and Aurangabad, whereas Kargil, Leh, and
Srinagar are the cities of the other set. The cities in each group are
located nearby.

The lower bound on PV panel size for cities Nashik, Pune, and
Aurangabad are 5 KW, 6 KW, and 6 KW, respectively; whereas
the lower bound on PV panel size for cities Kargil, Leh, and
Srinagar are 6 KW, 7 KW, and 8 KW, respectively. It is notable
that, the lower bound for each set of cities are different, and cannot
be generalized based on locality. This optimal system dimension
for different energy outage constraint are listed in Table 10 for
cities of each set. The cost-optimal system dimension is quite
different for the cities of same set in spite of being in the same
locality and same color zone of heat map. This observation reveals
that, every location has its unique solar profile and needs separate
analysis. In order words, the deployment of SS-BS with optimal
system dimension obtained for dataset of a particular location will
not satisfy the energy outage constraint with the same system
dimension for the other nearby locations. This scenario leads to
deteriorate the QoE perceived by the user as well as revenue
model of operators due to over- or under-dimensioning. To this
end, the proposed framework will play a key role by overcoming
the location dependency of solar profile is system dimensioning,
while sustainability reducing the computation overhead.

8 CONCLUSION

The power consumption model presented here for solar-enabled
system is beneficial for green communication system design,
which also saves significant revenue. In this proposed system char-
acterization, the leftover energy has been modeled using Gaussian
mixture model. Using this developed distribution, lower bounds on
system dimension, i.e., PV panel size and number of battery units,

https://www.nrel.gov/
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Table 8: Computation time (seconds) to find the cost-optimal system dimension using CECoDA and that using exhaustive search ([15], [16]),
with CR = $0, along with percentage saving in computation time

New Delhi Itanagar Las Vegas Kansas
CECoDA [15], [16] CECoDA [15], [16] CECoDA [15], [16] CECoDA [15], [16]

p = 1%
191.69 2776.81 2657.14 281.64 256.14 2575.89 301.29 2477.10

saving = 93.11 % saving = 89.42 % saving = 90.05 % saving = 88.75 %

p = 0.1%
352.03 2782.32 2673.86 523.19 451.29 2584.67 588.30 2489.58

saving = 87.34 % saving = 80.43 % saving = 82.54 % saving =76.37 %

p = 0.01%
582.70 2783.41 2681.43 562.16 730.38 2593.21 779.87 2502.17

saving = 79.05 % saving = 78.97 % saving = 71.84 % saving =68.86 %

Table 9: Computation time (seconds) to find the cost-optimal system dimension using CECoDA and that using exhaustive search ([15], [16]),
with CR = $10, along with percentage saving in computation time

New Delhi Itanagar Las Vegas Kansas
CECoDA [15], [16] CECoDA [15], [16] CECoDA [15], [16] CECoDA [15], [16]

p = 1%
175.87 2754.23 175.87 2754.23 167.31 2583.17 381.02 2487.04

saving = 93.61 % saving = 92.25 % saving = 93.53 % saving = 84.68 %

p = 0.1%
347.87 2767.69 175.87 2754.23 405.73 2596.29 674.79 2504.61

saving = 87.42 % saving = 84.77 % saving = 84.39 % saving = 73.08 %

p = 0.01%
541.28 2769.11 175.87 2754.23 753.94 2609.09 798.53 2519.73

saving = 80.42 % saving = 80.13 % saving = 79.13 % saving = 68.32 %

Table 10: Estimation of cost-optimal system dimension using CECoDA for two sets of cities of India for different energy outage constraint
with CR = $0

Nashik Pune Aurangabad Leh Kargil Srinagar
p = 1% (9,16) (9,18) (9,14) (10,19) (11,20) (14,20)
p = 0.1% (10,26) (11,24) (10,24) (13,25) (16,26) (16,32)
p = 0.01% (10,37) (12,32) (11,32) (14,35) (19,38) (19,42)

have been obtained, which determine the feasible search region
for dimensioning. In the considered context of SS-BS, out of the
total expenditure consisting of CapEx, OpEx, and ImpEx, OpEx
depends on battery life, which has been obtained as a function of
system dimension using curve fitting technique. The total cost has
been proven to be a quasiconvex function, whereas energy outage
has been proven to be convex function of system dimension. These
properties transform the cost-optimal dimensioning problem into
a convex optimization framework, which assures a global optimal
solution. A computationally-efficient algorithm called CECoDA
has been proposed to estimate the cost-optimal dimension while
satisfying the given energy outage constraints without requiring
exhaustive search. Four cities with widely varying solar irradiance,
namely, New Delhi, Itanagar, Las Vegas, and Kansas, have been
considered for numerical evaluation of the proposed dimensioning
framework. Substantial saving in computation time and associated
processing energy consumption along with excellent accuracy
have been observed when applying proposed CECoDA as com-
pared to the competitive exhaustive search based dimensioning.
The computationally-efficient framework presented in this work
will be very helpful to overcome the location-dependent unique
solar profile while dimensioning.
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APPENDIX A
PROOF OF THEOREM 1

Proof: To investigate the nature of multivariate function, it
is important to analyze the Hessian matrix of the given function.
If the Hessian matrix is positive semidefinite matrix in the domain
of definition (nPV ≥ nPVLB

, NB ≥ NBth
), then the function is

convex function. If this condition is not satisfied then, the nature
of eigenvalues of Hessian matrix are investigated.

The total expenditure is given as,

CEx(nPV , NB) =CCapEx(nPV , NB) + COpEx(nPV , NB)+

CImpEx(nPV , NB)

where CCapEx(nPV , NB), COpEx(nPV , NB), and
CImpEx(nPV , NB) are provided in (13), (14), and (18),
respectively.

The Hessian matrix of total expenditure is given as,

HEx = HCapEx +HOpEx +HImpEx

where HCapEx, HOpEx, and HImpEx are the Hes-
sian matrix of CCapEx(nPV , NB), COpEx(nPV , NB), and
CImpEx(nPV , NB), respectively.

The Hessian matrix of CCapEx(nPV , NB) is given by,

HCapEx =

[
0 0
0 0

]
.

Therefore, the CCapEx(nPV , NB) is a convex function of nPV
and NB .

The Hessian matrix of COpEx(nPV , NB) is given as,

HOpEx =

[
h11 h12
h21 h22

]
.

where h11, h12, and h21, and h22 are given in (A.1), (A.2), (A.2),
and (A.3), respectively.

The variation of determinant of HOpEx for three different
cities are shown in Fig. A.1. It can be noted that, |HOpEx|
is not always positive over the domain of definition. Therefore,
COpEx(nPV , NB) is not a convex function of nPV and NB .

On the other hand, the Hessian matrix of CImpEx(nPV , NB)
is given as,

HImpEx =

[
0 0
0 0

]
.

Therefore, CImpEx(nPV , NB) is a convex function of nPV and
NB .

Thus, the Hessian matrix of total expenditure is not positive
semidefinite matrix in the domain of definition. Hence the cost
function is not a convex function of nPV and NB . To characterize
it further, it is important to investigate the nature of eigenvalues of
the Hessian matrix. If the Hessian matrix has at most one negative
eigenvalue, then it is said to be a quasiconvex function. The
plots of maximum and minimum of two eigenvalues are shown
in Fig. A.2 and Fig. A.3, respectively. One can observe that, one
eigenvalue is always positive in the domain of definition, whereas
the other is either negative or positive. This proves quasiconvex
nature of the total cost as a function of nPV and NB .

APPENDIX B
PROOF OF THEOREM 2

Proof: The Hessian matrix of energy outage probability is
given as,

Hout =

[
}11 }12
}21 }22

]
.

where }11 = b10 · e−nPV + b11 ·NB · e−nPV + 4 · b20 · e−2·nPV ,
}12 = −b11 · e−nPV , }21 = −b11 · e−nPV , and }22 = 2 · b02.
The variation of determinant of Hout for three different cities
are shown in Fig. A.4. One can deduce that, the Hessian matrix
is positive definite and hence the energy outage probability is a
convex function of nPV and NB .

APPENDIX C
PROOF OF LEMMA 1

Proof: The total expenditure for a given panel size nPV =
nPV 0

is expressed as:

CEx(nPV , NB)
∣∣∣
nPV =nPV 0

= CPV · nPV 0
+ CB ·

Y

L(nPV 0
, NB)

·NB+

CR · nPV 0
·APV · Y + Call.

To investigate the nature of single variable function, it is
important to investigate the nature of second derivative. The
second derivative of CEx(nPV 0

, NB) with respect to NB is
given in (C-1). The variation of d2CEx(nPV 0

,NB)

dN2
B

versus num-
ber of battery is shown in Fig. A.5 for different panel size
in the domain of definition for different cities . The value of
d2CEx(nPV 0

,NB)

dN2
B

is negative for some panel size. This indicates
that, the CEx(nPV0 , NB) is not a convex function of NB .

Now, the first derivative of CEx(nPV 0 , NB) with respect to
NB is given as,

dCEx(nPV 0
, NB)

dNB
=
L(nPV 0

, NB)−NB · LNB
(nPV 0

, NB)

L2(nPV 0
, NB)

.

The variation of first derivative is shown in Fig. A.6 for different
panel size and different cities. One can observe that, the first
derivative changes sign only once for some panel size, whereas
it does not change sign for some other panel sizes. This proves the
quasiconvex nature of CEx(nPV 0 , NB) as a function of NB for
a given panel size nPV0 .

APPENDIX D
PROOF OF LEMMA 2

Proof: The second derivative of Pout(nPV 0 , NB) is given
as,

d2Pout(nPV 0
, NB)

dN2
B

= 2 · b02.

One can observe from Table 5 that, b02 > 0 for all three cities,
hence Pout(nPV 0

, NB) is a convex function of NB .
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h11 =
−L2(nPV , NB) ·NB · LnPV nPV

(nPV , NB)+2 ·NB · L(nPV , NB) · LnPV
(nPV , NB)

L4(nPV , Nb)

with LnPV
(nPV , NB) =

∂L(nPV , NB)

∂nPV
= a10 + a11 ·NB + 2 · a20 · nPV + 2 · a21 · nPV ·NB + a12 ·N2

B + 3 · a30 · n2PV ,

LnPV nPV
(nPV , NB) =

∂2

∂n2PV
L(nPV , NB) = 2 · a20 + 2 · a21 ·NB + 6 · a30nPV .

(A.1)

h12 = h21 =

−L2(nPV , NB) ·
[
LnPV

(nPV , NB)−NB · LnPV NB
(nPV , NB)

]
+ 2 ·NB · LnPV

(nPV , NB) · L(nPV , NB) · LNB
(nPV , NB)

L4(nPV , Nb)
,

with LnPV NB
(nPV , NB) =

∂2

∂npV ∂NB
L(nPV , NB) = a11 + 2 · a21 · nPV + 2 · a12 ·NB .

(A.2)

h22 =

−L2(nPV , NB) ·
[
LNB

(nPV , NB)−NB · LNB NB
(nPV , NB)− LNB

(nPV , NB)
]
−
[
L(nPV , NB)−

NB · LNB
(nPV , NB)

]
· 2 · L(nPV , NB) · LNB

(nPV , NB)

L4(nPV , Nb)
,

with LNB
(nPV , NB) =

∂

∂NB
L(nPV , NB) = a01 + a11 · nPV + 2 · a02 ·NB + a21 · n2PV + 2 · a12 · nPV ·NB + 3 · a03 ·N2

B ,

LNB NB
(nPV , NB) =

∂2

∂N2
B

L(nPV , NB) = 2 · a02 + 2 · a12 · nPV + 6 · a03 ·NB .

(A.3)

d2CEx(nPV 0
, NB)

dN2
B

=

−L2(nPV 0 , NB) ·
[
LNB

(nPV 0 , NB)−NB · LNB NB
(nPV 0 , NB)− LNB

(nPV 0 , NB)
]

−
[
L(nPV 0 , NB)−NB · LNB

(nPV 0 , NB)
]
· 2 · L(nPV 0 , NB) · LNB

(nPV 0 , NB)

L4(nPV 0 , NB)
.

where LNB
(nPV 0 , NB) and LNB NB

(nPV 0 , NB) can be obtained from (A.3) with nPV = nPV0 .
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Figure A.1: Variation of |HOpEx| versus panel size and number of battery units, for different cities.

7564
50

NB

36
22

86

11nPV

16

×10
5

0

1

2

3

4

5

20

M
a
x
im

u
m

o
f
e
ig
e
n
v
a
lu
e
s

(a) New Delhi

7564
50

NB

36
22

88

13nPV

18

×10
5

5

4

2

1

0

3

20

M
a
x
im

u
m

o
f
e
ig
e
n
v
a
lu
e
s

(b) Itanagar

7564
50

NB

36
22

85

10

15
nPV

×10
5

0

2

4

6

8

20

M
a
x
im

u
m

o
f
e
ig
e
n
v
a
lu
e
s

(c) Las Vegas

7564
50

NB

36
22

87

12nPV

17

×10
4

0

1

2

3

20

M
a
x
im

u
m

o
f
e
ig
e
n
v
a
lu
e
s

(d) Kansas

Figure A.2: Variation of maximum of eigenvalues versus panel size and number of battery units, for different cities.
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Figure A.3: Variation of minimum of eigenvalues versus panel size and number of battery units, for different cities.
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Figure A.4: Variation of |HOut| versus panel size and number of battery units, for different cities.
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Figure A.5: Variation of second derivative versus number of battery units for different panel size, for different cities.
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Figure A.6: Variation of first derivative versus number of battery units for different panel size, for different cities.
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