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A Low Cost Outdoor Air Pollution Monitoring
Device with Power Controlled Built-In PM Sensor

Payali Das, Sushmita Ghosh, Shouri Chatterjee, and Swades De

Abstract— Recent advances in wireless communication technology and the Internet of Things (IoT) have provided an
opportunity for mass deployment of low cost sensor nodes to measure air pollution in real-time over a large geographical
area. This article presents the design of a low cost, innovative Air Pollution Monitoring Device (APMD) along with the
evaluation of its advanced features. An on-board Particulate Matter (PM) sensor is designed to measure PM2.5 and PM10.
APMD additionally has electrochemical sensors to measure carbon monoxide, sulphur dioxide, nitrogen dioxide, ozone,
besides temperature and humidity sensors. The node is equipped with a solar energy harvesting unit and a rechargeable
battery as a backup to power up the module. By utilizing an on-board GPS subsystem, APMD packs all these gathered air
quality data in a frame with physical location, time, and date, and sends them to a cloud server. The node can communicate
through WiFi and NB-IoT connectivity. For validating the quality of sensing, the developed APMD was co-located with an
accurate reference sensor node and a series of field data were collected over seven days. In a fully ON state, the on-board
PM sensor saves up to 94% energy while maintaining root mean square error (RMSE) of 0.58 for PM2.5 and 2.5 for PM10.
A power control mechanism is also applied on the PM sensor to control the speed of the fan by applying a pulse width
modulated (PWM) signal at the switch connected to the power supply of fan. At 100 ms switching period with 30% duty
cycle, the on-board PM sensor is 97% energy efficient compared to the commercial sensor, while maintaining sensing
error (RMSE) as low as 0.7 for PM2.5 and 2.7 for PM10. Our outdoor deployment studies demonstrate that the designed
APMD is 90.8% more power efficient than the reference setup with significantly higher coverage range, while maintaining
an acceptable range of sensing error.

Index Terms— Air pollution monitoring device, temporal correlation, in-built PM sensor, optimum sampling interval,
ambient energy harvesting

I. INTRODUCTION

Air pollution in urban areas has many harmful effects on hu-
mans and the environment. Air contamination is mainly caused
by vehicles and industries which cause various respiratory
diseases, such as asthma and sinusitis. The health effects of
air pollution are serious; one-third of deaths from stroke, lung
cancer, and heart disease are due to air pollution. Microscopic
Particulate Matters (PMs) in the air can slip past human body
defenses, penetrating deep into our respiratory and circulatory
system, damaging our lungs, heart, and brain. World Health
Organization (WHO) air quality model confirms that 92%
of the world’s population lives in places where air quality
levels exceed WHO prescribed safety limits. Nearly 90% of
air-pollution-related deaths occur in low- and middle-income
countries, with nearly 2 out of 3 occurring in WHO’s South-
East Asia and Western Pacific regions [1]. Hence pollution
localization and large scale sensing are needed which requires
low cost and energy sustainable pollution monitoring nodes to
be deployed on a large scale; sparsely deployed monitors are
unable to do this job effectively.

The steady advancement of Internet of Things (IoT) tech-
nology, sensor technology, and information communication
technology (ICT) has enabled us to monitor the environment
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in which people work and live, at any time [2]. The work in
[3] reported multiple connectivity based environment moni-
toring system. Here a sensing system using sensor arrays was
developed to monitor indoor as well as outdoor environments.
However, these systems are costly and may not be suitable for
large-scale deployment.

More than 21.5 billion interconnected devices are currently
available in the world which is expected to grow by 500 billion
by 2030 [4]. Newer solutions of wireless network technologies
are therefore required to support the fast development and
adoption of IoT. This is also essential due to the specific
requirements and characteristics of IoT devices such as low
power consumption, long-range, low cost, and security. The
storage and processing capabilities are also restricted by the
resources available, which are often very constrained due
to limitations of size, energy, and computational capability.
Thus, context-specific affordable implementation of IoT is
of pertinent importance [5]. To this end, narrow band IoT
(NB-IoT) is considered a promising wireless communications
technology for IoT because of its super coverage extension, a
massive number of connections, and low power requirement.
In Low Power Wide Area (LPWA) networks, NB-IoT con-
nectivity is widely applicable in application scenarios, such as
environment monitoring, smart metering, smart parking, smart
home, smart tracking, and e-health [6].

Despite the evolution of low power communication ca-
pabilities, environmental pollution sensing IoT devices are
inherently energy hungry. This is because the sensing activity



itself involves various electrical and electrochemical activities.
Therefore, for scalability, cost, and convenience, developing
more energy-efficient sensing is of significant interest in the
research community. An associated concern from open hand
convenience is the reliability of sensed data using low cost
miniature IoT sensor nodes and the possibility of automated
self correction of the sensed data accuracy.

A. Literature Survey

Quite a few works have been reported in the literature
on developing air pollution sensing devices to monitor the
pollutants in the environment. In [3], an indoor environment
pollution gas monitoring system with CO and CO2, includ-
ing a sensor array was implemented in hardware using a
DSP board for real-time processing. Another study in [2]
developed an Indoor Air Quality Device (IAQD) by using
advanced IoT techniques. Five parameters could be detected
by IAQD: humidity, temperature, formaldehyde, CO2, and
PM2.5. To make the system handy with different applications,
IAQD was designed with multiple communication interfaces,
including LoRa, NB-IoT, RS485, and WiFi. Zigbee based
wireless indoor air quality monitoring system was developed
in [7], [8]. However, as the sensors use resistive heating,
low battery lifetime is one of the major drawbacks of the
system. The sensor module prototype was designed with a
WaspMote from Libelium Communications. A low-power air
quality monitoring board CitiSense was presented in [9],
where low cost wearable sensor nodes are used along with
smart phones to monitor the environment. CO, NO2, O3,
temperature, humidity, and barometric pressure are sensed and
the data is communicated via Bluetooth. LoRaWAN based
air pollution monitoring systems are developed in [10]–[12].
However, these prototypes are not energy efficient and have
complex system architecture. The design of a metropolitan
air pollution monitoring system Haze Watch is described in
[13]. This battery powered node utilized Bluetooth technology
for communicating data to a cloud server. The measured
values of CO, NO2, and O3 were then accessible through a
mobile application. In the project MAQUMON [14], a portable
wireless sensor node was developed for measuring O3, NO2,
and CO. These autonomous units have on-board GPS and flash
for storage and use GPS for communication purposes. In [15]
an air quality monitoring system is described. However, this
Bluetooth based sensor box has a low communication range,
and no validation of data accuracy is performed. A GPRS
based sensor system is described in [16]. This mobile data
acquisition unit measures CO, NO2, and SO2 from the ambient
environment. The pollution server is interfaced with Google
maps to display real-time pollution values. A wireless sensing
system was designed in [17] that uploads the gathered sensor
data to the server using a mobile network. However, any field
testing or validation results were not reported.

B. Research Gap and Motivation

Due to the technological limitation of pollution source
localization, enforcement of emission norms is still not settled.

Network-capable low cost and low energy consuming pollu-
tion monitoring devices are needed for pollution localization.
Scientific ways of air pollution monitoring and identification
of the causes of air pollution are very limited in developing
countries. For example, in India, Delhi region has only 36
Pollution Measuring Stations and cannot scale further [18].

In [19], a mobile air pollution monitoring framework was
proposed. However, it did not present any test-bed setup. It
considered WiFi based connectivity which is power hungry.
In [10], low cost sensor development was reported based on
LoRa connectivity. This approach may not work well in a
massive deployment scenario. The maximum coupling loss
(MCL) is the limit value of service delivery which in turn
defines the range of service [20]. The uplink MCL in LoRa
is 165 dB which provides up to 15 km coverage range,
whereas in NB-IoT it is up to 169 dB which ensures up to 35
km coverage range [21]. Therefore, for better communication
energy efficiency in our design we have chosen NB-IoT as
the preferred communication technology. The work reported
in [2], primarily focused its study on indoor environments.

Requirement of air pollution monitoring includes massive
deployment of sensor nodes for pollution source localization
while accounting for uninterrupted operation. Battery powered
systems can not serve this goal efficiently. Energy harvesting
devices are self-sustainable and can be deployed easily at
remote locations. This is in contrast with the deployment of
battery-operated devices which is not scalable due to the need
for occasional battery replacement. Majority of previous works
had WiFi or Bluetooth as the communication interface, which
has low range and consumes high energy for communication.
This drawback makes it hard to deploy the sensor nodes
outdoor on a massive scale. To address the prevailing issues
in pollution localization and large scale monitoring, this
paper reports design of a low energy consuming air pollution
monitoring device, including PM sensor, NB-IoT radio module,
a monitoring/processing unit, and solar energy harvesting
capability. In this work, outdoor pollution monitoring is con-
sidered as the primary application.

According to [22], the PM sensor consumes the highest
energy among all the air pollution monitoring sensors, which
reduces the battery lifetime. To devise a self-sustainable
APMD, a low energy consuming PM sensor is developed which
uses LED light scattering principle in contrast to the laser
light scattering principle that the commercial PM sensors
use. To further optimize the energy consumption of the on-
board PM sensor, this paper also proposes a power control
mechanism by switching the power supply of the fan. The aim
is to make the device self-sustainable while maintaining the
sensing quality within the acceptable range.

C. Contribution and Significance

The key contributions and significance are as follows:
1) We report the design of a low cost, energy-efficient

multi-sensing module for air pollution monitoring, called
advanced pollution monitoring device (APMD), which
is equipped for monitoring eight environmental pa-
rameters, namely, NO2, SO2, CO, O3, PM2.5, PM10,
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temperature, and humidity, along with alternative radio
interfaces, NB-IoT or WiFi, for communication.

2) PM sensor module consumes the highest power; it is
replaced by our innovative on-board PM sensor that
saves up to 94% energy compared to the traditional one.

3) A power control mechanism is also developed to control
the power of the on-board PM sensor by switching the
power supply of the fan. Applying a PWM signal of
100 ms with 30% duty cycle at the switch, the designed
on-board PM sensor saves 97% energy compared to the
traditional PM sensor, while the sensing error of RMSE
= 0.7 for PM2.5 and RMSE = 2.7 for PM10.

4) The designed APMD is 90.8% and 98.3% more power
efficient compared to a reference prototype and com-
mercially available competitive devices, respectively.

5) With its very low energy consumption footprint, the
device is capable to operate using solar power, thus
achieving energy sustainable/green sensing solution.

Organization: The system design and implementation strat-
egy is presented in Section II, followed by brief descriptions of
the different basic modules used in hardware implementation
in Section III. Section IV describes the design of the on-
board PM sensor along with its power control mechanism.
The prototype design is presented in Section V, followed by
results and conclusion in Sections VI and VII, respectively.

II. SYSTEM DESIGN AND IMPLEMENTATION

The system-level block diagram of APMD is shown in Fig.
1. It comprises five active subsystems, i.e., a microcontroller
module, a radio module, sensor module, power module, and
a cloud platform to store and display the collected data. The
controller unit is responsible for monitoring the data collected
by the sensors. The radio module is equipped with NB-IoT
and WiFi to send data to the cloud platform. Based on the
application and feasibility APMD can connect with any of
these two protocols. The APMD consists of 8 sensors: four gas
sensors CO, SO2, NO2, O3, two PM sensors to detect PM2.5,
PM10, along with temperature and humidity sensor. In the
power module, a solar panel harvests the required power which
is stored into a LiPo battery to supply power to the system
during low light hours. The collected data is communicated
to the cloud (ThingSpeak cloud platform) for storage/display.
The APMD consists of a memory element to store data locally.
An on-board GPS subsystem is incorporated for accurate geo-
tagging. Our developed low power APMD could be used for
energy sustainable pollution localization by deploying in a
massive network. Fig. 2 shows a pictorial view of a large-
scale network of APMD with WiFi and NB-IoT connectivity.

A. Sensor Selection
The PM sensor is used to monitor PM2.5 and PM10 dust

particles. Pollutants emitted from automobiles, industries, and
power plants consist of SO2 and NO. Fine particles, i.e.,
particles less than 2.5 µm in diameter, pose the highest health
risk. Longer exposures to elevated concentrations of NO2

may contribute to the development of asthma and respira-
tory infections. Ozone can aggravate lung diseases such as

Fig. 1: Block diagram of proposed self-sustainable APMD.

Fig. 2: Massively deployed APMD network with NB-IoT and
WiFi connectivity.

asthma, emphysema, and chronic bronchitis, particularly for
children, the elderly, and people of all ages who have lung
diseases. SO2 is linked to cardiovascular disease. Carbon
monoxide symptoms mimic the flu: loss of consciousness,
brain damage, heart irregularity, breathing difficulties, muscle
weakness, abortions, and even death. Because the symptoms
mimic so many illnesses, it is often misdiagnosed. Finally, the
temperature and humidity sensor is also selected to monitor the
comfort of people’s working and living environments, as well
as the impact of temperature and humidity on the parameters
of the other three sensors.

B. Communication Technologies

1) NB-IoT: NB-IoT is an LPWA technology set up by 3GPP
Release 16. It supports cellular data connection for low power
devices in WAN. New physical layer signals and channels
are designed to meet the demanding requirement of extended
coverage – rural and deep indoors along with ultra-low device
complexity and low-power operating modes. With an existing
network gain of 20 dB, NB-IoT can increase the coverage area
by 100 times. The NB-IoT communication is more suitable for
low power applications compared with GPRS communication.
The time-slotted synchronous protocol is optimal for Quality

3



of Service (QoS). Due to the trade-off between QoS and high
spectrum cost, NB-IoT is preferred in applications where QoS
is needed. For applications that require low latency (<10 s)and
a high data rate, NB-IoT is the better choice. NB-IoT focuses
mainly on the MTC class of devices that are installed at places
far from the usual reach. It can be deployed by reusing and
upgrading the existing cellular network but its deployments are
restricted to the area supported by the cellular network [21].
The kind of IoT applications, where the duty cycle is not the
limit but more frequent communication is the need, could be
efficiently served by NB-IoT.

2) WiFi: IEEE 802.11 standard defines the IP based wireless
technology WiFi. WiFi provides secure, reliable and high-
speed communication. WiFi transmits at 2.4 GHz or 5 GHz
and this enables the signal to carry more data. However, it
has a trade-off between power consumption, bandwidth, and
range. Typically 100 m range is common in router based WiFi
deployment which is not a suitable option for IoT application
that needs to be connected with massive node deployment
over a large geographical area. Over a 24 hours data reporting
interval, the energy consumption of WiFi is 71.4 % more than
that of NB-IoT [22]. IoT application where power and range
are not a constraint and a large amount of data that need to be
sent to the network can have the benefit of WiFi technology,
the home security system could be a good example.

III. BASIC MODULES OF APMD
A. Power Module

The sensor mote is powered by a 0.5/3 V solar panel.
Texas Instruments bq25504 energy harvester is used to harvest
energy from the solar to a 5 V - 4000 mAh LiPo battery. Fig.
3 shows the system block diagram for solar energy harvester
and power management design of APMD. The battery is
used to power up the mote at night hours and also during
the low sun-hour days. The mote operates at 3.3V. Low
drop-out regulator (LDO) and DC-DC converter are used for
power management purposes. The sensor node has both fixed
and variable current (i.e., power) draws. The fixed draw is
required regardless of whether measurements are being taken.
During the measurement cycle, the current consumption of
Alphasense AFE A4, Alphasense OPC N3 and DHT11 is
2.019 mA, 187 mA and 0.3 mA respectively. However, the
current consumption of our designed PM sensor is 80.41 mA
at 3.3V operating voltage.

B. MCU and Radio Module
The developed sensor mote utilizes an STM32L476RG mi-

crocontroller with Simcom 7020C NB-IoT radio. The micro-
controller provides the embedded computation for measuring
the signals from the sensors as well as implements the radio
control. Five ADC channels are required for collecting the
sensor data, two for each of the gas sensors, and one for
the PM sensor. The temperature/humidity sensor uses the I2C
protocol to transfer data. General-purpose input-output (GPIO)
pins are used to control the fan and the PM sensor.

Fig. 4 shows the design of the radio module interface with
the microcontroller. SIM 7020C NB-IoT module provides a

Fig. 3: Solar energy harvester and power management system
with Buck converter and LDO.

1.8 V UART interface. A level translator is needed as the
application is equipped with a 3.3 V UART. TXB0108PWR
provided by Texas Instruments is used for this purpose. Before
transmission, the data from the five sensors are grouped into
a 128-bit packet and transmitted at a carrier frequency of 900
MHz. The NB-IoT module is connected to the SIM card and
antenna. The SIM card, the NB-IoT module, and the antenna
are core components to enable NB-IoT communications.

The system can connect the ESP8266 WiFi module with
UART as a backward compatibility in case of unavailability
of NB-IoT. However, WiFi is much power intensive and must
have a suitable power supply (e.g., mains) while connected
with the node. FGPMMOPA6H GPS module is utilized for
accurate geo-tagging purpose.

Fig. 4: NB-IoT and WiFi interface with microcontroller

C. Sensing Module

APMD is connected with an off-the-shelf Alphasense AFE-
A4 gas sensor module for measuring NO2, SO2, CO, and O3

[23]. During the measurement period, the power consumptions
of these sensors are 1.6 mW, 1.6 mW, 1.5 mW, and 1 mW
respectively while having an average response time ≤45 s.
The APMD is also connected with DHT 11 [24] for collecting
ambient temperature and humidity levels. We have designed
on-board PM sensor to measure different particulate matter
concentrations which is described in IV.

IV. DESIGN OF PM SENSOR AND ITS POWER CONTROL
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Fig. 5: PM sensor circuitry.

Fig. 6: Power control mechanism for PM sensor.

A. Basic PM Sensor Design

Various techniques are there to measure the suspended
PM in the air. In an optical based PM measurement system,
the properties of absorption and light scattering are utilized
to measure different particle count, size and concentration
separately. In order to optimize the cost and energy efficiency,
without compromising on the quality of sensing, we chose
to use a light emitting diode (LED) and a photodetector in
our designed PM sensor. The PM sensor is developed using
LED light scattering principle in contrast to the laser light
scattering principle that the commercial PM sensors use. The
basic components include a light source (LED) directed toward
the particles, a photodetector to measure the light absorbed
(or scattered) by the particles, an Analog Front End (AFE) to
interface with the detector, and signal processing to analyze
the output from the AFE. However, these instruments differ
in cost, complexity, and accuracy. The designed PM sensor
is able to detect particle matter with a diameter of 2.5 µm -
10 µm (PM10) and diameter less than 2.5 µm (PM2.5). The
output from the photodiode is filtered and amplified to generate
an output signal which is then fed to the microcontroller for
further processing. To convert the photodetector output current
into a voltage, the trans-impedance stage uses an OPA2320
dual package precision operational amplifier (op-amp) and
an INA132 single supply difference amplifier. The filter and

amplification stages use the OPA2320 op-amp with a tunable
gain and basic RC filters. A light-emitting diode (LED) driver
with an adjustable LED current is also included in the design.
A complete design is referred in Fig. 5. The fan is a 5 V
single-phase four-pole brushless dc motor with a flow rate of
1415.84 cm3/s at a current drawn of 66 mA.

B. Power Control of On-Board PM Sensor
The PM sensor module consists of the AFE for sensing and

the fan for blowing outside air inside the sensor. The fan is
the most power-consuming, taking 0.33 W alone, whereas the
AFE consumes only 0.079 W during the measurement period.
To control the fan power consumption, we apply a PWM signal
at the gate of the switch connected to fan input. When the
sensor is ON, the microcontroller controls the duty cycle of
the PWM signal which reduces the power consumption. The
block diagram of this strategy is shown in Fig. 6. We use
MOSFETs as switches for both turning ON the AFE and for
providing PWM signal to the fan. We can turn on the fan
using both 5 V, 66 mA or 3.3 V, 44 mA DC supply voltage.
With 3.3 V at the drain and applying the PWM signal to the
gate of MOSFET switch, we get 2.8 V at the source, which
is connected to the power supply of the fan. Thus, the voltage
drop across the switch is 0.5 V. It has been observed that the
current drawn by the fan is constant at 100 ms switching period
of the PWM signal. A minimum of 30% duty cycle should be
applied to PWM signal. The fan is completely turned OFF for
a duty cycle D < 30%, which takes more than 30ms to turn
ON at the next switching cycle. To avoid complete turn OFF,
the duty cycle should be ≥ 30%. The current drawn by the
fan and the respective power consumption at different duty
cycles are shown in Fig. 7. The power consumption of the
OPC N3 PM sensor and the onboard PM sensor are listed in
Table I. A four degree polynomial fits the current profile with
R2 = 0.999. Similarly, the power consumption profile also can
be expressed as a four degree polynomial with R2 = 0.999.
Thus, an optimum duty cycle can be chosen to minimize the
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(a) (b)

Fig. 7: (a) Current and (b) Power consumption of PM sensor fan with changing duty cycle.

TABLE I: Power consumption of on-board PM sensor

Current
(mA)

Voltage
(V)

Power
(W)

PM Sensor Circuit 24 3.3 0.079

PM sensor fan Without applying
PWM

66 5 0.33

With PWM 6 2.8 0.016

power consumption of the PM sensor such that the sensor error
is within the acceptable range. Estimation of optimum value
of D based on the sensing error is discussed in Section VI-A.

V. PROTOTYPE DESIGN

In this section, we discuss the design and implementation
of APMD, as illustrated in Fig. 8. Specifically, in the designed
system, pollution sensing, monitoring, and communication are
addressed. The sensed data are collected locally as well as
transmitted to an IoT cloud platform. In our design, we use the
Mathworks cloud platform, named ThingSpeak. The user app
is used to connect the users and application server, or request
real-time data from NB-IoT devices via a cloud platform.
Since it is easy to develop the user app and application
server (many companies provide such a tailored development
service), we focus on the technical part of the system, i.e., the
design of the development board for NB-IoT devices, firmware
design and implementation to enable data sensing, computing,
communication, and cloud service configuration.

A. APMD Board Design
As discussed in Section III-A, the developed monitoring

device consists of a solar energy harvester as a renewable
source of energy and a LiPo battery as backup. The com-
munication protocol employed is NB-IoT (5G eMTC) and/or
WiFi. SIM7020C is used as an NB-IoT module in the APMD.
It can work on multi-band NB-IoT and consumes extremely
low power in sleep mode and idle mode. The device can
operate at 2.1 V - 3.6 V. During transmission it takes 110
mA current from a 3.3 V supply at 23 dBm output power.
The typical data rate of SIM7020C is 26.15 kbps. The device
is capable of collecting nine air pollution parameters which
include three PM sensing parameters, namely, PM2.5, PM10,
four gas concentration measuring parameters: SO2, NO2, O3,
CO, along with temperature and humidity. The board is also

incorporated with a 512 kB EEPROM to store all the data
samples in it for up to 32 hours. In 1 hour the sensors collect
a total of 504 samples based on a fixed sampling rate and each
sample takes 4 bytes in the memory, that can be retrieved at
any time. This stationary sensor mote was deployed at different
fixed points and real-time data is updated in a cloud database
using the ThingSpeak cloud platform.

The PM sensor design described in Section IV, is in-
corporated in APMD. Fig. 8 shows the designed prototype
incorporating the PM sensor on the backside of the board.

For outdoor deployment, the node is planned to be enclosed
with IP67 rated case, with a solar panel placed on top of
the enclosed package. The enclosure is designed to have air
vents to pass air through it so that the fan of the PM sensor
can draw air to take a new pollutant measurement. After the
PM sensor, the air is directed towards the gas sensors and
temperature/humidity sensor.

B. Data Collection Setup

As discussed in Section III, the proposed prototype is
designed to monitor the environmental parameters such as
temperature, humidity, PM10, PM2.5, NO2, Ozone, CO, SO2.
Fig. 9 shows a typical data collection setup. Initially, the
sensing parameters are sampled at a high sampling rate to
analyze the variation profile of the signals. Let P be the
total number of parameters. To find an optimum sampling
interval for each parameter, the power spectral density (PSD)
of that parameter is studied. If 99% of the total power is
concentrated within the frequency range {Fmin, Fmax}, the
maximum frequency of the pth signal can be denoted as F p

m =
Fmax. Thus, according to the Nyquist theorem, the minimum
sampling frequency for the faithful reconstruction of the signal
is given by, F p

s = 2F p
m. It has been observed that the sampling

frequency is different for different parameters. To simplify
the process, Fsmax = max(F 1

s , F
2
s , . . . , F

P
s ) is considered

as the sampling frequency for all the P parameters. Hence,
Ts = 1

Fsmax
is the sampling interval of all the parameters.

The sensor board wakes up and collects samples from all
the sensors after every Ts period, else it remains in sleep
mode. Due to the slowly varying nature of the parameters,
the data need not be transmitted immediately. Instead, the
samples collected by the sensors are stored in the memory and
transmitted after a fixed period, called data collection interval.
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(a) Bottom side of the board (b) Top side of the board

Fig. 8: APMD includes the STM32L476RG microcontroller, NB-IoT module, solar harvester, memory, and PM sensor.

To find an optimum data collection interval, the temporal
correlation is studied for all the parameters. Let ζp be the
time slot to find temporal correlation for pth parameter, where
the duration of each slot is Ts and the temporal correlation of
the pth parameter is above 0.9 for ζp ≤ ζp∗. Hence ζp∗ is the
optimum data collection interval for the pth parameter. Again
for simplicity of the process, L = min(ζ1

∗
, ζ2

∗
, . . . , ζP

∗
) is

considered as the optimum data collection interval of all the P
parameters. At the end of every L period, the samples stored
in the memory are transmitted to the base station using the
radio module of the sensor node.

Fig. 9: Data collection setup.

The on-board PM sensor of the designed APMD is de-
veloped based on the designed circuitry provided in [25].
The sensors always introduce some errors while sensing the
environment. Moreover, in the designed prototype the on-
board PM sensor may have some design error. Thus, it is
important to validate the efficiency of the on-board PM sensor.
Since, OPC N3 PM sensor is commercially available and
reliable, though high energy consuming and costly compared
to the PM sensor given in [25], OPC N3 PM sensor data are

considered as a reference to compare with data collected by
our designed on-board PM sensor.

The on-board PM data collected from the experimental
setup, shown in Fig. 9 have been stored in the cloud. It has
been observed that the on-board PM data is slightly different
from the actual data collected from the OPC N3 PM sensor,
which infers that the on-board PM data need to be calibrated
with respect to the reference data to reduce the sensing
error. To calibrate the on-board PM sensor data, a polynomial
regressor model is proposed in this work. Among the various
machine learning models, proposed in the literature for sensor
calibration, the polynomial regressor model is less complex
with comparatively lower prediction error [26]. Hence, the
polynomial regressor model is used to predict or calibrate the
actual data from the sensed data.

C. Firmware Development
One core component in APMD is the system firmware,

specifying sensor activation, sampling rate, data processing,
and transmitting to the cloud platform. We have designed and
implemented the firmware in the APMD using the ATMEL
Studio integrated development environment (IDE).

A schematic of the system firmware flow is shown in Fig.
10. Initially, the sensors and the communication module are
in power-down mode. The sensors are activated periodically
to collect samples; they are turned off to reduce power
consumption. The sensed data are stored in the memory. At the
end of each measurement cycle L, the stored data are retrieved
from the memory. The NB-IoT module is activated and the
data are transmitted to the cloud. The memory is cleared to
store the new samples collected at the next measurement cycle.
In between two data collection periods, the microcontroller is
put into deep sleep mode for Ts Sec.

NB-IoT supports two technical low-power modes, named
power saving mode (PSM) and extended discontinuous recep-
tion. We use the PSM as the main power-saving mechanism
in our design. By using this, NB-IoT will enter into the sleep
mode in which it can be waken up by the nearby base station.
Hence, in PSM mode, nearby base stations are not able to
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Fig. 10: Firmware flow

initialize communications with the NB-IoT device. APMD
utilizing NB-IoT will be in PSM or sleep mode most of the
time, hence leading to significant power saving.

VI. RESULTS AND DISCUSSION

The experimental results of the designed APMD are dis-
cussed in this Section. To evaluate the efficacy of the designed
prototype, the parameters data have been collected by using
the Arduino UNO board - called as the reference setup, which
is already developed and commercially available. The Arduino
UNO board consists of an ATMEGA 328P microcontroller that
collects samples from the sensors connected with the board
and the data have been transmitted to the base station using
ESP8266 WiFi module, whereas in the designed APMD the
sampled data are transmitted using NB-IoT or an optional
WiFi interface. As discussed in Section III, six sensors are
connected with the sensor node to monitor eight parameters
of the set P = {temperature, humidity, PM10, PM2.5, NO2,
Ozone, CO, SO2} in the environment. In the designed APMD,
the PM sensor is on-board and the other sensors are connected
externally, whereas in the reference board, all sensors are
connected externally and the concentration levels of PM10 and
PM2.5 are measured using the commercially available OPC N3
PM sensor [27]. The data collected by the development board
is considered as the reference data to compare with the data
collected by the designed APMD prototype.

TABLE II: Performance comparison of on-board PM sensor

Energy
consumption
per sample (J)

Commercial
PM sensor

Alphasense OPC-N3
(reference) [27]

28.3

Sensirion SPS30 [29] 2.4
Nova SDS011 [30] 3.5

On-board
PM sensor

Without PWM based
power control

1.636

With PWM based
power control

0.646

TABLE III: Energy saving of on-board PM sensor

Alphasense
OPC-N3

Sensirion
SPS30

Nova
SDS011

Energy saving
of on-board
sensor (%)

Without apply-
ing PWM

94.2 31 53

With PWM 97.7 73 81.5

A. Estimation of Optimum Duty Cycle for PM Sensor
The designed PM sensor in Section IV utilizes a PWM

based power control strategy as described in IV-B. On applying
a PWM signal of time period 100 ms at below 30% duty cycle,
the fan is unable to continue its rotation due to lesser on time
compared to the off time. However, it has been observed that
for D ≥ 30%, the fan operates continuously and the PM sensor
provides valid PM data, which has been calibrated to achieve
the required accuracy. The optimal duty cycle is decided based
on the acceptable error (RMSE) threshold which is 1.6 and 2.7
for PM2.5 and PM10, respectively [28]. Although the sensing
error increases with the decrease in duty cycle, calibrating
the sensor at a particular duty cycle reduces the sensing error,
which is comparable to the error achieved at 100% duty cycle.
Fig. 11 shows that for both PM2.5 and PM10 the obtained
RMSE values for D ∈ [30%, 100%] lies within the threshold.
Thus, D = 30% is set as the duty cycle of the PWM signal
to minimize the power consumed by the fan of the on-board
PM sensor.

As shown in Table II, the on-board PM sensor consumes
0.64 J energy to collect one sample incorporating PWM
duty cycle based power control mechanism, which is 60%
less than without power controlled PM sensor. The power
consumption of the on-board PM sensor is compared with
three commercially available PM sensors, such as Alphasense
OPC-N3, Sensirion SPS30, and Nova SDS011. Table II shows
the performance comparison of the on-board PM sensor with
the commercial PM sensors. The energy saving of on-board
PM sensor with respect to the commercial sensors are listed
in Table III.

B. Estimation of Optimum Parameter Values for APMD
As discussed in Section V-B, the maximum frequency of the

signals is estimated from their PSD. Fig. 12 presents the PSD
of the eight parameters of the set P . The set comprising the
maximum frequency of the signals is given by, Fm = {0.004,
0.0043, 0.008, 0.0062, 0.0054, 0.0027, 0.0056, 0.0042} Hz.
Accordingly, the set comprising the Nyquist sampling fre-
quency is given by, Fs = 2Fm. Thus, the sampling interval
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(a) PM2.5 (b) PM10

Fig. 11: RMSE versus duty cycle for PM2.5 and PM10.
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Fig. 12: PSD of the sensing parameters.

of all the parameters is set as Ts = 1
0.016 ≈ 62 s. The sensor

node wakes up at every 62 s interval, collects a sample from
all the sensors and stores it in the memory.

Fig. 13 presents the variation of temporal correlation with
time slot ζ, where the slot duration is 62 s. Intuitively,
the temporal correlation decreases with the increase in time.
Hence, the data collection interval is chosen such that the
data variation is small within that interval. It helps to keep
track of the parameter variation and take necessary action upon
exceeding the satisfactory level. Considering 0.9 as a threshold
value to decide the high correlation among the data, the set
comprising the optimum value of ζ∗ for all the parameters is
given by L = {68, 69, 29, 37, 76, 296, 91, 66}. Thus, the
base station data collection interval for all the parameters is
set as L = 29Ts ≈ 1800 s.

C. Energy consumption of the sensors

As discussed in Sections III and IV, the designed APMD
is equipped with low power on-board PM sensor, whereas
the reference setup is equipped with OPC N3 PM sensor.
The accuracy of the on-board PM sensor is measured with
respect to the OPC N3 PM sensor. To measure temperature
and humidity, DHT11 sensor is used in both the designed
APMD and reference setup. Similarly, AFE A4 gas sensors
are used to measure the gas pollutants in both the designed
APMD and reference setup. The energy consumption of all
the sensors to collect one sample is listed in Table IV.

D. Performance Comparison of the Designed APMD and
Reference Board

To evaluate the performance of the designed prototype,
a comparison of sensing signals, collected by the designed
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Fig. 13: Temporal correlation versus ζ.
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Fig. 14: Temperature, humidity, and gas sensors data collected by the designed APMD and reference setup.
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TABLE IV: Specification of the sensors

Sensors DHT11 AFE A4
gas sensors

OPC N3
PM sensor

Designed
PM sensor

Operating voltage
(V)

3.3 5 5 3.3

Heat up time (sec) 2.5 1 30 2
Sensing time (sec) 1 1 1 2
Heat up current
(mA)

1 5 187 68

Sensing current
(mA)

1 3 50 30

Energy consumption
per sample (J)

0.011 0.04 28.3 0.646

APMD and the collocated reference setup at the same time in
the month of August 2021, is shown in this subsection. The
sensing signals are reconstructed using the data collected by
the reference setup and the designed APMD.

A comparison of the environmental parameters sensed using
the externally connected sensors collected from the prototype
and the reference setup is shown in Fig. 14. It can be observed
that for each parameter the sensing signals collected from
the designed APMD prototype are following the respective
reference signal. The sensing error of the parameters in terms
of RMSE is listed in Table VI. Similar to the study in [28],
considering the RMSE = 2.7 as the threshold value, the
sensing errors of all the signals obtained using the designed
APMD are much lower than the threshold.

Two polynomial regressor models are used to predict PM2.5

and PM10. The models are trained using the initial samples
of OPC N3 and the on-board PM sensors, where the input
to the models are the on-board PM data and the output of
the models are the reference data of the OPC N3 PM sensor.
It has been observed that the prediction error is minimum if
the training length lies within 220− 250 samples. Hence, the
models are trained using 230 samples collected in 4 hrs, where
the sampling interval is 62 s. Fig. 15 shows the variation of
PM data collected from the OPC N3 PM sensor, the designed
PM sensor, and the calibrated PM data. It can be observed
that the calibrated PM data are perfectly following the actual
data.

The range of sensing parameters are divided into three levels
(low, medium, and high) based on the AQI, as shown in Table
V. For different levels of parameters, the sensing errors are
listed in Table VI. The designed APMD is equipped with low
power on-board PM sensor, whereas, the reference setup is
equipped with OPC N3 PM sensor. The sensing error of the
on-board PM sensor is computed with respect to the OPC N3
PM sensor. To measure temperature, humidity, and the gas
pollutants, DHT11 and AFE A4 gas sensors are used in both
the designed APMD and reference setup. It can be observed
that sensing error is slightly higher for the low AQI level of
the parameters compared to the high AQI level.

From Table VI, it can be observed that the sensing errors
of the PM parameters are higher than the other parameters.
However, the sensing errors of PM2.5 and PM10 are 0.7 and
2.7, respectively, which are lower than the threshold value.
Since the externally connected sensors are the same in both
the reference setup and the designed APMD setup, the average
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Fig. 16: Solar power generated in 24 hrs.

sensing error reduces to 0.44.
A comparison of energy consumption among the developed

prototype and the reference setup is shown in Fig. 18. The
experiment was performed in two powering modes. In the
first case, each sensor node was powered by a battery. A fully
charged 3.7 V, 10000 mAh Li-ion battery was connected to
the node to observe the energy consumption profile. In this
case, the voltage and current drawn from the battery were
measured periodically when the device was active, to find
the energy consumption of the node. As initially the battery
is fully charged, the remaining energy can be calculated as
Ebatt(n) = Ebatt(n − 1) − Econ(n), where Ebatt(n) is the
remaining energy of the battery at the nth time instant and
Econ(n) is the energy consumption of the device between
(n − 1)th and nth time instants. As shown in Fig. 18(a),
the battery lifetime of the reference setup is much lower than
the designed APMD. Since the designed APMD is optimized
for the air pollution monitoring application, the current drawn
by the device is lower than that of the reference setup. The
current drawn by the NB-IoT module in sleep mode is much
lower than that with WiFi, the designed APMD is more energy
efficient compared to the reference setup. Further, the duty
cycle based power controlled PM sensor adds more to the
power saving of the designed APMD.

In the second case, each sensor node was powered by a
solar energy harvester along with a 3.7 V, 10000 mAh Li-
ion rechargeable battery. The power generated by the solar
panel has been measured hourly, which is depicted in Fig. 16.
Initially, the battery was fully charged and a 9 cm×12 cm
solar cell was connected to the harvester to harvest energy
from the ambient and recharge the battery in case of both the
developed APMD and the reference setup. Since the Arduino
board does not have any energy harvester, the energy harvester
of the developed APMD was used to recharge the battery
connected with the reference board. During the day time, the
required energy is supplied by the solar cell and access energy
is stored in the battery. During the night, the sensor node uses
the stored energy to continue its sensing and transmission. To
find the energy harvested from the solar cell, the hourly solar
radiation was measured in kWh/m2. Considering efficiency as
10%, the energy harvested Eh by the solar energy harvester
is calculated. Thus, the residual energy of the battery is
calculated as Ebatt(n) = Ebatt(n − 1) − Econ(n) + Eh(n),
where Eh(n) is the energy harvested between the (n − 1)th

and nth time instants.
The energy consumption of the devices was calculated by
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TABLE V: Different levels of air pollution monitoring parameters

Parameters Temperature
(oC)

Humidity
(%)

PM10

(µg/m3)
PM2.5

(µg/m3)
NO2

(µg/m3)
Ozone
(µg/m3)

CO
(mg/m3)

SO2

(µg/m3)
Low pollution (AQI:
0− 50)

0− 15 0− 30 0− 54 0− 12 0− 96 0− 102 0− 4.8 0− 89

Medium pollution
(AQI: 51− 100)

15− 30 30− 60 54− 154 12− 35 96− 182 102 −
133

4.9− 10 89− 190

High pollution (AQI:
101− 200)

30− 45 60− 100 154 −
354

35− 150 182 −
1184

133 −
200

10.5− 17 190−772

TABLE VI: Sensing error of the parameters

Parameters Temperature Humidity PM10 PM2.5 NO2 Ozone CO SO2

Sensing error
(RMSE)

Low pollution 0.018 0.038 2.73 0.72 0.047 0.018 0.017 0.037

Medium
pollution

0.017 0.037 2.69 0.69 0.047 0.017 0.017 0.036

High pollution 0.016 0.037 2.68 0.69 0.046 0.017 0.016 0.035
Average 0.017 0.037 2.7 0.7 0.046 0.017 0.017 0.036

TABLE VII: Performance comparison of APMD

Parameter Oizom
Pollu-
drone [31]

APMD
in [10]

Reference
Board

Designed
APMD

Average error
(MAE)

– 38.89% – 6.7%

Power (W) 2.5 – 0.46 0.042
Sampling interval – 10 min 62 s 62 s

measuring the supply voltage of the battery and current drawn
by the device at different time instants. The energy harvested
by the solar energy harvester was computed by measuring the
voltage and current of solar panel at different time instants.
Since initially the battery was fully charged, the residual
energy of the battery was calculated by subtracting the energy
consumption of the device from the energy available in the
battery and adding the harvested energy during day time.
Since the decreasing residual energy gives a clear inference
of lifetime of the node, it has been presented to show the
comparison between our designed APMD and the reference
setup. The battery voltage at different time instants was also
measured for the APMD and the reference setup in both the
cases (case1: without solar energy harvester and case2: with
solar energy harvester), which is presented in Fig. 17. It has
been observed that the voltage level slowly decays from 3.7 V
to 2.5 V and then suddenly dropped to 0 V in purely battery-
powered nodes, indicating that the battery circuit went to ‘shut
down’ mode beyond a low voltage threshold. Whereas, in case
of solar powered APMD, the voltage remains almost constant.

From Fig. 18(b) it can be observed that the residual energy
of the battery in the reference setup decreases gradually,
whereas, it is non-decreasing in the designed APMD. Hence,
the battery in the reference setup needs to be recharged
manually after a period, whereas the setup made using the
proposed prototypes is self-sustainable.

As discussed in Section VI-B, data from all the eight sensors
are transmitted to the base station after every 1800 s with
62 s sampling interval. Therefore, after every 1800 s interval
about 29 samples are transmitted to the base station. As each
sensing parameter takes 4 Bytes memory, one packet of eight
parameters contains 7.42 kB data, which needs 0.28 s time

TABLE VIII: Comparison between WiFi and NB-IoT

Communication modules WiFi (ESP8266EX)
[32]

NB-IoT (SIM
7020) [33]

Operating voltage (V) 3.3 3.3
Turn on and connection
setup time (s)

10 0.5

Current drawn during
setup period (mA)

105 0.0035

Transmission mode cur-
rent (mA)

65 110

Power save mode (mA) NA 0.0034
Sleep mode (mA) 0.02 0.4
Data transmission rate
(kbps)

4500 26

to transmit through NB-IoT, whereas it takes 1.64 ms when
using WiFi. Table VIII shows the current consumption of
ESP8266 WiFi module and SIM 7020 during connection set
up, transmission mode, and power saving mode. It is noted
that, while turning ON, WiFi takes much longer time and
consumes higher current to set up the connection. As the
APMD is expected to be in sleep mode for most of the time,
extremely low energy consuming power saving mode (PSM) of
NB-IoT can be utilized during that time which is not available
in WiFi. Accordingly, the total energy consumption of APMD
for one data packet transmission using NB-IoT and WiFi are
0.305 J and 3.4 J, respectively. Hence, if the radio module
is turned ON only during data transmission and kept OFF for
the rest of the period, NB-IoT based communication consumes
97% less energy compared to WiFi.

Among the state-of-the-art APMDs the low cost sensor
based APMD, reported in [10], has been found to be the most
competitive compared to the designed APMD. Additionally,
among the commercially available air pollution monitoring
systems, the Oizom APMD [31] is noted to be the most
competitive. Hence the designed APMD is compared with the
Oizom Polludrone data. Performance comparison among the
competitive APMDs and the proposed one is shown in Table
VII. All the performance matrices of the designed APMD
are not comparable with the APMD developed in [10] and
Oizom Polludrone [31], which is due to a mismatch of used
sensors and their sampling intervals. Hence, a performance
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Fig. 17: Comparison of battery charging and discharging behavior of the designed APMD and the reference setup.
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Fig. 18: Comparison of energy consumption behavior of the designed APMD and the reference setup.

comparison among the designed APMD and the reference
setup is also shown in Table VII. The sensing error is the
deviation of a sensing signal, obtained using the developed
prototype from their reference values, which is computed in
terms of mean absolute percentage error (MAPE) to compare
with [10]. The average sensing error of all the parameters is
MAPE = 6.7%, which demonstrates that the signal quality
is not compromised. NB-IoT complaint APMD is superior in
terms of power consumption and coverage range compared
to the reference setup. It has been observed that, compared
to the reference setup, the proposed AMPD is 90.8% more
power efficient with 44 times higher coverage range. The
designed APMD is 98.3% more power efficient compared to
the commercial Oizom Polludrone [31].

VII. CONCLUSION

In this paper, we have presented a prototype design and
evaluation of a low cost, portable air pollution monitoring
system. The proposed APMD comprises our designed on-
board PM sensor along with other off-the-shelf sensors to
measure different ambient pollutants. It uses a cloud-based
service to develop high resolution pollution map of a large
area in real time. We have validated our designed system
performance with a calibrated reference node to demonstrate
that our system yields accurate estimates. The PWM based
power control mechanism of the in-build PM sensor saves
up to 97% power compared to the commercially available
Alphasense OPC N3 PM sensor. Moreover, the developed
optimized multi-sensing prototype module is 90.8% more

power efficient with higher coverage range compared to the
competitive reference design.
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