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UAV-assisted RFET:
A Novel Framework for Sustainable WSN

Suraj Suman, Sidharth Kumar, and Swades De

Abstract—Limited battery capacity is one of the major hurdles
towards perpetual operation of wireless sensor networks. In
this paper, a novel framework for charging the sensor nodes
using unmanned aerial vehicle (UAV)-assisted radio frequency
energy transfer (RFET) is presented. First, the notion of RFET
zone is conceptualized and a closed-form expression for RFET
zone radius is obtained. The sensor nodes located inside this
zone can harvest energy from the transmitter mounted on UAV.
The effective power harvested at the sensor node situated at
different spatial locations is evaluated by considering the impact
of shadowing statistics of path loss and non-linear RF-to-direct
current conversion efficiency. With these findings on sensor nodes
deployed in a given area, an optimization problem is formulated
with the objective of minimizing the total time in a charging
cycle, which is comprised of travel time and charging time.
This problem is decomposed into two sub-problems and they
are solved individually in sequential steps. The optimal solution
of the first sub-problem, which provides the sequence of charging
having minimum travel time, is a Traveling Salesman Problem
(TSP). In the second sub-problem, the presence of Lambert func-
tion makes it analytically intractable, and hence, approximations
are presented to solve this. Subsequently, to account for the
health parameters of the sensor nodes in estimating the charging
cycle, three variants of order of charging, namely, Voltage-aware
Charging Sequence, Operational Time-aware Charging Sequence,
and Iterative Charging Sequence, are proposed. Through system
simulations it is demonstrated that, in a generalized setting, the
charging sequence offered by the proposed variants perform
increasingly better in comparison to the state-of-the-art TSP
approach.

Index Terms—Unmanned aerial vehicle, IoT, wireless sen-
sor network, wireless power transfer, radio frequency energy
transfer, traveling salesman problem, generalized voltage and
operational time aware charging

I. INTRODUCTION

In the fifth generation wireless (5G) era, the entire physical
phenomena around us, such as area monitoring, health care,
environmental sensing, industrial, smart grid, and agriculture,
are envisioned to be monitored using Internet of Things (IoT)
by making use of wireless sensor nodes [2]. Efficient commu-
nication technology, cost-effective, small size, and low power
consumption are some features that have enabled the wireless
sensor networks (WSNs) to be an integral part of IoT [3]. The
field deployed sensor nodes are generally powered by batteries
having finite lifetime and require periodic energy replenish-
ment to avoid unwanted outage in network coverage and
connectivity. Battery replacement is neither cost-effective nor
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feasible in many applications, such as in structural monitoring
and pollution or hazardous chemical sensing, where sensor
nodes are deployed in inaccessible locations. Moreover, the
use of replaceable batteries is not environmentally friendly. As
the number of IoT devices are expected to grow at a compound
annual rate of 21% by the year 2022 [4], cost-effective energy
replenishment for sustainable WSN operation in large-scale
implementation is of major interest in the research community.

A. Related Work
Various methods have been reported aiming at maximizing

the overall network lifetime. These approaches involve the de-
sign of efficient multi-access control [5] and routing protocols
[6], with a combined objective of reducing energy footprint
of the network and the individual nodes. In a network with
static deployment, the nodes near the base station are more
energy constrained, as they have to relay the data packets
of other faraway nodes. This is a major drawback, as it
creates avoidable energy holes in the network, causing network
outage.

Treating mobility as boon, the concept of mobile base sta-
tion was proposed to prolong the lifetime of sensor networks.
The concept of a moving vehicle, called data MULE (Mobile
ubiquitous LAN extension), was introduced in [7] to collect
data by visiting different nodes in a deployment area. The
main advantage of this method is that, the data sink can move
to different locations to collect field data from sensor nodes as
and when required, thus alleviating the problem of energy hole.
The authors in [8] extended the idea of mobility to data relays,
and the authors in [9] considered the scenario of multiple
mobile data sink nodes. All these methods help to an extent
to increase the network lifetime, but the issue of recharging
the depleted batteries was not addressed.

To overcome the battery replacement issue, energy harvest-
ing from several ambient sources, such as solar, vibration,
piezoelectric, and ambient RF [10], [11], were proposed. Ran-
dom nature of these sources and large dimension of deployed
energy harvesting setup are the major hurdles towards usage
of these approaches for sustainable WSN [12]. Moreover, the
sensor nodes deployed in inaccessible locations may not be
able to use these ambient sources. Therefore in order to ensure
uninterrupted network operation, dedicated energy source is
required for battery energy replenishment. Recently, wireless
power transfer has been found to be a promising solution. This
process is especially useful when it is difficult or infeasible to
replace battery physically or recharge the node by connecting
to an electrical outlet. Two well-known methods for this are
non-radiative and radiative wireless power transfer [13].
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Non-radiative wireless charging is based on coupling of
magnetic field between coils of transmitter and receiver. In-
ductive coupling and magnetic resonance coupling are two
prominent techniques for non-radiative power transfer. How-
ever, inductive coupling based energy transfer is not suitable
for real-life deployment due to its very short communica-
tion range. On the other hand, magnetic resonance coupling
has good power transfer efficiency over very short range; it
degrades severely with distance. In contrast, radiative power
transfer offers more flexibility on alignment and offers the
advantage of beam steering. Also, the effect of interference
due to transmission from multiple RF sources could aid in
increased harvested energy [14].

Wireless power transfer based techniques, where mobile
vehicle is used to charge the sensor nodes, have received
significant attention [15]–[22]. In [15], [16], a dedicated
mobile wireless charging vehicle (WCV) employing magnetic
resonance coupling is used to charge the sensor nodes period-
ically with an objective to minimize the total time of WCV
movement. Joint data gathering and magnetic resonance cou-
pling based wireless charging using a mobile vehicle, called
SenCar was reported in [17]. In magnetic resonance coupling
based charging approaches, mobile vehicles have to reach very
close to the field node to execute wireless power transfer [23],
which is not always practically feasible in real life deployment
scenario. Also, the information transfer and power transfer are
done at different frequency bands, which require additional
hardware. UAV based magnetic resonant power transfer was
demonstrated to recharge the batteries of ground sensor nodes
[18]. It was observed that, inexact positioning of coils, relative
motion of coils due to vibration, and deformations in these
coils degrade the performance severely.

Radio frequency energy transfer (RFET), which is elec-
tromagnetic radiation based, has also been explored towards
sustainable network operation. Off-the-shelf devices, such as
Powercast energy harvester [24] can be easily embedded in
the sensor nodes to facilitate RFET. In [19], the concept
of integrated data and energy mule (IDEM) was introduced,
where advantage of multihop RFET was demonstrated leading
to significant gains in energy and time. Similar works are
reported in [21] and [22], where charging process and path
planning problem were investigated. Safe charging for wireless
power transfer is considered in [25], where static chargers
are installed to maintain the power coverage. It requires the
infrastructure establishment and power supply provisioning for
these fixed static chargers, which is expensive. Also, such
kind of arrangement can only be availed in well-furnished
environment. The energy provisioning to battery-less wireless
identification and sensing platform (WISP) is reported in [26].

Recently, UAV-enabled wireless power transfer has been
reported in [27], where received energy at field node is
optimized. However, the important aspects of non-linear rec-
tification efficiency of power harvester and remaining battery
energy of the sensor node have not been considered. On the
other hand, the authors in [1] have evaluated the time required
for charging the sensor nodes.

B. Motivation and Contribution

Previously reported powering approaches, such as WCV
[15], SenCar [17], IDEM [19], where ground mobile vehi-
cles are used, are constrained by physical as well technical
difficulties. These ground based mobile vehicles can oper-
ate with suitable-furnished platform, such as in laboratory
environments. In real-life deployment scenarios, such as in
agricultural and forest environments, or in any other terrain
with structural constraints, wireless charging using mobile
ground vehicles may be severely constrained by physical path
availability and reachability to the sensor nodes.

Now-a-days, UAVs are used for various applications,
namely, logistics, medical emergency, agriculture, disaster
management, and cellular architecture along with the tradi-
tional applications, such as surveying and monitoring, and de-
fense [28], [29], [30]. The advancements in aircraft technology
[31] enable UAVs to be useful in various applications, where
autonomous flight can be scheduled to complete the task by
establishing global positioning system (GPS) way-points on
computer. Machine learning and artificial intelligence are ex-
pected to enable safe and stable trajectory accomplishment at
very low altitude [32]. Motivated by the challenges associated
with terrain mobility and the flexibility of RF radiation based
charging, in this work a UAV-assisted RFET framework is
presented for online charging of the field nodes. We argue
that, UAV has the capability to overcome mobility bottlenecks
for energy replenishment in diverse deployment scenarios.

In this paper, we present a UAV application for RFET based
charging of wireless sensor nodes for IoT applications. In
UAV-assisted RFET, RF transmitter is mounted on UAV, and
path planning can be automated, as suggested by the proposed
algorithm. Rotary-wing UAV is considered due to its capability
of static hovering at an altitude for sufficient duration. More-
over, due to sufficient beam-width of RF radiation, vibration
has much negligible impact on UAV-assisted RFET. RFET can
provide on demand energy supply without additional radio
hardware, as the energy as well as information transfer can
be done over the same antenna, unlike magnetic resonance
coupling. In this work, we restrict our discussion to energy
replenishment, only because the receiver sensitivities are more
stringent for energy transfer as compared to information trans-
fer. Our preliminary studies have been recently reported in [1].

The work presented here distinguishes itself from the study
in [27] in the sense that, in [27] the authors looked into the
problem from transmitter perspective only, whereas in our
work we investigate the energy replenishment and charging
mechanism in order to optimize the overall system design from
a joint viewpoint of transmitter and receiver. To this end, in
this work we aim at accurately estimating the time required
for online recharging the sensor nodes where (i) the non-
linearity of rectification efficiency as a function of received RF
power, (ii) initial battery energy dependent growth of energy
level with time for a given received RF power, as well as
(iii) charging and discharging impairments of supercapacitor
are accounted. Free-space path-loss model was considered for
analyzing the received power in [27], whereas in [1] path-
loss model originally designed for cellular application (i.e.
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from high altitude platform [33]) has been used. As shown
in [34], for air-to-ground communication, free-space path loss
model does not accurately estimate the receive power. Further,
a recent study in [34] has shown that, for short transmitter-
receiver distance, as in our considered RFET scenario, the
model in [33] also gives an inaccurate estimate. Therefore,
in contrast to the path-loss model considered in [27], in our
analysis we consider the developed parametric path-loss model
in [34] for UAV-assisted RFET.

The major contributions of this work are as follows:
1) A novel notion of RFET zone is conceptualized; all the

sensor nodes within this zone can harvest energy from
UAV. Net power harvested to the field nodes situated at
different locations is obtained, which depends on path
loss, shadow statistics, and RF-to-direct current (RF-to-
DC) conversion efficiency.

2) When a sensor node is charged, other sensor nodes
lying in the RFET zone also receive power, which leads
to multi-sensor charging scenario at a time. According
to this fact, optimization problem for a given number
of nodes is formulated to minimize the total time of
charging, which comprises of charging time of nodes and
travel time. This problem is decomposed into two sub-
problems and they are solved sequentially.

3) In this basic optimization, the optimal solution of first
sub-problem is obtained by solving traveling salesman
problem (TSP), that provides the traveling sequence and
travel time. The second sub-problem deals with the
optimal charging time of a node. Presence of Lambert
function in the equations of constant power charging
and discharging for a supercapacitor makes the problem
analytically intractable. To this end, an approximation
of Lambert function is presented, which offers excellent
goodness of fit.

4) The performance in terms of number of healthy sensor
nodes, that can be attended, is evaluated. Three different
charging schemes namely Voltage-aware Charging Se-
quence, Operational Time-aware Charging Sequence, and
Iterative Charging Sequence have been proposed. These
schemes consider the parameters of the sensor node rather
than distance only. It is demonstrated that ICS offers the
best performance against other charging schemes.

C. Paper Organization

The paper is organized as follows. In Section II, the system
model for UAV-assisted RFET is presented and effective power
harvested at sensor nodes is derived. The optimization problem
to estimate the charging time in a charging cycle is analyzed in
Section III. Performance evaluation with the proposed different
charging mechanisms is discussed in Section IV. Section V
contains the simulation results, followed by the concluding
remarks and future direction in Section VI.

II. SYSTEM MODEL

The system model for UAV-assisted RFET is shown in Fig.
1. The deployed field sensor nodes in a given area are to
be charged by an energy transmitter mounted on UAV. Each

Table I: List of major variables along with their descriptions
h Deployment altitude of UAV-mounted RFET source
θ Elevation angle made by UAV at sensor node
Lfs Free space path loss
X Excess path loss
L Total path loss comprises of Lfs and X
µ Mean of excess path loss
σ2 Variance of excess path loss
Prx Received power at sensor node
Ptx Transmitted power by UAV-mounted RFET source
Po Sensitivity of RF power harvester
qH Probability of energy harvesting
PH Harvested power
Psen Effective power harvested at sensor node
T Time of operation of each sensor node
vI Initial voltage level of sensor node
vF Final voltage level of sensor after

charging/discharging
vth Threshold voltage of supercapacitor
pk Power exchange vector over time vector t for

kth sensor node
pd Drain power of sensor node
A Total area of sensor deployment
NS Number of deployed sensor nodes in a given area A
U Velocity of UAV during traveling

sensor node is equipped with an RF harvester to collect DC
energy from received RF waveform, and this harvested energy
is stored in a supercapacitor embedded with the sensor node
for further use. In this section, a framework for RFET aware
positioning of UAV is developed and net power available at
the field sensor nodes is evaluated.

A. Path loss Model

The received power is a key parameter in RFET applications
and it depends on the path loss faced by the RF signal. The
path loss model dedicated for UAV-assisted RFET is reported
in [34], which has been used here for analysis. The path loss
L(h, θ) at a ground location, making an elevation angle θ with
the power transmitter mounted on UAV hovering at height h
as shown in Fig. 1 is given as:

L(h, θ) = Lfs(h, θ) + X , (1)

where θ (in ◦) is elevation angle, h · csc(θ) =
√
h2 + r2

is the separation distance between transmitter and receiver,
and r is the horizontal distance of the node location from the
ground projection point of the actual transmitter (cf. Fig. 1).
Lfs(h, θ) is the free space path loss given as: Lfs(h, θ) =
20 log10(h ·csc θ)+20 log10(f)−10 log10(GtxGrx)+32.44.
X is the elevation angle dependent excess path loss and
given as: X ∼ N (µ(θ), σ2(θ)), where N denotes the normal
distribution having mean µ(θ) and variance σ2(θ). µ(θ) and
σ2(θ) (both in dB) with µ(θ) = a · exp(b · θ), σ2(θ) =
c · exp(d · θ). Suburban area is considered for analysis with
a = 12.05, b = −0.0742, c = 79.24, and d = −0.0817.

Here, because RF transmission is done over a long time
duration, up to a few minutes, the impact of small-scale fading
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Figure 1: System model for UAV-assisted RFET.

is averaged out over such a long time period of operation.
Accordingly, large-scale fading (i.e., shadowing) is accounted
in the performance analysis. The path loss model expression in
(1) incorporates the random fluctuation of received signal that
arises over wireless channel due to reflection, diffraction, and
scattering in terms of excess path loss along with the distance
based free space path loss, where the excess path loss refers
to shadowing [34].

B. Formation of RFET Zone

RFET works in the far-field region of an antenna generating
(transmitting) electromagnetic waves, the power of signal
reduces as the distance from transmitter is increased. The
RF power harvester consists of a rectifying circuit, a voltage
booster circuit, and a supercapacitor to store the harvested
energy. The rectifying circuit is made up of low-pass filter
followed by diode-based rectifier, which converts the incoming
RF signal energy into DC power. The rectifier is able to
harvest energy if the received power is above some threshold
Po, which is called RF energy harvesting sensitivity of the
harvester. Po = −12 dBm is considered in numerical results
[24].

Definition 1. RFET zone is the ground field area within which
the sensor nodes are able to harvest energy from the RF wave
transmitted from UAV while it hovers at a position.

Definition 2. The probability of energy transfer qH(h, θ) is the
chance of an event for which the received power at a sensor
node, making an elevation θ with UAV deployed at height h,
is greater than the sensitivity of power harvester.

The probability of energy transfer is defined to incorporate
the random variation of received signal arises from real
wireless channel occurring due to reflection, diffraction and
scattering, which are being captured in excess path loss. The
probability of energy transfer is obtained as:

qH(h, θ) = Pr{Prx(h, θ) ≥ Po}

= 1−Q
(Ptx − Po − Lfs(h, θ)− µ(θ)

σ(θ)

) (2)

where Prx(h, θ) = Ptx − L(h, θ) is the received power at a
location (h, θ). Prx is also a Gaussian random variable with
mean Ptx − Lfs(h, θ) − µ(θ) and variance σ2(θ), as it is
the linear transformed version of X . Q(·) is the Gaussian Q-
function defined as, Q(x) =

∫∞
x

1√
2·π e

−x2

2 dx.
The definition of RFET zone poses a limit on the maximum

tolerable path loss in order to harvest energy from RF signal.
Therefore, it is important to obtain the range of possible

heights of UAV deployment as well as the area of RFET
zone. The RF transmission is done over a long time scale
to charge the sensor nodes. Therefore, received power at a
given location (h, θ) in expected sense is an appropriate choice
rather than instantaneous sense while dimensioning the RFET
zone. The expected value of received power corresponds to
qH(h, θ) = 0.5 due to Gaussian distribution of Prx(h, θ).

The expected path loss (E[L(h, θ)]) is given as,

E[L(h, θ)] = Lfs(h, θ) + µ(θ). (3)

Lemma 1. The expected value of path loss is not a convex
function of height and radius.

Proof. : See Appendix A.

Lemma 2. The expected value of path loss is a unimodal
function of height for a given radius.

Proof. : See Appendix B.

Lemma 3. The expected value of path loss is a non-decreasing
function of radius for a given height.

Proof. : See Appendix C.

Remark 1. For a node placed just below UAV, the radius is
0. Hence, a node located just below UAV will experience the
minimum path loss due to non-decreasing nature of path loss
with radius. Thus at this node, only height dependent path loss
is present which can be obtained from (1) with θ = 90◦.

The path loss model for UAV-assisted RFET is characterized
in Lemmas 1, 2, and 3. It is observed that, the path loss is
not a convex function of UAV coverage radius and deployment
altitude. However, the path loss experiences unimodal variation
against height for a given radius due to increase in free
space path loss and decrease in excess path loss. As UAV
deployment height increases, the effect of blockage caused by
obstructions reduces, and hence excess path loss decreases.
On the other hand, the path loss experiences non-decreasing
variation against radius for a fixed deployment altitude of UAV,
because the received signal faces more obstacles with increase
in radius.

Now, if UAV is placed at a given height h0, which is fixed
but arbitrary, the radius of RFET zone or range of elevation
angle can be obtained by solving the following equation:

E[Prx(h0, θ)] ≤ Po ⇒ E[L(h0, θ)] ≤ Ptx − Po. (4)

As the function is not convex (see Lemma 1), the radius for
RFET zone can be obtained by solving E[L(h0, θ)] − Ptx +
Po = 0 using numerical technique, like Bisection method [35]
due to non decreasing nature of path loss (cf. Lemma 3). Since,
it involves significant computation requirement, approximation
technique is preferred. Using approximations, we obtain closed
form expression of the radius of RFET zone. From (1) and (4),

20 log10(h0 · csc(θ)) + 20 log10(f)

− 10 log10(GtxGrx) + 32.44 + µ(θ) ≤ Ptx − Po
(5)

This equation involves logarithmic, trigonometric, and ex-
ponential functions, which are transcendental functions. Sin-
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gularity of csc(θ) at θ = 0 is a major trouble and it is
difficult to approximate these functions in finite sequence.
Hence, we have approximated these functions using curve
fitting technique in the range of θ ∈ [5◦, 85◦] to avoid
singularity. log10(csc(θ)) is approximated as: log10(csc(θ)) ≈
q3 · θ3 + q2 · θ2 + q1 · θ+ q0, with q3 = −2.251× 10−5, q2 =
0.002161, q1 = −0.08054, q0 = 1.385 for θ ≤ 40◦; q3 =
−4.94 × 10−7, q2 = 0.000181, q1 = −0.02079, q0 = 0.7649
for 40◦ < θ ≤ 85◦. The R-square value for this fitting is
0.9935, which indicates excellent fitting. exp(b · θ) is approx-
imated as: exp(b ·θ) ≈ p3 ·θ3 +p2 ·θ2 +p1 ·θ+p0, with p3 =
−1.414 × 10−5, p2 = 0.001542, p1 = −0.0618, p0 = 0.957
for θ ≤ 40◦; p3 = −6.654 × 10−7, p2 = 0.0001581, p1 =
−0.0127, p0 = 0.348 for 40◦ < θ ≤ 85◦. The R-square value
for this fitting is 0.9909. Using these approximations, (5) can
be written as,

(20 · q3 + a · p3) · θ3 + (20 · q2 + a · p2) · θ2+

(20 · q1 + a · p1) · θ + (20 · q0 + a · p0)

≤ Ptx − Po − 20 · log10(h0)− 20 · log10(f)+

10 · log10(Gtx ·Grx)− 32.44.

(6)

This is a cubic equation, and its roots can be easily found in
closed-form equation. The cubic equation has either one real
root with two complex conjugate roots or three real roots. We
have investigated the discriminant of this cubic equation and
is negative for all possible range of heights, which indicates
that, it has one real root with two complex roots. For brevity,
closed form expression of the root of cubic equation (6) is
omitted. Note that, the expression of real root of a generalized
cubic equation θ3 + a · θ2 + b · θ + c = 0 is given as [36]:

θreal =
(
− B

2 +
√

B2

4 + A3

27

) 1
3

+
(
− B

2 −
√

B2

4 + A3

27

) 1
3

;

where A = 3·b−a2

3 and B = 2·a3−9·a·b+27·c
27 . If θ∗ be the real

root, which is the solution of the cubic equation in (6); then,
the radius of RFET zone is given as: RRFET zone = h0/tan(θ∗).

Conversely, consider the case when area of RFET zone is
fixed with a radius ro and UAV hovers over a fixed ground
location that is the center of the RFET zone. In this case,
there is a range of possible UAV deployment height, such
that the sensor nodes within RFET zone are able to harvest
energy. There is also an optimal height of UAV in this height
range. They are obtained from: E[L(h, θ)] ≤ Ptx − Po with
tan θ = h/ro. The optimal deployment height of UAV can be
obtained numerically by minimizing E[L(h, θ)]−Ptx+Po us-
ing Golden section method [35] due to the unimodal property
proved in Lemma 2. Analytically, it can be obtained from:
∂
∂hE[L(h, θ)] = 0 ⇒ π tan(θ) + a · b · 9 · ln 10 · exp(b · θ).
exp(b · θ) is approximated above and tan θ cab be approxi-
mated as: tan(θ) ≈ r3 ·θ3+r2 ·θ2+r1 ·θ+r0 with r3 = 3.388×
10−6, r2 = −6.972 × 10−5, r1 = 0.01842, r0 = −0.003959
for θ ≤ 40◦; with r3 = 0.0003219, r2 = −0.05352, r1 =
2.967, r0 = −53.31 for 40◦ < θ ≤ 85◦. The R-square value
for this fitting is 0.9894. This leads to a cubic equation, and its
root can be obtained in closed form. Let θopt be the optimal
elevation angle with respect to the periphery of the RFET
zone, then hopt = ro tan(θopt). Using this optimal height,
the possible range of deployment height can also be obtained

by solving E[L(h, θ)] − Ptx + Po = 0, which has two roots
around the optimal height due to unimodal nature. The roots
can be obtained numerically using bisection method over two
intervals around optimal height, and each interval will have
a root. The height range between these roots correspond to
the possible deployment height of UAV. Analytically, this can
be obtained by using the approximation of log10(sec(θ)) as:
log10(sec(θ)) ≈ s3 ·θ3 +s2 ·θ2 +s1 ·θ+s0 with s3 = 3.951×
10−6, s2 = 0.0005254, s1 = 0.001739, s4 = −0.006814 for
θ ≤ 40◦; s3 = 0.0001338, s2 = −0.02049, s1 = 1.13, s4 =
−19.99 for 40◦ < θ ≤ 85◦. The R-square value of fitting is
0.9926. This leads to the cubic equation, and the roots can be
obtained in closed form.

C. Effective Power Harvested at Field Sensor Nodes
Even though the RFET zone is defined, the exact value of

power available to each sensor node situated at different lo-
cations is unknown. Two main factors influencing the amount
of harvested energy are the shadow statistics of the path loss
and received power dependent variable RF-to-DC rectification
efficiency of the energy harvester.

Actual harvested power depends on RF-to-DC rectification
efficiency, which is a function of received RF power. Using
the rectification efficiency values given in data sheet of power
harvester [24], the harvested power PH(ρ) is found to vary
with input received power ρ as follows:

PH(ρ) =


0, if ρ < ρo
2∑
i=0

wi · (ρ)i, otherwise
(7)

where ρo = 10
Po
10 W, and wi’s are fitting coefficients: w0 =

−4.858 × 10−5, w1 = 0.5875, w2 = −7.564. The R-square
value of the fitted function is 0.9996, which indicates excellent
fitting.

Harvested power in expected sense captures the randomness
caused by excess path loss due to long time of operation in
RFET. The expected harvested power Psen(h, θ) at a sensor
node making an elevation angle θ with UAV hovering at
altitude h is expressed as,

Psen(h, θ) =

∫
ρ≥ρo

PH(ρ) · fPrx(h,θ)(ρ) · dρ

=

∫
ρ≥ρo

(w0 + w1 · ρ+ w2 · ρ2) · fPrx(h,θ)(ρ) · dρ

= η0 + η1 + η2

(8)

where ρo is the sensitivity of power harvester. fPrx(h,θ)(ρ)
denotes the distribution of received power on linear scale (in
Watts) at location (h, θ), which is expressed as:

fPrx(h,θ)(ρ) =
10

ρ
√

2πσ(θ) ln(10)
·

exp
[
− (10 log10(ρ)− Ptx + Lfs(h, θ) + µ(θ))2

2σ2(θ)

]
(9)

The cumulative distribution function (CDF) of
received power is obtained as: FPrx(h,θ)(ρ) =
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Figure 2: (a) System model for UAV-assisted charging; and (b)
depiction of circuit operation at sensor node.
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Figure 3: Realization of time vector.

1 − Q
(

10 log10 ρo−Ptx+Lfs(h,θ)+µ(θ)
σ(θ)

)
, where Q(·) is the

Gaussian Q-function.
η0, η1, and η2 are obtained as:

η0 = w0 ·Q(κ0),with κ0 =

10 log10 ρo − Ptx + Lfs(h, θ)
+ µ(θ)

σ(θ)
,

η1 = w1 · exp

[ (Ptx − Lfs(h, θ)− µ(θ)) · ln 10
10 +

σ2(θ)
2

(
ln 10
10

)2

]
·Q(κ1),

with κ1 =
10 log10 ρo − Ptx + Lfs(h, θ) + µ(θ)− σ2(θ) ln 10

10

σ(θ)
,

η2 = w2 · exp

[2(Ptx − Lfs(h, θ)− µ(θ)) ln 10
10 +

σ2(θ)
2

(
2 ln 10

10

)2

]
·Q(κ2),

with κ2 =
10 log10 ρo − Ptx + Lfs(h, θ) + µ(θ)− 2σ

2(θ) ln 10
10

σ(θ)
.

III. UAV MOBILITY OPTIMIZATION FOR CHARGING
MULTIPLE FIELD SENSOR NODES

In the previous section on formulation of RFET zone, the
power harvested at sensor nodes situated at different locations
are obtained when UAV hovers at an altitude, which plays a
key role while designing the charging mechanism. Consider
a scenario as shown in Fig. 2 (a), where NS sensor nodes
are deployed in a given area A, and the sensor nodes are
to be charged by UAV hovering at a given altitude. The
harvested energy is stored in the supercapacitor. Fig. 2(b)
shows the charging-discharging process of supercapacitor. The
supercapacitor operates in a predefined voltage range, and
sensor node dissipates energy with time in different operations
like sensing, processing, and communication. If the power
harvested is greater than energy dissipation rate, then the
supercapacitor has surplus energy stored in it. On the other
hand, if the power harvested is lesser than energy dissipation
rate, then the supercapacitor’s energy is dissipated. Charging
rate, which is the effective power available to the sensor
nodes, is decided by the relative location of sensor nodes and
deployment height of UAV as discussed in the Section II (cf.

(8)). When UAV charges a particular node from height h just
above it, the other nodes in the RFET zone also receive power
depending on the path loss to these nodes.

UAV hovers just above the sensor node to perform RFET,
because the harvested power is maximum at this hovering posi-
tion in presence of shadow fading and non-linear rectification
efficiency. The distance between transceiver as well as the
effect of shadow fading is minimum in this orientation. This
observation is in contrast with that in [37], where hovering
of UAV above a group of ground-deployed sensor nodes was
noted to be efficient for information transfer. This is because,
in RFET, while hovering at different position other than just
above the sensor node, the path loss as well as shadow fading
increases significantly due to increase of separation between
the RF transmitter and receiver. Thus, sensor nodes receive less
power, and hence harvest less power. The change in distance
between the RF transmitter and receiver affects the energy
transfer efficiency more severely than information transfer due
to difference in their sensitivities.

Let UAV hovers above kth sensor node having initial voltage
vkI and energy dissipation rate pdk , for a duration tk. The
initial voltage as well as the location of each sensor node
is known to UAV from a centralized location before starting
the charging process. With this system model, our aim is to
minimize the total time of charging for a given set of field
sensor nodes, which includes the time of charging the sensor
nodes and travel time to visit them. The optimization problem
is formulated as follows:

(P) : minimize
ti, xij

NS∑
i=1

ti +
1

U

NS∑
i=1

NS∑
j=1

xijdij

subject to: (C1) vkF (vkI , p
k, t) ≥ vkth, ∀k, k = 1, · · · , NS

(C2) vkF (vkI , p
k, t) ≤ vkmax, ∀k, k = 1, · · · , NS

(C3)

NS∑
k=1

tk ≤ T − ttr

(C4) tk ≥ 0, ∀k, k = 1, · · · , NS

(C5)

NS∑
j=1

xij = 1, i 6= j

(C6)

NS∑
i=1

xij = 1, i 6= j

(C7)
∑
i,j∈R

xij ≤ |R| − 1, R ⊂ {2, · · · , NS},

|R| ≥ 2

(C8) xij = 0 or 1.
(10)

The supercapacitor operates in predefined range of voltage
level, which are captured in constraint (C1) and (C2). pk is the
power exchange vector of kth sensor node over time vector t.
The length of both vectors pk and t are 2·NS , and the variation
of t is shown in Fig. 3. The time vector for each sensor node
is the same, whereas power vector pk for each sensor node
is different, which depends upon energy dissipation profile
of sensor node, spatial arrangement of sensor nodes, and
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charging sequence. If the UAV hovers above a sensor node, the
other sensor nodes within the RFET zone also harvest power
based on relative separation between the UAV transmitter
and the sensor nodes. Hence charging and discharging occur
simultaneously in these sensor nodes. This may be visualized
from Fig. 2(b), where the operation of power harvester circuit
is shown. The sensor nodes lying outside the RFET zone
do not receive energy. Hence, discharging of battery energy
occurs at those nodes in that epoch. vkF (·) is the final voltage
level of kth sensor node having initial voltage vkI and goes
through power exchange vector pk over time vector t. It is
important to evaluate the power exchange vector pk.

Let Nk denotes the set of sensor nodes, which are within
the RFET zone around the kth sensor. kth sensor itself is a
default member of Nk. Therefore, the jth element of power
exchange vector of kth sensor node, pkj is given as:

pkj =

 −pdk , if j /∈ Nk & j mod 2 6= 0
γjk − pdk , if j ∈ Nk & j mod 2 6= 0
−pdk , if j mod 2 = 0

(11)

where γjk is the power received at sensor node k when UAV
hovers above sensor node j, and can be obtained from (8).

Constraint (C3) indicates the total time spent in charging
process, which includes charging time and travel time; it
should not exceed the target operational time of each sensor
node, i.e., T . It is composed of charging time tk, traveling time
τk, and vacation time (last element of t indicates the vacation
time, t2·NS

= T − ttr −
∑NS

i=1 ti). Vacation time refers to the
time duration over which the charging process by UAV is not
carried out. τk is the time elapsed in traveling from sensor node
k−1 to k with τ1 = 0 (i.e., for the starting node). τk depends
on the visiting sequence of sensor nodes with τk =

dk−1,k

U ,
where dk−1,k is the distance between (k − 1)st to kth sensor
node, and U is the speed of UAV. ttr =

∑NS

k=1 τk is the total
travel time. It is considered that UAV-mounted transmitter does
not radiate power while traveling. This assumption does not
alter the performance significantly, because the travel time is
very small compared to the charging time1. Constraint (C4)
corresponds to the non-negative nature of individual sensor’s
charging time.

Constraint (C5) and (C6) ensure that every node has one
successor and one predecessor. (C8) xij ∈ {0, 1} is binary
variable taking the value 1 when node j is charged after node
i, and 0 otherwise. Constraint (C7) ensures the elimination of
cycles during the charging process. dij is the distance between
sensor nodes i and j.

The problem at hand is to obtain the optimal solution of
problem (P), which comprises of travel time and charging
time. It is notable that, the constraints related to binary
variable (i.e., (C5) - (C8)) do not overlap with the constraints
of the continuous variables (i.e., (C1) - (C4)), whereas the
constraints of continuous variable (i.e., (C3)) depend on the
binary variable (i.e., ttr = 1

U
∑NS

i=1

∑NS

j=1 xijdij). With this
observation, the optimization problem (P) can be decomposed

1In contrast, this consideration of wireless radiation during UAV flying time
has strong impact in data transfer application due to its much higher sensitivity
compared to the energy transfer scenario, and huge amount of data can be
transferred while traveling[37].

into two sub-problems and can be solved individually in the
sequential way [38]. The overall optimal solution consists of
optimal solution of each sub-problem. The solution of first
sub-problem is plugged in the constraint (i.e., (C3)) of second
sub-problem and then solved. The first sub-problem is stated
as,

(P1): minimize
xij

1

U

NS∑
i=1

NS∑
j=1

xijdij ,

subject to: (C5), (C6), and (C8).

(11)

This sub-problem evaluates the sequence of visiting the sensor
nodes with minimum time spent in traveling. Using this
sequence, the power exchange vector pk is obtained from (11).

The second sub-problem is stated as,

(P2): minimize
ti

NS∑
i=1

ti,

subject to: (C1), (C2), (C3), and (C4).

(12)

This sub-problem evaluates the optimal charging time required
for each sensor node.

A. Optimal Solution of Problem P1

UAV charges the sensor nodes one by one, so it is important
to obtain the order in which the nodes are going to be
charged. UAV wants to minimize the total distance traveled
or total travel time of the process, while deciding the order of
charging. This optimization problem to find the shortest route
is known as Traveling Salesman Problem (TSP) [39]. So, the
optimization problem (P1) is TSP. TSP is known to be an
NP-hard problem, but several polynomial time approximation
methods are reported in the literature. Here, Hungarian method
is used to solve the TSP, whose computational complexity is
O(n3).

In standard TSP, the initial node (entry node) and final node
(exit node) are same. But, if the initial and final nodes are not
same then, this problem can be easily transformed to standard
TSP by introducing a dummy node, say (NS +1)th node [39].
The distance of all existing nodes to this dummy node is 0, i.e.,
dNS+1,i = di,NS+1 = 0, ∀i ∈ 1, · · · , NS . Then the traveling
sequence is evaluated for these NS + 1 sensor nodes setting
and finally the two virtual edges associated with dummy node
are removed.

B. Optimal Solution of Problem P2

To solve (P2), it is important to evaluate the final voltage
level vF (·, ·, ·). The final voltage of supercapacitor embedded
in sensor node after constant power charging/discharging de-
pends upon the charging/discharging rate, time of charging,
and initial voltage level of supercapacitor [40], [41]. Let the
capacitance of supercapacitor is C farad and equivalent series
resistance is Ω ohm for the harvester circuit shown in Fig.
2(b). Here, a supercapacitor of capacitance C = 40 farad and
equivalent series resistance Ω = 0.15 ohm are considered for
analysis and performance results.
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1) Equivalent Charging Process: The final voltage level
of supercapacitor after time T , when charged with constant
power pc having initial voltage vI , is given as,

vF (vI , pc, T ) = zcf

√
4 · pc · Ω · C2

2 · zcf + 1
(13)

where zcf = 1
2

[
Wo

(
e

(
1+2

(T+Gc(vI ))

Ω·C

))
− 1

]
with Lambert

function Wo(·), Gc(vI) = Ω · C · [zci + 1
2 ln(1 + 2 · zci )], and

zci =
v2
I+vI
√
v2
I+4·pc·Ω

4·pc·Ω .
The expressions of final voltage level involves the Lam-

bert function, which makes the optimization problem (P1)
analytically intractable. In this regard, an approximation of
final voltage level is presented in the operational region of
supercapacitor.

The operational voltage level of supercapacitor is
[2.2 V, 3.8 V] [42], whereas the power harvested, pc, in the
given context lies in the range [10× 10−6 W, 10× 10−3 W].
With initial voltage vI ∈ [2.2 V, 2.5 V] and charging rate
pc ∈ [10×10−6 W, 10×10−3 W], the variation of final voltage
level is modeled using linear regression. Final voltage level is
found to fit as a function of initial voltage level, charging rate,
and time as follows:

vF (vI , pc, t) = vI + gc(pc) · t, gc(pc) = gco + gc1 · pc (14)

where gco = 2.711× 10−6, and gc1 = 8.863× 10−3. The R-
square value is 0.9930, which lies within the acceptable range
of fitting [43]. The variation of voltage level against time for
different initial voltage and charging rate are shown in Fig.
4(a), which also demonstrate the accuracy of approximation.

2) Equivalent Discharging Process: The final voltage level
of supercapacitor after time T , when discharged with constant
power pd having initial voltage vI is given as,

vF (vI ,−pd, T ) = −zdf

√
4 · pd · Ω · C2

2 · zdf + 1
(15)

where zdf = 1
2

[
Wo

(
e

(
1+2

(T+Gd(vI ))

Ω·C

))
− 1

]
with Lambert

function Wo(·), Gd(vI) = Ω · C · [zdi + 1
2 ln(1 + 2 · zdi )], and

zdi =
v2
I+vI
√
v2
I−4·pd·Ω

4·pd·Ω .
The drain power pd in the given context lies in the range

[0, pd]. Here pd ≤ 8 × 10−5 W is considered for analysis
(cf. Section V). Thus, with initial voltage vI ∈ [2.3 V, 3 V]
and discharging rate pd ∈ [0, 8 × 10−5 W], the variation of
final voltage level is modeled using linear regression. The
discharging equation is found to fit as a function of initial
voltage level, discharging rate, and time as follows:

vF (vI ,−pd, t) = vI+gd(pd)·t, gd(pd) = gdo+gd1·pd (16)

Here gdo = 1.522 × 10−9, and gd1 = −0.01054. The R-
square value is 0.9916, which is in the acceptable range [43].
The variation of voltage level with time for different initial
voltage and discharging rate in Fig. 4(b) proves the accuracy
of approximation.
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Figure 4: Variation of original and fitted values of voltage with time
for (a) charging, and (b) discharging process.

Remark 2. If the capacitor is consequently charged for time
t1 and t2 with charging rate pc1 and pc2 , respectively, with
initial voltage vI , the final voltage is given by:

vF (vI , [pc1 , pc2 ], [t1, t2]) = vI+gc(pc1)·t1+gc(pc2)·t2. (17)

Remark 3. If the capacitor is consequently discharged for
time t1 and t2 with discharging rate pd1 and pd2 , respectively,
with initial voltage vI , then the final voltage is:

vF (vI , [−pd1 ,−pd2 ], [t1, t2]) = vI +gd(pd1) · t1 +gd(pd2) · t2.
(18)

Remark 4. If the capacitor is consequently charged for time
t1 with charging rate pc and discharged for time t2 with
discharging rate pd with initial voltage vI . Then the final
voltage is:

vF (vI , [pc,−pd], [t1, t2]) = vI +gc(pc) · t1 +gd(pd) · t2. (19)

The remarks 2, 3, and 4 transform the constraints (C1) and
(C2) into a linear function. This makes the problem (P2) a
linear program. Hence, the optimal charging time for which
UAV hovers above each sensor node can be obtained by
solving it using linear programming [35].

IV. PROPOSED VOLTAGE AND OPERATIONAL TIME AWARE
CHARGING MECHANISM

A supercapacitor operates in a predefined voltage range,
and some amount of energy is kept safe for emergency
situation. The normal operational range is above this safe
margin, and upto the maximum allowed voltage level. The
three operational region of a sensor node can be categorized
as: healthy, unhealthy, and dead. [vkth, v

k
max] is the healthy
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range of operation, where sensor node normally functions.
In unhealthy region [vkmin, v

k
th], the sensor node enters in

critical mode of operation and usually this portion of energy is
stored for emergency usage. If the voltage level of sensor node
falls below vkmin, then it becomes dead, which is undesirable.
The sensor nodes are desired to operate in normal healthy
region and hence, the number of healthy nodes among all the
deployed sensor nodes is of our interest.

When UAV arrives for charging, the sensor nodes have
different initial voltage levels and in these circumstances, the
charging sequence plays a significant role. Minimizing the
distance traveled is the only criteria in TSP. TSP does not
consider the sensor node’s health parameter, such as initial
voltage level or power consumption profile, which have strong
impact on the performance. The sequence in which sensor
nodes should be charged by UAV, such that, the unhealthy
state of sensor nodes can be avoided, is a very important issue.
Keeping this in mind, different charging schemes are presented
in this section, where the sensor node’s health parameters are
taken into consideration.

A. Voltage-aware Charging Sequence (VCS)

The sensor nodes are sorted according to their ascending
order of voltage level, i.e., from minimum to maximum
in Voltage-aware Charging Sequence (VCS). The power ex-
change vector is obtained from (11) using this charging
sequence. Then, the charging time required to charge each
sensor node is obtained by solving (P2).

Sensor nodes are charged sequentially; the nodes have to
wait for their turn. For a node with zth position in the visiting
sequence, the waiting time consists of travel time and charging
time of the predecessor nodes. The waiting time vector tzw
can be envisioned from Fig. 3. The power exchange vector
of sensor node at zth position during waiting time pz

w
is

obtained from (11). The role of pz
w

is important because the
sensor nodes lying in RFET zone will also receive power for
their recharging. If the voltage level of sensor node during
waiting time does not fall below a threshold voltage, i.e.,
vF (vzI , p

z
w
, tzw) ≥ vzth, it is said to be healthy.

B. Operational Time-aware Charging Sequence (TCS)

VCS works well in homogeneous sensor deployment, where
all sensor nodes have the same power consumption profile. It
is not efficient in heterogeneous deployment scenario due to
diverse power consumption profile. To this end, a charging
scheme based on operational time, namely, Operational Time-
aware Charging Sequence (TCS) is proposed. The opera-
tional time of zth sensor node (Otz) with initial voltage
level vzI , and power consumption pzd is obtained by solving:
vzF (vzI ,−pzd,Otz) = vzth. The charging sequence is prepared
according to the operational time in ascending order. The
power exchange vector is obtained from (11) using this se-
quence and the charging time allocated to each sensor node is
obtained by solving (P2).

C. Iterative Charging Sequence (ICS)

In the previous schemes (TSP, VCS, TCS), the sensor nodes
are visited once and charged one by one for allocated amount
of time. The performance with these schemes become worse
when the charging time is higher than the operational time.
Therefore, it requires mechanism to address this situation
and hence, an iterative charging mechanism, namely, Iterative
Charging Sequence (ICS) is presented here to improve the
performance. Significant improvement in the durability of
sensor node after charging for some time and negligible travel
time of UAV due to it’s excellent mobility capability are
motives behind this scheme. Here, the sensor nodes can be
charged iteratively rather than charging once. The charging
time can be accumulated in each round upto the time obtained
by solving (P2). How much charging time will be allocated
to each sensor node in an iteration? is the most important
issue while designing the iterative charging scheme. To address
this issue, an optimization problem P is formulated, which
provides the time allocated in an iteration. Let S be the
sequence of sensor nodes in ascending order of remaining
operational time with Ot

n
S(1) ≤ · · · ≤ Ot

n
S(|S|) in nth iteration.

Let ItnS(i) be the time allocated in the nth iteration to sensor
node S(i) having operational time Ot

n
S(i). Then, the time

allocated to each sensor node in nth iteration is obtained by
solving the following optimization problem,

(P) : maximize
|S|∑
i=1

It
n
S(i)

subject to: (C1)

k∑
i=1

(It
n
S(i) + τS(i)) ≤ Ot

n
S(k+1),

∀ k = 1, · · · , |S| − 1,

(C2) v
S(1)
F (v

S(1)
I , pS(1), It

n) ≥ vS(1)
th ,

(C3) It
n
S(i) ≥ 0, ∀i, i = 1, · · · , |S|.

(C4) It
n
S(i) ≤ tS(i), ∀i, i = 1, · · · , |S|.

(20)

Constraint (C1) indicates that the time allocated to a particular
sensor node in an iteration depends upon the remaining opera-
tional time of subsequent sensor nodes. This also includes the
time elapsed in traveling (τi). Constraint (C2) indicates that,
the time should be allocated in an iteration such that the initial
sensor node having minimum operational time should not enter
into the unhealthy region. Constraint (C3) corresponds to the
non-negative time allocation. The last constraint ensures that
time allotted in a single iteration is less than the total charging
time for a particular node. Constraint (C4) restricts the time
allocated in each iteration.

The detailed procedure for ICS is mentioned in Algorithm
1. First of all, the sensor nodes are arranged according to
TCS, and then using this sequence, charging time required by
each node is calculated by solving (P2). A sensor node will
be eliminated from iteration in two scenarios: either it goes
into unhealthy region or it will be charged upto required time
(obtained by solving (P2)). The charging time for each sensor
node in individual iteration is obtained by solving (P). The
voltage level of sensor nodes are updated after charging each
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sensor node due to effect of RFET zone. The time allocated in
each iteration for sensor nodes are accumulated and updated,
such that, the sensor nodes can be charged upto time obtained
by solving (P2).

Algorithm 1 Iterative Charging Sequence (ICS)

1: Input: S: Set of sensor nodes, NS , Location of sensor
nodes, Initial voltage level of sensor nodes, Power con-
sumption profile of sensor nodes

2: Output: Number of healthy sensor nodes
3: Arrange the sensor nodes according to TCS
4: Find tS(i); charging time required for sensor node from

(P2)
5: Define R = {φ}: Set of unhealthy sensor nodes
6: Initialize: n = 0, Itn=0

S(i) = 0 ∀i = 1, · · · , |S|
7: while S 6= 0 do
8: Set n = n+ 1; increment iteration number
9: Find It

n
S(i) by solving (P)

10: It
n
S(i) = min{tS(i), It

n
S(i)}

11: for i = 1 : |S| do
12: Charge node S(i) and nodes lying in the RFET

zone for time It
n
S(i)

13: Update voltage level of the sensor nodes of sensor
set S

14: It
n
S(i) = It

n
S(i) + It

n−1
S(i)

15: if It
n
S(i) == tS(i) then

16: S = S − {S(i)}
17: end if
18: if vS(i)

F < v
S(i)
th then

19: R = R∪ {S(i)}
20: S = S − {S(i)}
21: end if
22: end for
23: Arrange sensor nodes of S according to TCS
24: end while
25: Number of healthy sensor nodes = NS − |R|

V. RESULTS AND DISCUSSIONS

In this section, UAV-assisted RFET performance is numeri-
cally evaluated. The sensor nodes are deployed in a given area
according to Poisson point process. The initial voltage level of
sensor nodes are uniformly distributed between 2.3 V and 2.4
V, whereas the threshold voltage is 2.3 V and the minimum
allowed voltage level is 2.2 V. For performance analysis, the
power transmission level of 4 W is considered. We have con-
sidered CO gas sensor having average energy dissipation rate
0.05 mW , i.e., pdi = 0.05 mW ∀i in case of homogeneous
sensor node deployment, which is sufficient for event driven
and periodic reporting sensor nodes [1]. The values of other
parameters are: f = 0.915 GHz, Po = −12 dBm, Gtx =
2.10, Grx = 1.25, T = 24 hrs, U = 10 m/s.

A. Dimensioning of RFET Zone

Variation of radius of RFET zone against UAV deployment
height is shown in Fig. 5(a). The plots show that, the radius
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Figure 5: Variation of (a) radius of RFET zone against UAV
deployment height, and (b) available height range against radius of
RFET zone.

estimated using approximations closely matches with that
obtained using numerical technique. The radius of RFET zone
for a given deployment height indicates the non-decreasing
nature of path loss, proved in Lemma 3; energy can be
harvested up to this radius. It may be noted that, the radius
of RFET zone increases up to some height, then it decreases,
demonstrating its unimodal nature, as proved in Lemma 2.
The radius becomes zero at a particular height, which is the
maximum possible height for the UAV to facilitate RFET.

The variation of allowable height to facilitate UAV-assisted
RFET along with the optimal height for a given RFET zone
radius is shown in Fig. 5(b). The plots indicate that, the analyt-
ical approximations on deployment heights (hmin, hopt, hmax)
match well with the numerically computed exact values. The
range of UAV deployment height is wider for lesser radius
of RFET zone; this height range reduces and converges with
increase in RFET zone radius due to increase in path loss.

The variation of CDF of received power level, FPrx(h,θ)(ρ),
is shown in Fig. 6(a) for different deployment heights and
different elevation angles. It can be observed that, more power
is received at a higher elevation angle, which is because free
space path loss as well as shadow parameters, i.e., mean and
variance, are higher at smaller elevation angle.

Effective power harvested at a sensor node located at differ-
ent positions (captured in (8)) is shown in Fig. 6(b) for differ-
ent UAV deployment heights. As the elevation angle increases,
the effective power available increases significantly, which
validates the observation in Fig. 6(a). A sensor node harvests
maximum power when UAV hovers just above it, i.e., when
elevation angle is 90◦ (cf. Remark 1). The harvested power
decreases with decrease in elevation angle due to increase in
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Figure 6: Variation of (a) CDF of received power level, and (b)
effective power available against elevation angle for different UAV
deployment heights.

path loss as well as shadow effects. The radius of RFET zone
is: RRFET zone = ho/ tan(θ∗) with θ∗ = 10.40◦, 16.50◦, and
21.80◦ for ho = 1, 2, and 3 m, respectively. It may be noted
from Fig. 6(b) that, the energy harvested outside the RFET
zone, i.e., when θ < θ∗, is negligible compared that to inside
the RFET zone.

Remark 5. The harvested power reduces significantly as the
elevation angle decreases, and this is insignificant outside the
RFET zone.

B. Impact of RFET Zone

Two different deployment scenarios, one in an area 10 m×
10 m and the other in 50 m×50 m are considered to investigate
the impact of RFET zone. The variation of total charging
time against UAV deployment height is shown in Fig. 7(a).
The charging time increases with increase in height, because
the target sensor node over which UAV hovers as well as the
neighborhood sensor nodes lying in RFET zone receive less
power (cf. Fig. 6(b)). Also, the value of RF-to-direct current
rectification efficiency is very small at lesser received power,
which leads to the reduction in harvested power. Hence, the
charging time increases with increase in UAV deployment
height. This observation suggests that, the charging process
by UAV should be carried out at altitude as low as possible.
Further, the time elapsed to charge the sensor nodes is lesser in
case of smaller area. This is because, with the same number
of nodes deployed in a smaller area the RFET zone covers
more number of nodes, which aids in simultaneous charging
of the neighboring nodes.
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Figure 7: Variation of total charging time against (a) UAV height
with NS = 50, and (b) number of sensor with h = 1 m.

The variation of charging time against number of deployed
nodes is shown in Fig. 7 (b). It can be observed that, as the
number of deployed sensor nodes increases, total charging
time increases for both the deployment scenarios. However,
with increased number of deployed sensor nodes, the rate
of increase of charging time reduces significantly in smaller
deployment area. This also happens due to the fact that, the
RFET zone covers more sensor nodes in smaller deployment
area. Therefore, more number of nodes in the RFET zone
receive RF power, and are simultaneously recharged (cf. Fig.
6 (b)). This leads to reduction in total charging time of the
field nodes in the deployment area.

Remark 6. The number of sensor nodes lying in the RFET
zone has strong impact on charging time due to simultaneous
charging of nodes.

C. Algorithm Performance with Different Charging Scheme

For this numerical study, UAV hovering altitude 1 m is
considered. Simulation results on fraction of unhealthy nodes
with different charging schemes (TSP, VCS, TCS, ICS), are
presented.

Variation of fraction of unhealthy sensor nodes against the
total number of deployed sensor nodes is shown in Fig. 8(a)
with homogeneous power consumption profile of nodes. As
the number of deployed nodes increases, fraction of unhealthy
nodes increases in all schemes, but the performance is much
severe in case of TSP. This indicates that, TSP is not the
best option, which was the basic mobility planning in the
previously reported works [15], [19], [22]. This is because,
TSP does not take into consideration the remaining energy
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Figure 8: Variation of fraction of unhealthy sensor nodes for (a)
homogeneous, and (b) heterogeneous sensor deployment in 50 m ×
50 m area.

levels of the deployed sensor nodes. Due to this, the sensor
nodes having energy level close to the lower threshold deplete
and become unhealthy. The performance of VCS and TCS
nearly overlap due to homogeneous deployment, whereas ICS
outperforms all the other three schemes.

In heterogeneous node deployment scenario, four different
type of sensor nodes (CO, H2S, NO2, and Cl2) having
respective power consumption profiles 0.05 mW, 0.06 mW,
0.07 mW, and 0.08 mW are considered. Fig. 8(b) shows
the variation of fraction of unhealthy nodes for different
schemes with heterogeneous sensor node deployment. Here
also, the performance of TSP is worst compared to the other
schemes. Unlike in homogeneous deployment scenario, here
TCS outperforms VCS, because of diverse power consumption
profile of the nodes. With heterogeneous sensor nodes, ICS
performance is significantly better than the other schemes.

The total distance traveled is shown in Fig. 9 for different
schemes in different deployment scenario. It may be observed
that, the distance traveled is maximum in ICS scheme, which
is marginally higher among the four proposed schemes: TSP,
VCS, TCS, ICS, whereas the distance traveled is minimum in
case of TSP. The distance traveled increases significantly with
increase in number of deployed sensor nodes, as it has to travel
more to charge more sensor nodes.

The variation of fraction of unhealthy sensor nodes for
different deployment area (area = (side of square)2) with 100
sensor nodes is shown in Figs. 10(a) and 10(b), respectively,
for homogeneous and heterogeneous deployment scenarios. It
may be noted that, the performance of all the four schemes are
nearly identical for smaller deployment area. This is because
the neighborhood sensor nodes lying in RFET zone harvest
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Figure 9: The distance traveled for different schemes in different
deployment scenario in 50 m × 50 m area.
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Figure 10: Variation of fraction of unhealthy sensor nodes against
deployment area with NS = 100 for (a) homogeneous, and (b)
heterogeneous sensor deployment.

significant amount of energy due to simultaneous charging
(cf. Remark 6), and they do not become unhealthy. Charging
performance degrades with increase in deployment area, and
ICS outperforms the other three schemes in both deployment
scenarios. As the deployment area increases, simultaneous
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Figure 11: Variation of fraction of unhealthy sensor nodes against
energy budget of UAV with NS = 50 and area of deployment 50 m×
50 m for (a) homogeneous, and (b) heterogeneous sensor deployment.

charging is not effective, because less number of sensor nodes
lie in RFET zone, and hence they become unhealthy.

Remark 7. The performance of all the schemes are nearly
identical when deployment area is smaller, whereas ICS
outperforms all other schemes for larger deployment area.

The energy limitation of UAV is not a severe issue; ef-
forts toward longer operation of UAV [44]. Recently, several
promising technologies like solar-powered quadcopters [45],
fuel cell-powered UAV [46], efficient automatic battery re-
placement [47], and combustion engine-powered UAV [48],
have been reported towards prolonging the UAV operational
time. Time of flight up to several hours has been demonstrated
in these works, which is well sufficient for our application.

However, the impact of energy budget of UAV on the per-
formance is also investigated. The total energy budget of UAV
in UAV-assisted RFET process accounts for energy consumed
by UAV-mounted RF transmitter, and energy consumed during
hovering or charging and traveling. Power consumed by UAV
during charging is 214.44 W, whereas it consumes 214.44
W power during traveling with speed of 10 m/s from one
node to other one [1]. The RF power transmission further
consumes 5.33 W power [1]. With these data, the variation
of fraction of unserved sensor nodes against the total energy
budget of UAV when 50 sensor nodes deployed in 50 m×50 m
area is shown in Fig. 11 for homogeneous and heterogeneous
scenarios for different schemes with hovering altitude of 1 m.
It may be noted from Fig. 11 that, the performance improves
significantly with increase in energy budget of UAV for all
the schemes, because the durability increases with increase of
energy budget of UAV, and hence the performance enhances.

For a less energy budget, TSP performs better than the
other schemes, because the energy-hungry nodes are charged
in the beginning in TCS, V CS, and ICS schemes, which
take relatively higher time and the nodes in the end are not
served. Also, the energy consumption in traveling is minimum
compared to the other schemes in TSP (see Fig. 9). Also,
the energy-hungry nodes are charged in the beginning in
TCS, V CS, and ICS schemes, which take relatively higher
time and the nodes in the end are not served. Compared to
TSP , the performance of TCS, V CS, and ICS improves
drastically with increase of energy budget.

VI. CONCLUDING REMARKS

In this work, a new paradigm of wirelessly charging WSN
nodes using UAV assisted RFET has been presented. A novel
concept of RFET zone has been defined; all nodes located
inside this zone are able to harvest energy. The analysis has
accounted for the non-linear RF-to-DC conversion efficiency
and shadowing statistics, which have strong impact on the
effective power harvested at the sensor nodes situated at differ-
ent locations. Based on this analysis, an optimization problem
has been formulated to minimize the total time required to
charge the on-board supercapacitor of the field sensor nodes.
This problem has been decomposed into two sub-problems
and solved in sequential steps. The first sub-problem provides
the charging sequence, that offers minimum time to travel,
which has been solved using TSP approach. In the second
sub-problem, approximation for Lambert function has been
presented to find the optimal charging time of each node. UAV-
aided charging performance in terms of number of healthy
sensor node, that can be supported for their uninterrupted
operation, has been presented. To improve on the size of
network, i.e., the number of field nodes that can be supported,
three different schemes of charging sequence, namely, Voltage-
aware Charging Sequence (VCS), Operational Time-aware
Charging Sequence (TCS), and Iterative Charging Sequence
(ICS) have been proposed and their respective performance
has been analyzed. Through numerical results it has been
demonstrated that, TSP based charging sequence is generally
suboptimal.

Further investigations on study of multiple UAV coordina-
tion for RFET would be of future research interest. Addi-
tionally, the design of new charging protocols for enhanced
performance is another interesting direction.

APPENDIX

A. Proof of Lemma 1

The Hessian matrix of expectation of path loss given in (3)

is: H(h, r) =

[
δ2E[L(r,h)]

δr2

δ2E[L(r,h)]
δrδh

δ2E[L(r,h)]
δhδr

δ2E[L(r,h)]
δh2

]
. For a function to be

convex, the Hessian matrix should positive semidefinite, i.e.,
|H(h, r)| ≥ 0.
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The elements of Hessian matrix H(h, r) are given as:

H(h, r)|11 =
20

((h2 + r2)

[ 1

(ln 10)
− 2 · r2

(ln 10) · (h2 + r2)
+

18 · a · b · r · h
π · (h2 + r2)

· exp(b · 180

π
· tan−1(h/r))+

1620 · a · b2 · h2

π2 · r2 · (h2

r2 + 1)
· exp(b · 180

π
· tan−1(h/r))

]
,

H(h, r)|12 =
20

((h2 + r2)

[
− 2 · r · h

(ln 10) · (h2 + r2)
−

18 · a · b · r2

π · (h2 + r2)
· exp(b · 180

π
tan−1(h/r))+

9 · a · b
π

· exp(b · 180

π
tan−1(h/r))+

1620 · a · b2 · h
π2 · r · (h2

r2 + 1)
· exp(b · 180

π
· tan−1(h/r))

]
,

As the function E[L(r, h)] is continuous, H(h, r)|12 =
H(h, r)|21.

H(h, r)|22 =
20

((h2 + r2)

[ 1

(ln 10)
− 2 · h2

(ln 10) · (h2 + r2)
+

18 · a · b · r · h
π · (h2 + r2)

· exp(b · 180

π
tan−1(h/r))+

+
1620 · a · b2

π22 · (h2

r2 + 1)
· exp(b · 180

π
tan−1(h/r))

]
.

The determinant |H(h, r)| is investigated numerically. It is
noted that, the determinant is not always positive. Therefore,
E[L(r, h)] is not a convex function of height and radius.

B. Proof of Lemma 2

For a function to be unimodal, the sign of derivative changes
only once. The derivative of (3) with respect to height h for
a constant r is found as:
∂

∂h
E[L(h, θ)] =

∂

∂h

[
10 log10(h2 + r2) + a · exp(b · θ)

]
,

=
20h

(h2 + r2) ln 10
+

180a · b
π

· r

h2 + r2
· exp(b · θ),

=
r

h2 + r2
· a · b · 180

π

[ π

a · b · 9 · ln 10
tan(θ)+

exp(b · θ)
]

=
r

h2 + r2
· a · b · 180

π
· g(θ),

where g(θ) = π tan(θ)
a·b·9·ln 10 + exp(b · θ). To investigate the nature

of g(θ), its derivative is given as:

g′(θ) =
180

π
· r

h2 + r2
·b·exp(b·θ)+180

π
· r

h2 + r2
· π sec2(θ)

a · b · 9 · ln 10
.

a > 0 and b < 0 leads to g′(θ) < 0 ∀θ ∈ [0, 90], i.e.,
the function g(θ) is monotonically decreasing. g(θ)|θ=0 > 0,
g(θ)|θ=90 < 0; this indicates that g(θ) will change sign
only once, because it is a decreasing function. Therefore,
∂
∂hE[L(h, θ)] will also change sign only once, which proves
its unimodal nature.

C. Proof of Lemma 3

For a function to be non-decreasing, the sign of derivative
should be always non-negative. The derivative of expectation
of path loss given in (3) with respect to radius, while treating
height as constant, is: ∂

∂rE[L(h, θ)] = 20
ln 10 ·

r
h2+r2 −a ·b · 180

π ·
exp(b · θ) · h

h2+r2 . Observing the values of a and b (a · b <
0), one can deduce that the quantity on right hand side of
the above equation is always positive, which proves the non-
decreasing nature of E[L(h, θ)].
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