Fiber design—from optical mode to index profile
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1 Introduction 2 Formalism

Recently, the customization of fiber designs has becomeThe Helmholtz equation of thE field is given by
increasingly important. For example, in the dense

wavelength-diyision multiplexing systems, hl'mdreds' of V2E+k§n2E—V(V-E)=O, (1)
channels at different wavelengths propagate in one fiber.

Boosted by the Er-doped fiber amplifiers, signals can trans-

mit over a very long distance without requiring electronic Wherek, is the magnitude of the wave vector, amds the
regeneration. In such systems, the optical nonlinearity canindex profile of the waveguide. For a linearly polarized
limit the performancé:? To alleviate the problem, fibers Mode in a cylindrical fiber, Eq1) becomes

with a large effective area are developed.There are

many applications that can benefit from custom-mode pat- 9 (1 deE\ 1 JE
terns. For example, fibers with an apodized mode can oﬁer;(; 7)

high uniformity in intensity for industrial and medical ap-
plications. In designing new fibers, the index profile is the

key?® Designs derived from experiences are verified through yvheree is the dielectric constant, amiky is the effecﬂye
the fabrication and testing cycles or through numerical index of the mode: The angular dependence otfiield s
simulations. assumed to be exipg). When the d!ﬁ‘erence betvv_een |nd|-_
Many methods were developed in the past to simulate C€S Of the core and the cladding is small, the field and its
. ; . o derivative are continuous across the dielectric interface. In
optical wavgguldes. Among them is the effectwe |nde>.< the scalar-field approximation, theerms in Eq(2) cancel,
method, which reduces a channel waveguide to a easilytajjitating the derivation of index profile from the effective
solvable planar waveguidé Since fast computers are index of the mode and the modal profile.
readily available, computationally intensive codes, such as  From the modal profile and the effective index, a unique
the beam propagation metha®PM), have been estab- index profile can be calculated. If only the modal profile is
lished for simulations of waveguid@s? The original BPM of concern, one can find different index profiles supporting
uses the paraxial, scalar-field approximations. Many BPM the same modal profile by using the effective index as an
codes, including, the finite-difference, semivectorial, vecto- adjustable parameter. However, the choice of the effective
rial, and large-angle analyses, have been devel&jédin index is not completely arbitrary. Since the index change in
BPM calculations, the index profile is used as the input. a fiber is limited, an arbitrarily chosen effective index may

From the index profile, the modal characteristics are ob- notv\llead totﬁn ]gx'[:t)eréjr%entally rgahza?le pber_. ing E
tained. There are reports on running BPM in the cylindrical ®) aﬁdu}snecoﬁdlunét?r; rerence . Iscretization in soving =q.
. z : . g the BPM:
coordinate systert?-?*Most of them deal with the bending
loss. However, to our knowledge, there has been no prior )
effort to derive the index profile from the modal profile, E(z+A7)= 2ikon, +LAZ/2 E2) 3
probably because the loss and dispersion are considered to 2ikgn,—LAZ/2 '
be more crucial.
In this paper, we demonstrate that one can derive the, - _ _
index profile from the desired modal characteristics. We Ei=ali 1 -biE+cEi, @
also present the finite-difference beam propagation code in
the cylindrical coordinate system. This procedure may ex- 2ni2_1 1 1

pedite the development of new fibers. a'_n-2+ni2 Ar?  2rAr’ (5)

|2

Fa—r—r—2E+kg(n2—n§ﬁ)E=O, (2)
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®) y: L] |
3 ,e) LT
2n?,, 1 1 e ),e" her @D
Ci= o 2 32t 5 Ar (7) E™¢ -6
ni+ni., Ars 2riAr = i aF
g -40 o B
wheren, is the reference index. By focusing on dnealue ‘g e o
at a time, it is very efficient to run the 1-D BPM code. In ; £ /G o
our simulations, we use a 16am calculation window dis- > -0 it
cretized into 1600 grid points. To avoid singularity rat o v
=0, the center of the fiber is located in between two grids. =100 §#
The efficiency of the code can be improved by implement- 120 [_;r
ing the absorbing boundary condition. Since the run time of F
the current code on a personal computer is only a few sec- _ygg tooe b b b beenn e e b a1
onds, the efficiency is not a concern at this time. 08 08 1 11 12 13 414 15 16 17
High accuracy is required to calculate the group velocity Wavelength ( um)

dispersion and the effective mode area. This is achieved by

using the iterative BPM. Initially, a Gaussian beam is Fig. 1 Group velocity dispersion of a step-index fiber shown as the
launched into the waveguide, as in the conventional BPM, solid curve and a dispersion-shifted fiber shown as the dotted curve.
to obtain the approximate modal profile and index. The Calculated data points are also shown.

modal profile obtained is relaunched to obtain modal prop-

erties with high accuracy. To find the wavelength depen-

dence, the finite-difference BPM is carried out repetitivel . ) . . .
for a series Iofl Wa\;elengths. I I ut repetitively the field is at half maximum and the slope of tadield is

The BPM code can handle both the single-mode and continuous. The effective index of the mode is assumed to
multimode fibers. In the case of multimode fibers, LP De 1.45. TheE field and the derived index profile are
modes corresponding to the same order of the Bessel func-shown in Fig. 2. Applying the BPM to the index profile, we
tion are obtained by the simulation code together as aconfirm that theE field calculated by the BPM from the
group. In this paper, we focus on the single-mode fiber. derived index profile is indistinguishable from the original

E field. The index in the core and the cladding is not uni-
3 Results form due to the.second term in EQZ)..
_ o ) Among a variety of numerical designs explored, the fol-
To evaluate the_ BPM code in the cylindrical coordinate lowing design provides an apodized mode. Ehdield is
system, we simulate the fundamental mode of a ghown in Fig. 3 along with the index profile. The effective
well-establishetf step-index fiber, namely, Coming SMF-  index of the mode is 1.453 and the effective mode area is

28, with a core diameter of 8.2m. The cladding index is 2 ; ; _
that of the pure silica and the core index is incredeg 75.5um” (Ref. 9 at 1.55um (Ref. 5. Itis a single-mode

0.36%. The calculated mode field diameter at 1550 nm is

9.8 um, while the specification is 10:40.8 um. We also 100 1.48
simulate a dispersion-shifted fiber with a triangular index :

profile in the core regiof? The index at the center of the 80 ‘\

core is increased by 1.1%. The full diameter of the core is  gq E

6.2 um. The raised outer ring is located between 4 and 5.5 \ — 1.455

pm with an increase in index of 0.2%. Results of the di- 70
rectly calculated group velocity dispersion, which is much = gq
more sensitive to the accuracy of the simulation code than =
the modal profile, are shown in Fig. 1. They match well & 50
with the published results. For SMF-28, the specification of = 4q
the zero-dispersion wavelength is 1302,
<1322 nm.

To verify that the index profile can be derived from the 20
mode pattern, we consider a classical, closed-farfield:
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Fig. 2 Mode profile, i.e., E field, defined by Eq. (8) and the index

. . profile derived from the modal characteristics. The solid curve is the
The boundary between the cosine function and the ex- E field with the peak normalized to 100% and the dotted curve is the

ponential function is located at=5 xm. At the boundary, index profile.
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Fig. 3 Profile of an apodized fundamental mode, shown as the solid
curve, with an effective mode area of 75.5 um? at the wavelength of
1.55 um and the corresponding index profile, shown as the dotted
curve.

12.

13.

guide with a core diameter of 9.6m. From numerical
simulations, we conclude that to obtain an apodized mode,
the index profile should have a large radius of curvature,
i.e., nearly flat, at the center. The index at the center should
also match the effective index of the mode.

It is interesting to examine the index profile required to

support a tightly confined mode for the near-field scanning 16

optical microscopé® To guide a mode similar to what is
shown in Fig. 1 but with a full width at half maximum of
40 nm at the wavelength of 488 nm, one would require a
difference in dielectric constants between the core and clad-
ding of 73.4. Although there is no material system with *
such a large difference in dielectric constants at the present

time, deriving the index profile from modal characteristics 19.

provides a direction for future exploration. The current pro-
cedure is also limited to the mode profile. For long-haul
transmission, the group velocity dispersion plays a very

important role. It is yet to be explored whether it is possible 21

to derive the self-consistent index profile from the desired
group velocity dispersion.

4 Conclusion

We presented a BPM code in the cylindrical coordinate 24

system that is very efficient for determining modal proper-

ties of fibers. By examining the inverse problem, we also 75

demonstrated that it is possible to derive the index profile
from specific modal characteristics. The procedure is appli-
cable to waveguides with a small index difference. A design
yielding apodized mode profile was presented. Such a pro-
cedure can expedite the development of special fibers.
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