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Abstract Internet of Things (IoT) has gained tremen-

dous popularity with the recent fast-paced technologi-

cal advances in embedded programmable electronic and

electro-mechanical systems, miniaturization, and their

networking ability. IoT is expected to change the way of

human activities by extensively networked monitoring,

automation, and control. However, widespread appli-

cation of IoT is associated with numerous challenges

on communication and storage requirements, energy

sustainability, and security. Also, IoT data traffic as

well as the service quality requirements are application-

specific. Through a few practical example cases, this

article presents IoT data driven unique communica-

tion approaches and optimization techniques to reduce

the data handling footprint, leading to communication

bandwidth, cloud storage, and energy saving, without
compromising the service quality. Subsequently, it dis-

cusses newer challenges that are needed to be tackled,

to make the IoT applications practically viable for their

wide-ranging adoption.
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1 Introduction

The emerging Internet of Things (IoT) paradigm has

brought together sensing, communication, big data, and

artificial intelligence to achieve technological advance-

ments for manifold benefits. The footprints of IoT ap-

plications is spread across all major industries and mar-

kets, as depicted in Fig.1. The key utilities include reg-

ulating energy consumption through applications like

home automation and smart electric metering, stream-

lining operations in factories, improving social welfare

through eHealthcare, smart education, transportation,

and agriculture, process monitoring through sensor net-

works for power grid, military, and environment, and
adding value to daily life with smart wristwear, clothes,

and medical wearables. To support IoT applications for

masses, studies on design of reliable and low-latency

communication networks [1], centralized and distributed

network architecture, access protocols at data link and

network layers [2], and security features [3] have lately

attained considerable research interest. However, in this

article, we will focus on the area of smart IoT commu-

nications, which is relatively new and less explored.

Layout of this paper is as follows: Section 2 briefly

motivates the context of data-driven framework in IoT,

followed by detailed discussion of three IoT applica-

tions pertinent from data-driven perspective in Section

3. In Section 4, our findings from applying data-driven

optimizations to the case studies of smart grid monitor-

ing and smart metering are presented. A few pertinent

open issues and challenges are discussed in Section 5.

The paper is concluded in Section 6.
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Fig. 1 Various IoT applications.

2 Data-driven Framework in IoT

IoT serves as an adaptable platform for collection and

exchange of sensor data in 5th generation communica-

tion networks. Data acquisition and processing provides

key insights into the dynamics of real-world systems,

thereby enabling the development of effective control

and automation techniques for improved efficiency and

economic gain of the physical system. However, due to

high sampling rates of IoT devices and near real-time

data delivery, massive data is generated in the commu-

nication network. Consequently, efficient resource uti-

lization for data transmission and archival is a major

challenge with this rapidly growing technology.

Smart IoT communication is a data-driven frame-

work, in which every IoT edge device is equipped with

some intelligence based on the learning of underlying

process dynamics. This intelligence enables to sample

or communicate data judiciously without compromis-

ing on the information content for critical decision mak-

ing purposes. The idea of augmenting node-level intelli-

gence to the IoT sensors has dual benefits. Primarily, it

makes them less communication resource hungry so as

to reduce traffic load on communication network infras-

tructure. This is highly desirable in massive machine-

type IoT communications context where huge number

of edge devices simultaneously transmit their data over

the communication network. Besides, it also minimizes

the need for cloud data storage which rapidly improves

the fetching and caching of content for learning algo-

rithms interacting with this data.

In context of data analysis and pruning of field data

in IoT it may be noted that, unlike the classical ap-

proaches of approximate modeling of traffic distribu-

tion, actual data-driven techniques are of contempo-

rary interest for two reasons. One, in real-life applica-

tions the field data is unlikely to follow any fixed reg-

ular or stationary stochastic pattern; instead the data

is highly dynamic, due to complex interplay of several

system parameters and external influences. Therefore,

any approximation in data pattern characterization is

expected to highly deviate from the actual reality. The

other reason is the current-day availability of fast pro-

cessors and miniature embedded microcontrollers that

can easily crunch high volume of data, learn from the

dynamic data pattern, and take the needful predictive

actions. Further, ability to execute the dynamic predic-

tion task in a distributed manner aids in reducing the

computation bottlenecks.

Data analytics as a subject area has been a major

recent research interest in the Computer Science and

Engineering community. However, data volume reduc-

tion coupled with network architecture-level solutions

and context-aware caching are unique. A typical IoT

network is shown in Fig.2. A lacuna observed in state-

of-the-art is that due to conventionally low sampling

rate and consequent unavailability of sufficient data in a

short time frame at the edge node of IoT network, band-

width saving between these nodes and data aggregator

has not drawn much attention. In recent studies [4],[5],

signal processing frameworks have been proposed for

pruning of data volume in a typical IoT scenario. These

methodologies, when integrated with scalability of the

cloud, are shown to be highly effective for processing

large amounts of data in near-real time. However, these

schemes were developed with focus on big data streams

generated at data aggregator or control center stage of

the network architecture. With proliferating sampling

rates and denser node deployments, and the applica-

tions becoming increasingly delay constrained, such ap-

proaches do not contribute to reduction in data volume

from sensor to the aggregator. Thus, suitably leverag-

ing of resources both at the edge and the core of the

IoT network is essential.

Below, we discuss three pertinent example IoT ap-

plications from the perspective of smart IoT commu-

nications: wide area monitoring and control in smart

grid, electric metering infrastructure in smart cities,

and wireless sensor network for pollution monitoring.

3 Smart IoT Communication: Applications

There are wide-ranging IoT applications, ranging from

human health care to smart manufacturing, and new

applications have been constantly evolving. We elabo-

rate studies on some key examples that are envisaged

to have significant footprints from large-scale network

resources viewpoints. These cases are smart grid moni-

toring and smart metering, respectively for power sup-

ply network and various user related optimizations, and

environmental sensing, towards smart environments.
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Fig. 2 A typical IoT network.

3.1 Power Grid Health Monitoring

Health monitoring for wide area control in smart grid

is an emerging IoT scenario. In a wide area smart grid

network, the Phasor Measurement Units (PMUs) be-

have as edge devices or IoT nodes and generate loads of

fine grained data from electricity distribution networks.

This data is transmitted over communication network

to a remotely located Phasor Data Concentrator (PDC)

and further processed to facilitate development of ef-

fective monitoring and control techniques, thereby en-

hancing power grid reliability and meeting the quality

of service requirements of electricity consumers.

Some unique challenges in smart grid networks are

the following: (a) The smart grid health data is time-

critical, which ensures that control actions from the

PDC take place well in time in the event of any instabil-

ity is signalled by the PMU. (b) The data is stochasti-

cally dynamic, influenced by complex factors. (c) There

are network architecture and communication channel

dependent packet delay, loss, and security vulnerabili-

ties. This article discusses one key aspect, namely, com-

munication and storage resource optimization by em-

ploying some processing intelligence at the ‘edge’, which

requires to account for time-criticality of the traffic.

Though acquisition and analysis of this massive data

imparts intelligence to the analytical framework to adapt

to the dynamics of real world systems, its efficient com-

munication and storage remains a challenge [6]. In the

existing studies, a few works have addressed the issue of

data reduction in wide area measurement system. These

include autoregressive modelling of PMU data sequence

[7], short-term frequency prediction using state-space

approach [8], dimensionality reduction of PMU data us-

ing linear principal component analysis [9], [10], signal

processing algorithms based on compressive sampling

[11], wavelet packet decomposition [4], [12], lossless en-

coding [13] and a fuzzy-based paradigm for efficient pro-

cessing and compression of smart grid data [14]. It may

be noted that most of the algorithms proposed in liter-

ature [7], [8], [9], [10],[4], [12], [13], [14] investigate data

reduction at the PDC with the perspective of design-

ing efficient state estimation techniques and cut down

on the storage requirements. Although the objective in

[11] has been communication bandwidth reduction, it

does not deal with nonstationary nature of PMU data.

Therefore, in absence of continuous learning and adap-

tation, quality of compression and hence the quality of

power system health monitoring is expected to degrade

over time. As an advance, in [15,16] data-driven opti-

mization study for wide area monitoring and control in

smart grid has been developed. Here we study how the

data collected by PMUs in wide area monitoring is ex-

ploited in [15,16] to intelligently learn the process and

optimally prune redundant content in accordance with

the process dynamics.

Presently, standard reporting rate from PMU to the

control center is fixed at 25 and 30 samples/s, respec-

tively for 50 Hz and 60 Hz systems [17]. Since the

transient occurrences in the power grid are sporadic

and PMU data is highly redundant, for optimal use

of communication bandwidth, fixed-rate data transmis-

sion at all times is not required. The proposed frame-

work is based on ε-Support Vector Regression (SVR)

learning to predict the data at the PDC, thereby in-

telligently pruning the transmission of redundant data.
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The application-specific data is noted to be stochasti-

cally dynamic. Thus, the process is modelled from the

individual time series of sensed data at the IoT node.

Due to inherent non-stationary nature of PMU data,

the hyper-parameters of the learning model are dynam-

ically recomputed as necessary, thereby maintaining the

accuracy of prediction and robustness of the algorithm.

Performance of the proposed algorithm is evaluated via

large scale simulations using powerline frequency data.

A trade-off between prediction quality and runtime of

the algorithm is observed, which is addressed by suit-

able selection of hyper-parameters.

3.2 Smart Metering

Similar to the PMU data, smart metering is another

source of data which is expected to increase the volume

of network traffic simultaneously. While there have been

several motivations on collecting power consumption

data at a much finer granularity, ranging up to sam-

pling at one second interval, investigating extraction of

the needful data and judiciously deciding on the opti-

mum locations of incorporating the intelligence is essen-

tial. Intuitively, unlike the smart grid monitoring data,

smart metering does not require strictly real-time deliv-

ery guarantee. Study on the smart meter data patterns

suggest that, it does not possess the same nature of dy-

namics as the smart grid data. Also, the vulnerability

of smart metering data include privacy concerns, more

ad hoc network infrastructure that carries the data, and

easy commercial exploitation by third party. Hence it

necessitates a different approach to securing and com-

pression of smart meter data. In our subsequent discus-

sion, data compression aspect is considered.

Strategies proposed in literature for the reduction of

smart meter data are based on singular value decom-

position [5], generalized extreme value characterization

[18], dictionary learning and sparse encoding [19], and

burrow-wheeler transform with entropy encoding [20].

The resolution of data considered in these studies are on

the order of one sample per several minutes. Modern-

day smart metering framework is capable of support-

ing capture of energy consumption data at a rate as

high as 1 sample per second. To handle compression of

high granularity data at the meter level, a lossy com-

pression method based on piece-wise approximation of

original data [21] and loss-less compression algorithms

based on differential coding [22],[23] are proposed. Al-

gorithms proposed to operate on low resolution data at

the aggregation points [5], [18], [19], [20] have access

to large data chunks from several smart meters, thus

identifying daily, weekly, seasonal, or behavioural pat-

terns in the data, and exploiting them to achieve data

compression becomes relatively easy, since aggregated

data from several smart meters could be huge. However,

for high resolution smart meter data, load patterns are

more erratic and they also vary considerably even for

a single user over a time frame. This reduces the data

compressibility and hence more resources are required

for its transmission and storage. Algorithms proposed

to work on high resolution data at the smart meter

[21], [22], [23] are sensitive to small consecutive value

differences in smart meter data and their compression

performance degrades with increasing sampling interval

and presence of corrupted samples in data transmis-

sion/collection process. Besides, they work fairly well

for appliance level data, but with coarse granularity

these tend to become less effective.

In view of limitations in existing studies, a novel

characterization of smart meter data based on Gaussian

mixture (GM) model is presented in [24]. It is shown

that compared to the existing characterization models,

the proposed GM model provides a significantly better

fit for smart meter data. Further, at each smart meter,

sparsity of data is exploited to devise an adaptive data

reduction algorithm using compressive sampling tech-

nique such that the bandwidth requirement for smart

meter data transmission is reduced with minimum loss

of information. Specifically, an adaptive data reduction

scheme using compressive sampling is devised to op-

erate at the smart meter which achieves about 40%

bandwidth saving in data transmission to the nearest

collection center.

3.3 Environmental Sensing using Wireless Sensors

Another IoT application of interest is monitoring of en-

vironmental parameters, such as industrial or city air

quality, using a network of miniature wireless sensors.

The network comprises of several spatially distributed

autonomous sensors to measure physical or environ-

mental parameters. They routinely transfer their data,

to be delivered to a central aggregator. Wireless sensor

nodes are microelectronic devices which can only be

equipped with a limited power resource. However, the

sensors typically used for pollution monitoring work by

the principle of electro-chemical reaction or consist of

a resistor heater to facilitate sensing, which result in

high energy consumption [25]. Also, a field sensor node

is normally equipped with a set of sensing elements

mounted on a hub, for monitoring multiple environmen-

tal parameters [26]. The consequence of periodic multi-

sensing is that, the battery for powering the sensor node

is rapidly exhausted. Thus, besides resource saving for

transmission and cloud storage of sensor data, as in case

of smart grid and smart metering, energy efficiency for
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sensing is also a motivating factor in sensor networks

using smart IoT [27].

Recent studies on air pollution monitoring have ad-

dressed forecasting of pollutants like PM2.5 [28], ground

level ozone, nitrogen dioxide, and sulphur dioxide using

advanced machine learning models. Towards energy-

efficient sensing, in [28], cluster based hybrid model

that utilizes an autoregressive integrated moving av-

erage and neural network autoregression model is used

to forecast hourly PM2.5 levels from its historical val-

ues for different nodes in a cluster. Performance of the

prediction model is compared for two types of cluster-

ing techniques, based on geographical separation of the

sensing nodes and coefficients obtained from wavelet de-

composition of time series of PM2.5 values from individ-

ual nodes and it is found that the latter model has high

prediction accuracy and low computation time. Simi-

larly, study in [29] predicts the concentration of pollu-

tants using support vector machines, M5P model trees

and artificial neural network. For each machine learning

technique, a univariate and well as multivariate mod-

elling is considered. For different prediction horizons,

M5P method to found to have better prediction accu-

racy and powerful generalization ability. In another di-

rection on networked sensing of spatio-temporally vary-

ing signal, aiming at extended network lifetime, the au-

thors in [30] presented a sparse Baysian learning based

adaptive sensor selection strategy that trades between

sensing quality and energy efficiency.

Thus, in context of wireless sensors, besides the com-

munication and storage issues, the data-driven opti-

mization framework looks for critical energy efficiency

and energy-sustainable networking. The learning frame-

works here additionally require to deal with the other

node-level parameters, such as, the nature of sensing el-

ements, data collection network architecture and com-

munication protocol used, and recharging resources.

4 Data-driven Optimization Case Studies

The techniques used for evaluating the performance of

any physical system can be broadly grouped into three

categories, namely, analytical, simulation based, and

data driven. The analytical technique refers to devel-

oping mathematical model of the physical system. Pa-

rameter values measuring the underlying process vary

randomly with time, which are assumed to follow cer-

tain probability distributions. While this technique is

widely accepted by the scientific community due to in-

clusion of elaborate mathematical proofs and repro-

ducibility of the claims, it requires a deep system level

understanding and substantial mathematical skills to

come up with a practical model. Also, for tractability
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Fig. 3 Dynamic prediction model performance on simulated
phase voltage data.

of the solution, unrealistic assumptions are required to

be made which may not be true to real-world applica-

tion. Consequently, through analytical technique, only

an approximate representation of the actual physical

process is obtained. By simulation based studies, it is

possible to execute high control over system parameters

for a flexible model of the physical system. Thus, it is

likely to be more accurate in comparison to the ana-

lytical technique. However, its performance is limited

by the simulator design and programming know-how of

the system designer. More often, analytical modelling

is used for the validation of simulation results. On the

contrary, data-driven optimization studies use obser-

vations of the randomly varying parameters obtained

from an actual system implementation as direct input

to mathematical programming problems. In this man-

ner, behaviour of the physical system and its evolution

over time is learned by the optimizer. Though this ap-

proach is expensive in terms of hardware cost involved

in the system implementation, it is adaptive to the dy-

namics of real world system, thus most accurate and

pertinent in IoT context among all three techniques.

Below, we discuss our findings on two data-driven

optimization case studies, namely, smart grid monitor-

ing and smart metering.

4.1 Smart Grid Monitoring

As discussed in Section 3.1, owing to high sampling

rates and rapid deployment of PMUs, huge volume of

data is generated in the wide area smart grid network,

most of which is redundant. Here we apply dynamic pre-

diction algorithm [15,16] on transmission phase voltage

data measured by the PMU and evaluate its perfor-

mance.
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The algorithm operates at the PMU to identify and

eliminate the redundant samples before transmission

using ε-support vector regression model, while its coun-

terpart simultaneously operates at the PDC to estimate

missing samples within the prescribed latency bound.

It may be noted that due to non-stationarity of PMU

data, retraining of the regression model is required once

the predicted sample deviates from actual value by a

margin greater than predefined threshold ε. Since the

behaviour of transmission phase voltage and powerline

frequency is similar in steady state and disturbed state

of the power system, we choose values of hyperparame-

ters optimum training length, lag, and ε as proposed in

[16] to be respectively, 600 samples, 5 samples and 0.01.

Remaining hyperparameters C and γ are computed on

the fly during the optimization using cross-validation.

In Fig. 3, performance of dynamic prediction algo-

rithm is shown on time series of transmission phase

voltage values obtained by simulating a two-area power

system via online simulink model. It may be noted that

simulated data do not exactly mimic the actual field

data as measured by hardware PMUs. This is because it

is difficult to incorporate external factors like precision

and compatibility of the measuring devices from differ-

ent manufacturers and measurement noises. To demon-

strate the accuracy of prediction with the field data,

in Fig. 4, performance of dynamic prediction algorithm

is shown on an instance of transmission phase voltage

data logged in by PMU located in Vindhyachal region

during the tripping incident of Rihand thermal power

station unit in India on June 1, 2010.

Performance of the algorithm is measured in terms

of bandwidth saving (BWS), retraining count per sam-

ple (RC), disturbance identification index (DI) and root

mean square error (RMSE). BWS is the percentage of

redundant samples eliminated at the PMU and suc-

Table 1 Performance indices for dynamic prediction algo-
rithm on simulated data and field data implementation.

Performance Index Simulated data Field data

BWS (%) 94.65 81
RC 0.007 0.096
DI 1.07 1

RMSE 0.004 0.007

cessfully predicted within the predefined threshold ε at

the PDC. For a given threshold ε, time complexity of

dynamic prediction algorithm is measured in terms of

RC. It is defined as the number of retraining instances

required to make successful predictions over length of

time-series considered in dynamic prediction algorithm

implementation. It can be observed from Table 1, that

due to measurement noises in the field data, more re-

trainings are required in dynamic prediction implemen-

tation on data from Rihand tripping. As a result, band-

width saving in this case in reduced to 81% compared

to 94% as obtained from simulated data. To identify

the samples belonging to disturbed state, it is checked

that the undervoltage trigger is set at 85% of the nor-

mal operating voltage for a duration of 5 seconds [4].

Over a large interval ∆, let ldist and l̂dist be respec-

tively the actual and the estimated number of frequency

samples designated to be in disturbed states. Then,

DI = lim∆→∞(l̂dist/ldist). For both simulated and field

data, RMSE is well below the acceptable upper thresh-

old limit ε and all disturbance instances are correctly

identified.

Thus, for the same order of prediction accuracy,

time complexity of the dynamic prediction algorithm is

higher with actual field data and its bandwidth saving
is reduced by 13% compared to that obtained using sim-

ulated data. This demonstrates the impact of measure-

ment noise in actual system. Nevertheless, the amount

of bandwidth saving is above 80%, which is significant.

4.2 Smart Metering

Real smart meters sense multiple variables, such as power

consumption, current, voltage, frequency, energy, and

meter-health related parameters for their installation

premises. Unlike their analog counterparts, they follow

a rapid and automated data logging approach to gen-

erate a massive amount of multivariate data. This data

is then transmitted to the data aggregator through a

communication network which could be wired or wire-

less. High resolution smart meter data is used by near

real time applications, like energy feedback, demand

response, dynamic pricing, load monitoring, and short-

term load forecasting. However, to address efficient com-
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Table 2 Performance indices for adaptive compressive sam-
pling algorithm on smart meter data sampled at interval of 1
Hz and 30 Hz.

Performance Index 1 Hz 30 Hz

Optimum batch size 600 samples 2 samples
Bandwidth saving (%) 48.99 41.32

RMSE 0.038 0.046
nRMSE 1.22X10−6 7.17X10−7

munication and storage of data in this IoT scenario, re-

duction of data at granular level of network architecture

is essential.

Here, we investigate the performance of adaptive

compressive sampling algorithm as proposed in [24] on

voltage variable of 2 high resolution smart meter datasets

sampled at 1 Hz and 1
30 Hz. The 1 Hz dataset is Indian

dataset for Ambient Water and Energy (iAWE) [31]. It

is openly available online and captures electricity con-

sumption monitoring variables from a residential setup

in New Delhi, India. The dataset captured at 30 Hz fre-

quency is from smart metering framework deployed at

IIT Delhi campus.

The algorithm operates at the smart meter on an

optimum batch size of the targeted variable. It may

be noted that for varying sampling intervals keeping

the optimum batch-size fixed for compression does not

lead to maximum bandwidth savings. This is because

the correlation in consecutive data samples with 1 sec-

ond sampling interval is much higher than that in 30

seconds sampling interval. Consequently, if batch size

remains the same, bandwidth saving reduces for 30 sec-

onds sampling interval, since owing to lower autocorre-

lation, much data cannot be discarded. Here we adopt a

data dependent optimum batch size selection approach,

wherein, before configuring the proposed adaptive com-

pressive sampling algorithm on the metering device, the

data variability pattern and the sampling frequency are

studied to investigate the optimum batch size from re-

construction accuracy and bandwidth saving trade-off.

As proposed in [24], optimum batchsize for data sam-

pled at 1 Hz is taken as 600 samples. From a similar

study, we found that the optimum batch size for dataset

sampled 30 sec is 2 samples. Unlike conventional com-

pressive sampling, sparsity of the data is evaluated for

every batch from number of DFT coefficient contain-

ing 99.99% energy of samples in the data window and

the compression is performed accordingly. It helps to

capture the rapidly varying behavior of smart meter

data and is essential in reducing the count of trans-

mitted samples without compromising on the recon-

struction accuracy in a dynamic environment. Perfor-

mance of adaptive compressing sampling algorithm is

shown in Fig. 5 and Fig. 6 for 1 day of data sampled

at 1 sec and 30 seconds respectively. It can be observed

that for both cases, reconstructed data and actual data

closely match with each other. Corresponding band-

width saving and accuracy metrices- RMSE and nor-

malized RMSE (nRMSE) are presented in Table 2.

It is found that by using data driven optimization

in compression of high frequency smart data, over 40%

bandwidth saving can be obtained. Also, for a given or-

der of reconstruction accuracy, bandwidth saving for

data sampled at 1 Hz is 7% higher than that at 30 Hz.

5 Open Issues and Challenges

From the discussions so far, it is apparent that data-

driven IoT framework for a physical system facilitates

development of a cognitive application aware platform.

We will now highlight a few challenges that lie ahead in

practical implementation of smart IoT infrastructure.
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Latency: Presently, a majority of IoT traffic rely on

existing communication architectures like wireless LAN

or cellular networks. However, existing system archi-

tectures were not designed with billions of IoT devices

in mind. With traffic from a massively large number

of IoT devices, meeting stringent latency constraints

for real-time applications, such as in smart grid moni-

toring, autonomous vehicles, tele-surgery, will be chal-

lenging. While application context aware data-driven

optimization schemes are expected to aid in reduced

traffic handling over the network, a trade-off exists be-

tween learning accuracy and processing time of these

algorithms, which must be carefully addressed for IoT

devices to work efficiently.

Network architecture: An IoT network is sup-

posed to handle a variety of devices with diverse power

requirements, computational capabilities, and uses. To

this end, multi-layered network architecture comprising

of four basic layers has evolved. These are: (a) sensing

layer, comprising of physical devices for data collection,

object identification, and physical connectivity; (b) net-

working layer, wired or wireless infrastructure based

on 4G, LTE, LTE-A, 5G, for transportation of data

to higher layers; (c) management layer, for data pro-

cessing, analytics, and decision making; (d) application

layer, for ubiquitous cloud computing, intelligent pro-

cessing, mega database handling. However, with induc-

tion of new features such as edge computing and smart

IoT communications, source-level data processing, op-

timum distribution of computational load at the edge

nodes, and intelligent device management are required.

Besides, accommodating massive machine-to-machine

communications and providing channel access to mil-

lions of IoT devices simultaneously will also require ma-

jor architectural and protocol-level advancements.

Power and energy efficiency: As the Information

and Communications community is warming up to the

IoT needs, an extensive range of networking-capable

devices and sensors are continuing to evolve. In most

cases, these are powered using batteries alone. It may

be difficult or even impossible to replenish these bat-

teries. Besides, incorporating data-driven algorithms in

sensor nodes to make them smart will incur additional

computational cost that is expected to further drain out

the batteries. Thus, utility of the sensing device is lim-

ited by its battery life. This has opened up new research

avenues to improve the lifetime of batteries in the direc-

tions of solar / radio frequency (RF) / unmanned ariel

vehicle (UAV) aided charging of sensor nodes, energy

harvesting techniques for wireless sensor networks, and

optimal policies for sleep-wakeup schedule of the sensor

nodes. However, most of these techniques are still in in-

vestigative stage. More devices- and circuits-level tech-

nological maturity and systems-level innovative proto-

col optimization solutions are required to move towards

green and sustainable IoT solutions.

Security and privacy: With rapidly-increasing num-

ber of IoT devices being connected together, more de-

centralized entry points, vulnerable to security attacks,

are created. As a natural tradeoff with low-cost and

energy-efficient sensors with small footprint, these resource-

constrained devices do not incorporate strong security

measures, which may lead to lucid tampering and se-

curity breaches. Additionally, once the devices are de-

ployed on a large scale in the field, security patches

are barely updated. Another primary security concern

is in interfacing legacy devices that are not inherently

designed for IoT connectivity, and consequently they do

not have any inbuilt-mechanism against modern threats.

To address these risks, it essential to devise an industry-

accepted IoT security framework with policy-driven ap-

proaches to enhance system protection and ensure se-

cure interoperability among the IoT nodes.

System-level integration: Seamless integration

of multiple platforms for sensing, computation, com-

munication, and intelligence, with protocols at differ-

ent architectural layers and large number of application

programming interfaces is cost-prohibitive and incurs

technological risks. Also, rapid evolution of IoT features

and lack of existing standards have further complicated

the structural model. Thus, commercial success of IoT

framework is currently limited by lack of expertise in

system understanding, unanticipated resource require-

ments, and budget overruns.

6 Concluding Remarks

To summarize, IoT has unfolded as a promising tech-

nology for process monitoring, automation, and con-

trol in recent times. In this article, we have identi-

fied novel methodologies for exploiting data-driven IoT

framework towards optimized resource utilization and

development of context-aware cognitive applications in

a massive machine type communication setting. Perfor-

mance of data-driven optimization are analyzed based

on dynamic prediction using ε-support vector regres-

sion and adaptive compressive sampling for two ger-

mane IoT applications, namely, smart grid monitoring

and smart metering. Around 80% reduction in band-

width resource requirement is observed in transmis-

sion of PMU data, while for smart meter traffic 48%

and 41% bandwidth saving are achieved for data sam-

pled respectively at 1 Hz and 30 Hz. Thus, data-driven

optimization studies have proved to be very useful in
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handling the stochasticity of real-world applications for

which exact mathematical models do not exist.

While newer optimization approaches are required

to be evolved for different application and performance

context specific resource optimization, newer challenges

and hence enormous research opportunities await on

cost-effective, scalable, and secure solutions for massive-

scale of IoT deployment.
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