
For Peer Review

VNF Placement and Resource Allocation for the Support of

Vertical Services in 5G Networks

Journal: IEEE/ACM Transactions on Networking

Manuscript ID TNET-2018-00070

Manuscript Type: Original Article

Date Submitted by the Author: 15-Feb-2018

Complete List of Authors: Agarwal, Satyam; Indian Institute of Technology Delhi, Electrical
Engineering
Malandrino, Francesco; Politecnico di Torino, DET
Chiasserini, Carla Fabiana; Politecnico di Torino, Dipartimento di Elettronica
De, Swades; Indian Institute of Technology Delhi, Electrical Engineering

Keywords: 5G, VNF placement, resource allocation

IEEE/ACM Transactions on Networking

For Peer Review

1

VNF Placement and Resource Allocation for the
Support of Vertical Services in 5G Networks

Satyam Agarwal, Member, IEEE, Francesco Malandrino, Member, IEEE,

Carla-Fabiana Chiasserini, Fellow, IEEE, Swades De, Senior Member, IEEE

✦

Abstract—5G network slicing is the emerging framework for the support

of technological and business needs of various industries (the so-called

verticals), which wish to offer to their customers a wide range of services

characterized by diverse performance requirements. In this context, one

of the main challenges consists in mapping in an automated manner

the requirements of verticals into decisions concerning the network

infrastructure, including VNF placement, CPU assignment, and traffic

routing. In this paper, we seek to make such decisions jointly, accounting

for their mutual interaction, and efficiently. To this end, we formulate a

queuing-based model and use it at the network orchestrator to optimally

match the vertical’s requirements to the available system resources. We

then propose a fast and efficient solution strategy, called MaxZ, which

allows us to reduce the solution complexity. Our performance evaluation,

carried out accounting for multiple scenarios representative of real-world

services, shows that MaxZ performs substantially better than state-of-

the-art alternatives and consistently close to the optimum.

1 INTRODUCTION

Network slicing [2] is the network paradigm whereby the 5G
network is able to support multiple third parties (referred
to as verticals) with diverse communication and computation
needs. Verticals will provide network operators with the
specification of the services they want to provide, e.g., the
virtual (network) functions (VNFs) they want to use to
process their data and the associated quality of service.
Network operators will then create a slice, i.e., a set of
virtualized networking and computing resources, able to
perform such tasks, and assign it to the vertical. From
the vertical’s viewpoint, network slices will behave like an
ordinary network, entirely dedicated to their service(s).

Mobile operators are therefore in charge of creating the
slices, i.e., mapping the requirements of the verticals into
infrastructure management decisions. This task is part of
the network orchestration, and includes making decisions
concerning (i) the placement of the VNFs needed by the
verticals across the infrastructure; (ii) the assignment of CPU,
memory and storage resources1 to the VNFs; (iii) the routing
of data across network nodes.

• S. Agarwal is with IIT Guwahati, India. F. Malandrino and C.-F. Chi-
asserini are with Politecnico di Torino, Italy. S. De is with IIT Delhi,
India.

• A preliminary version [1] of this work has been accepted at the IEEE
INFOCOM 2018 conference.

1. Note however that our model and methodology can take into
account any kind of resource, e.g., disk or RAM space.

These decisions interact with each other in ways that are
complex and often counterintuitive. In this paper, we focus
on the allocation of computational and network resources,
and make such decisions jointly, accounting for (i) the re-
quirements of each VNF and vertical; (ii) the computational
capabilities of the network operator’s infrastructure; (iii) the
capacity and latency of the links between network nodes.
A key aspect of our work, not taken into account by pre-
vious literature, is that we allow for flexible allocation of the
computational capabilities of each server among the VNFs
it hosts.

We adopt queuing theory as our main methodology, as
much of the 5G traffic, especially that generated in Internet-
of-things (IoT) and machine-type communication (MTC)
scenarios, will consist of a series of requests traversing one
or more computational stages, possibly generating addi-
tional requests while doing so. Indeed, Amazon Lambda
and Amazon Greengrass [3], among the most popular IoT
technologies, support this interaction paradigm, which is
also endorsed by ETSI specifications [4, Sec. 6.11]. Request
and processing stages naturally map onto clients and queues
they have to traverse. Furthermore, the fact that queues can
be assigned different service rates aptly models our flexible
allocation of computational resources.

We take latency as our main key performance indicator
(KPI), and we formulate an optimization problem that min-
imizes the maximum ratio between actual and maximum
allowed end-to-end latency, across all services (i.e., traffic
categories). In light of the complexity of that problem, we
then propose an efficient solution strategy based on (i)
decoupling the VNF placement and CPU assignment deci-
sions, while keeping track of their interdependence, and
(ii) sequentially making such decisions for each VNF. Traffic
routing decisions are simply derived once all placement and
assignment decisions are made.

Our main contributions can be summarized as follows:

• our model accounts for the main resources of 5G
networks, namely, hosts and links;

• we model the diverse requirements of different
VNFs, and allow them to be composed in arbitrarily
complex graphs, as mandated by [5, Sec. 6.5], instead
of simpler chains or DAGs;

• unlike existing work, we allow flexible allocation of
CPU to VNFs, and model the resulting impact on

Page 1 of 24 IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

service times;
• we propose a solution strategy, called MaxZ, able to

efficiently and effectively make VNF placement and
CPU allocation decisions, and show how it consis-
tently performs very close to the optimum across a
variety of traffic requirements;

• focusing on the special case of fully-load conditions,
we state and prove several properties of the optimal
CPU allocation decisions, and use them to further
speed up the decision process.

The remainder of the paper is organized as follows. Sec. 2
reviews related work, highlighting the novelty of our con-
tribution. Sec. 3 positions our work within the context of the
ETSI management and orchestration (MANO) framework.
Sec. 4 describes the system model, while Sec. 5 introduces
the problem formulation and analyzes its complexity. Sec. 6
presents our solution concept, while Sec. 7 describes how
we deal with the special case of full-load conditions. Sec. 8
addresses scenarios with multiple VNF instances. Finally,
Sec. 9 presents performance evaluation results, while Sec. 10
concludes the paper.

2 RELATED WORK

Network-centric optimization. Many works, including [6]–
[10], tackle the problems of VNF placement and routing
from a network-centric viewpoint, i.e., they aim at minimiz-
ing the load of network resources. In particular, [6] seeks
to balance the load on links and servers, while [7] studies
how to optimize routing to minimize network utilization.
The above approaches formulate mixed-integer linear pro-
gramming (MILP) problems and propose heuristic strategies
to solve them. [8], [9] and [10] formulate ILP problems,
respectively aiming at minimizing the cost of used links
and network nodes, minimizing resource utilization subject
to QoS requirements, and minimizing bitrate variations
through the VNF graph.

Service provider’s perspective. Several recent works
take the viewpoint of a service provider, supporting mul-
tiple services that require different, yet overlapping, sets of
VNFs, and seek to maximize its revenue. The works [11],
[12] aim at minimizing the energy consumption resulting
from VNF placement decisions. [13], [14] study how to
place VNFs between network-based and cloud servers so
as to minimize the cost, and [15] studies how to design the
VNF graphs themselves, in order to adapt to the network
topology.

User-centric perspective. Closer to our own approach,
several works take a user-centric perspective, aiming at
optimizing the user experience. [16], [17] study the VNF
placement problem, accounting for the computational ca-
pabilities of hosts as well as network delays. In [18], the
authors consider inter-cloud latencies and VNF response
times, and solve the resulting ILP through an affinity-based
heuristic.

Virtual EPC. The Evolved Packet Core (EPC) is a
prime example of a service that can be provided through
SDN/NFV. Interestingly, different works use different VNF
graphs to implement EPC, e.g., splitting user- and control-
plane entities [19]–[21] or joining together the packet and
service gateways (PGW and SGW) [22], [23]. Our model and

algorithms work with any VNF graph, which allows us to
model any real-world service, including all implementations
of vEPC.

2.1 Novelty

The closest works to ours, in terms of approach and/or
methodology, are [16], [17], [18], and [22].

However, [16], [17] and [22] model the assignment of
VNFs to servers as a generalized assignment problem, a
resource-constrained shortest path problem and a MILP
problem, respectively. This implies that either a server has
enough spare CPU capacity to offer a VNF, or it does not.
Our queuing model, instead, is the first to account for the
flexible allocation of CPU to the VNFs running on a host,
e.g., the fact that VNFs will work faster if placed at a
scarcely-utilized server. Furthermore, [16] and [22] have as
objective the minimization of costs and server utilization, re-
spectively. Our objective, instead, is to minimize the latency
incurred by requests of different classes, which changes the
solution strategy that can be adopted. Finally, [17] only
considers VNF chains instead of generic graphs, and does
not account for the possibility that the quantity of traffic
changes across processing steps.

The queuing model used in [18] is similar (in principle)
to ours; however, [18] does not address overlaps between
VNF graphs and only considers DAGs. Furthermore, in
both [17] and [18] no CPU allocation decisions are made,
and the objective is to minimize a global metric, ignoring
the different requirements of different service classes. Fi-
nally, the affinity-based placement heuristic proposed in [18]
neglects the inter-host latencies and this, as confirmed by
our numerical results in Sec. 9, can yield suboptimal perfor-
mance.

Finally, it is worth mentioning that a preliminary version
of this paper will appear in [1]. While sharing the same
basic solution concept, this version includes a substantial
amount of new and revised material, including a discussion
on how our work fits in the 5G MANO framework (Sec. 3),
an extended discussion of full-load conditions (Sec. 7), and
new results for large-scale scenarios.

3 OUR WORK AND THE ETSI MANO FRAMEWORK

ETSI has standardized [5] the management and orches-
tration (MANO) framework, including a set of functional
blocks, and the reference points, i.e., the interfaces between
functional blocks (akin to a REST API), that they use to
communicate. Its high-level purpose is to translate business-
facing KPIs chosen by the vertical (e.g., the type of pro-
cessing needed and the associated end-to-end latency) into
resource-facing decisions such as virtual resource instantia-
tion, VNF placement and traffic routing. In this section, we
first present a brief overview of the ETSI MANO framework;
then, in Sec. 3.1, we focus on the NFV orchestrator and
detail the decisions it has to make and the input data at
its disposal.

Fig. 1 presents the functions composing the MANO
framework (within the blue area), as well as the functions
outside the framework they interact with. At the top-left
corner we find operation and business support (OSS/BSS)

2

Page 2 of 24IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
Fig. 1. The NFV-MANO architectural framework. Source: [5]

services, which represent the interface between verticals and
mobile operators. High-level, end-to-end requirements and
KPIs are then conveyed, through the Os-Ma-nfvo reference
point, to the NFV orchestrator (NFVO), in charge of decid-
ing the number and type of VNFs to instantiate, as well as
the capacity of virtual links (VLs) connecting them.

Such decisions are conveyed, via the Or-vnfm interface,
to the VNF manager (VNFM) function, in charge of actually
instantiating the required VNFs. The VNFM also requests
from the virtual infrastructure manager (VIM) any resource,
e.g., virtual machine (VM) or VL needed by the VNFs them-
selves. The VIM also interacts with the element management
(EM) function, a non-MANO entity that is in charge of
Fault, Configuration, Accounting, Performance and Security
(FCAPS) management for the functional part of the VNFs,
i.e., for the actual tasks they perform.

Finally, the VIM interacts with the NFV infrastructure
(NFVI), which includes the hardware (physical servers, net-
work equipment...) and software (e.g., hypervisors) used to
run the VNFs.

3.1 The NFVO: input, output, and decisions

As its name suggests, the main entity in charge of orches-
tration decisions is the NFV orchestrator (NFVO), which
belongs to the MANO framework depicted in Fig. 1. In
the following, we provide more details on the decisions the
NFVO has to make and the information it can rely upon,
which correspond (respectively) to the output and input of
our algorithms.

The NFVO receives from the OSS/BSS a data struc-
ture called network service descriptor (NSD), defined in [5,
Sec. 6.2.1]. NSDs include a graph-like description of the pro-
cessing each service requires, e.g., the VNFs that traffic has
to traverse, in the form of a VNF Forwarding Graph (VNFFG)
descriptor [5, Sec. 6.5.1]. Furthermore, they contain deploy-
ment flavor information, including the latency requirements
associated with every service [5, Sec. 6.2.1.3]. Additionally,
the NFVO obtains from the virtual infrastructure manager

(VIM) information on the state and availability of network
infrastructure, including virtual machines able to run VNFs
and the links connecting them.

Using that information, the NFVO can make what ETSI
calls lifecycle management decisions [5, Sec. 7.2] about the
VNFs composing each network slice, i.e., how many in-
stances of these VNFs to instantiate, where to host them,
and how much resources to assign to each of them. Such de-
cisions will correspond to decision variables in our system
model, as detailed next.

4 SYSTEM MODEL

We model VNFs as M/M/1 queues, q ∈ Q, whose customers
correspond to service requests. The class each customer
belongs to corresponds to the service to which each request
is associated; we denote the set of such classes by K. The
service rate µ(q) of each queue q reflects the amount of CPU
each VNF is assigned to, and therefore influences the time it
takes to process one service request.

Arrival rates at queue q ∈ Q are denoted by λk(q). Note
that these values are class-specific, and reflect the amount of
traffic of different services. Class-specific transfer probabili-
ties P(q2|q1, k) indicate the probability that a service request
of class k enters VNF q2 after being served by VNF q1. We
also indicate with P(q|◦, k) the probability that a request of
class k starts its processing at VNF q.

Physical, or more commonly virtual, hosts are repre-
sented by elements h ∈ H. Each host h has a finite CPU ca-
pacity κh. Host-specific κh values account for both different
capabilities and different hosts, and the fact that some hosts
may be assigned a low-power CPU state [24] for energy-
saving purposes. This implies that energy constraints can
be accounted for by properly setting the values of the κh
parameters.

Going from host h ∈ H to host l ∈ H entails a determin-
istic network latency δ(h, l), which depends on the (virtual)
link between the two hosts. Furthermore, the link between
hosts h and l has a finite capacity C(h, l).

3

Page 3 of 24 IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

λvideo

λgame

λveh
firewall

transcoder

game server

coll. detector

billing

DPI

h l m

δ(h, l) δ(l, m)

C(h, l) C(l, m)

Fig. 2. Example 1: three service graphs, and six VNFs, corresponding
to the six queues, placed across three hosts. Dashed and dotted lines
represent the different paths that service requests can take.

For clarity, an example on the use of the above notation
is provided below.

Example 1. Assume that the network has to support three
services: video streaming, gaming, and vehicle colli-
sion detection. Then the set of service classes is K =
{video, game, veh}. For sake of clarity, let us associate
to each service the following, highly simplified, VNF
graphs: Each corresponds to a VNF graph, i.e.,

• video streaming: firewall – transcoder – billing;
• gaming: firewall – game server – billing;
• vehicle collision detection: firewall – collision detector.

Suspicious-looking packets belonging to the video
streaming and gaming services can further be
routed through a deep packet inspection (DPI) VNF.
Hence, Q={firewall, transcoder, billing, game server,
collision detector, DPI}.
There are three hosts H = {h, l,m}, connected
to each other through links characterized by a la-
tency δ and a link capacity C. Fig. 2 illustrates the
above quantities and shows a possible VNF place-
ment across the three hosts. Routing can be deter-
ministic, e.g., P(billing|transcoder, video)=1 or it can
be probabilistic, e.g., P(DPI|firewall, gaming)=0.1 and
P(game server|firewall, gaming)=0.9.

5 PROBLEM FORMULATION AND COMPLEXITY

This section presents our joint problem formulation, includ-
ing both VNF placement and CPU allocation decisions. We
take service latency as our main performance metric, and
we formulate the problem for scenarios where exactly one
instance of each VNF is to be deployed in the network. The
general case where multiple instances of the same VNF can
be deployed is then discussed in Sec. 8.

Decisions and decision variables. We have two main
decision variables: a binary variable A(h, q) ∈ {0, 1} repre-
sents whether VNF q ∈ Q is deployed at host h ∈ H, and a
real variable µ(q) expresses the amount of CPU assigned to

VNF q ∈ Q. Notice how µ(q) maps onto the service rate of
the corresponding queue.

System constraints. As mentioned above, we present
our model in the case where there is exactly one instance
of each VNF deployed in the system. This translates into
imposing:

∑

h∈H

A(h, q) = 1, ∀q ∈ Q. (1)

Additionally, we have to honor the computational capacity
limits of hosts, i.e.,:

∑

q∈Q

A(h, q)µ(q) ≤ κh, ∀h ∈ H. (2)

Arrival rates and system stability. Recall that input
parameters λk(q) express the rate at which new requests of
service class k arrive at queue q ∈ Q. We can then define an

auxiliary variable λ̂k(q), expressing the total rate of requests
of class k that enter queue q, either from outside the system
or from other queues. For any k ∈ K, we have:

λ̂k(q)=
∑

q∈Q

λk,q +
∑

p∈Q

P(q|p, k)λ̂k(p). (3)

We can then define another auxiliary variable Λ(q), express-
ing the total arrival rate of requests of any class entering
queue q:

Λ(q) =
∑

k∈K

λ̂k(q).

Using Λ(q), we can impose system stability, requesting that,
for each queue, the arrival rate does not exceed the service
rate:

Λ(q) < µ(q), ∀q ∈ Q. (4)

In other words, each VNF should receive at least enough
CPU to deal with the incoming traffic. If additional CPU is
available at the host, it will be exploited to further speed up
the processing of requests.

Latency. This is our main metric of interest. It is due to
two components: the processing latency and the network
transfer latency.

The processing time, i.e., the time it takes for a service
request of class k to traverse VNF q is represented by an
auxiliary variable Rk(q). For FCFS (first come, first serve)
and PS (processor sharing) queuing disciplines, we have:

Rk(q) =
1

µ(q)− Λ(q)
, ∀q ∈ Q (5)

Note that the right-hand side of (5) does not depend on
class k; intuitively, this is because the queuing disciplines we
consider are unaware of traffic classes. The response times
for other queuing disciplines, including those accounting
for priority levels and/or preemption, cannot be expressed
in closed form. It is also worth stressing that present-day
implementations of multi-access edge computing (MEC) [3]
are based on FIFO discipline, and do not support preemp-
tion.

To compute the network latency that requests incur
when transiting between hosts, we first need the expected
number of times, γk(q), that a request of class k visits
VNF q ∈ Q, i.e.,

γk(q) = P(q|◦, k) +
∑

p∈Q\{q}

P(q|p, k)γk(p). (6)

4

Page 4 of 24IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

In the right-hand side of (6), the first term is the probability
that requests start their processing at queue q, and the sec-
ond is the probability that requests arrive there from another
queue p. Note that γk(q) is not an auxiliary variable, but
a quantity that can be computed offline given the transfer
probabilities P. Using γk(q), the network latency incurred
by requests of class k is:

∑

q,r∈Q

γk(q)P(r|q, k)
∑

h,l∈H

δ(h, l)A(h, q)A(l, r). (7)

We can read (7) from left to right, as follows. Given a service
request of class k, it will be processed by VNF q for γk(q)
number of times. Every time, it will move to VNF r with
probability P(r|q, k). So doing, it will incur latency δ(h, l)
if q and r are deployed at hosts h and l, respectively (i.e., if
A(h, q) = 1 and A(l, r) = 1).

The average total latency of requests of the generic
class k is therefore given by:

Dk =
∑

q∈Q

γk(q)Rk(q)+

∑

q,r∈Q,q 6=r

γk(q)P(r|q, k)
∑

h,l∈H

A(h, q)A(l, r)δ(h, l). (8)

Link capacity. Given the finite link capacity C(h, l),
which limits the number of requests that move from any
VNF at host h to any VNF at host l,we have:

∑

k∈K

∑

q,r∈Q

λ̂k(q)P(r|q, k)A(q, h)A(r, l)≤C(h, l). (9)

Constraint (9) contains a summation over all classes k and
all VNFs q, r ∈ Q, such that q is deployed at h and r is
deployed at l, as expressed by the A-variables. For each of

such pair of VNFs, λ̂k(q) is the rate of the requests of class k
that arrive at q. Multiplying it by P(r|q, k), we get the rate
at which requests move from VNF q to VNF r, hence from
host h to host l.

Objective. Dk defined above represents the average
latency incurred by requests of class k. In our objective
function, we have to combine these values in a way that
reflects the differences between such classes, most notably,
their different QoS limits. Thus, we consider for each class k
the ratio of the actual latency Dk to the limit latency DQoS

k ,
and seek to minimize the maximum of such ratios:

min
A,µ

max
k∈K

Dk

DQoS
k

. (10)

Importantly, the above objective function not only ensures
fairness among service classes while accounting for their
limit latency, but it also guarantees that the optimal solution
will match all QoS limits if possible. More formally:

Property 1. If there is a non-empty set of solutions that meet
constraints (2)–(9) and honor the services QoS limits,
then the optimal solution to (10) falls in such a set.

Proof: We prove the property by contradiction, and
assume that there is a feasible solution such that D′

k ≤ D
QoS
k

for all classes, but that the optimal solution has D⋆

k̂
> DQoS

k̂

for at least one class k̂ ∈ K.
In this case, the optimal value of the objective (10) would

be at least
D⋆
k̂

D
QoS

k̂

> 1. However, we know by hypothesis

that there is a feasible solution where Dk ≤ DQoS
k for all

classes, which would result in an objective function value

of mink∈K
D′

k

D
QoS
k

≤ 1. It follows that the solution we assumed

to be optimal cannot be so.
Furthermore, when no solution meeting all QoS limits

exists, the the solution optimizing (10) will minimize the
damage by keeping all latencies as close as possible to their
limit values.

5.1 Problem complexity

The problem of optimizing (10) subject to constraints (2)–(9)
includes both binary (A(h, q)) and continuous (µ(q)) vari-
ables. More importantly, constraints (2) and (9), as well as
objective (10) (see also (8)), are nonlinear and non-convex, as
both include products between different decision variables.
Below we prove that such a problem is NP-hard; note that
this is not an artifact of our formulation, but it comes from
the very structure of the problem at hand.

Theorem 1. The problem of joint VNF placement and CPU
assignment is NP-hard.

Proof: It is possible to reduce the generalized as-
signment problem (GAP), which is NP-hard [25], to ours.
In other words, we show that (i) for each instance of the
GAP problem, there is a corresponding instance of our VNF
placement problem, and (ii) that the translation between
them can be done in polynomial time.
GAP instance. The GAP instance includes items i1, . . . , iN
and bins b1, . . . , bM . Each bin b has a budget (size) sb; placing
item i at bin b consumes a budget (weight) wbi and yields
a cost pbi. The decision variables are binary flags xbi stating
whether item i shall be assigned to bin b; also, each item
shall be assigned to exactly one bin. The objective is to
minimize the cost.
Reduction. In our problem, items and bins correspond to
VNFs and hosts respectively, and the decision variables xbi
correspond to VNF placement decisions A(i, b). The capac-
ity of each host is equal to the size sb of the corresponding
bin. Furthermore, we must ensure that:

• the weight wbi of item i when placed at bin b cor-
responds to the quantity of CPU assigned to VNF i,
i.e., wbi = µb(i);

• the cost pbi coming from placing item i in bin b
corresponds to the opposite2 of the processing time at
VNF i, i.e., wbi = −

1
µb(i)−Λ(i)

, or equivalently, with a

linear equation, Λ(i)− µb(i) = 1
pbi

.

Finally, we set all inter-host delays to zero.
Complexity of the reduction. Performing the reduction
described above only requires to solve a linear system of
equations in the µb(i) and Λ(i) variables, which can be
performed in polynomial (indeed, cubic) time [26]. We have
therefore presented a polynomial-time reduction of any
instance of the GAP problem to our problem. It follows that
our problem is NP-hard, q.e.d.
It is interesting to notice how, in the proof of Theorem 1,
we obtain a simplified version of our problem, with non-
flexible CPU assignment (if VNF i is placed at host b it gets

2. So that minimizing the cost is the same as minimizing the service
time.

5

Page 5 of 24 IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

exactly µb(i) CPU) and no network delay. This suggests that
our problem is indeed more complex than GAP.

Such overwhelming complexity rules out not only the
possibility to directly optimize the problem through a solver,
but also commonplace solution strategies based on relax-
ation, i.e., allowing binary variables to take values anywhere
in [0, 1]. Even if we relaxed the A(h, q) variables, we would
still be faced with a non-convex formulation, for which
no algorithm is guaranteed to find a global optimum. We
therefore present an efficient, decoupled solution strategy,
leveraging on sequential decision making.

6 SOLUTION STRATEGY

Our solution strategy is based on decoupling the problems
of VNF placement and CPU allocation, and then sequen-
tially making these decisions. We begin by presenting our
VNF placement heuristic, called MaxZ, in Sec. 6.1, and then
discuss CPU allocation in Sec. 6.2.

6.1 The MaxZ placement heuristic

As mentioned earlier, the two main sources of problem
complexity are binary variables and non-convex functions
in both objective (10) and constraints (2) and (9). In order
to solve the VNF placement problem, our heuristic walks
around these issues by:

1) formulating a convex version of the problem;
2) solving it through an off-the-shelf solver;
3) computing, for each VNF q and host h, a

score Z(h, q), expressing how confident we feel
about placing q in h;

4) considering the maximum score Z(h⋆, q⋆) and plac-
ing VNF q⋆ at host h⋆;

5) repeating steps 2–4 until all VNFs are placed.

The name of the heuristic comes from step 4, where we seek
for the highest score Z .

6.1.1 Steps 1–2: convex formulation

To make the problem formulation in Sec. 5 convex, first we
need to get rid of binary variables; specifically, we replace
the binary variables A(h, q) ∈ {0, 1} with continuous vari-
ables Ã(h, q) ∈ [0, 1].

We also need to remove the products between Ã-
variables (e.g., in (7), (8), and (9)), by replacing them with a
new variable. To this end, for each pair of VNFs q and r and
hosts h and l, we introduce a new variable Φ(h, l, q, r) ∈
[0, 1], and impose that:

Φ(h, l, q, r) ≤ Ã(h, q), ∀h, l ∈ H, q, r ∈ Q; (11)

Φ(h, l, q, r) ≤ Ã(l, r), ∀h, l ∈ H, q, r ∈ Q; (12)

Φ(h, l, q, r)≥Ã(h, q)+Ã(l, r)−1, ∀h, l ∈ H, q, r ∈ Q.
(13)

The intuition behind constraints (11)–(13) is that Φ(h, l, q, r)
mimics the behavior of the product Ã(h, q)Ã(l, r): if ei-
ther Ã(h, q) or Ã(l, r) are close to 0, then (11) and (12)
guarantee that Φ(h, l, q, r) will also be close to zero; if both
values are close to one, then (13) allows also Φ(h, l, q, r) to
be close to one.

Another product between variables, i.e., a term in the
form A(h, q)µ(q), appears in (2). Following a similar ap-
proach, we introduce a set of new variables, ψ(h, q), mim-
icking the ratio between the A(h, q)µ(q) product and the
host capacity κh. We then impose:

ψ(h, q) ≤ Ã(h, q), ∀h ∈ H, q ∈ Q; (14)
∑

q∈Q

ψ(h, q) ≤ 1, ∀h ∈ H , (15)

which mimic (2). By replacing all products between Ã-
variables with a Φ-variable and all products between Ã- and
µ-variables with a ψ-variable, we obtain a convex problem,
which can efficiently be solved through commercial solvers.

6.1.2 Steps 3–4: Z-score and decisions

Let us assume that no VNF has been placed yet. We
then solve an instance of the convex problem described
in Sec. 6.1.1, and use the values of the variables Ã(h, q)
and ψ(h, q) to decide which VNF to place at which host.

Recall that Ã(h, q) is the relaxed version of our place-
ment variable A(h, q), so we would be inclined to use that
to make our decision. However, we also need to account
for how much computational capacity VNFs would get,
as expressed by ψ(h, q). If such a value falls below the

threshold Tψ(h, q) = Λ(q)
κh

, then VNF q may not be able
to process the incoming requests, i.e., constraint (4) may be
violated.

To prevent this, we define our Z-score, i.e., how confi-
dent we are about placing VNF q at host h, as follows:

Z(h, q) = Ã(h, q) + 11[ψ(h,q)≥Tψ(h,q)] , (16)

where 11 is the indicator function. Recalling that Ã-values
are constrained between 0 and 1, favoring high values of
(16) means that we prefer a deployment that results in ψ-
values greater than the threshold, if such a deployment
exists. Otherwise, we make the placement decision based
on the Ã-values only.

Specifically, we select the host h⋆ and VNF q⋆

associated with the maximum Z, i.e., h⋆, q⋆ ←
argmaxh∈H,q∈Q Z(h, q), and place VNF q⋆ in host h⋆. We
fix this decision and repeat the procedure till all VNFs are
placed (i.e., we perform exactly |Q| iterations).

We now present two example runs of MaxZ, for two
scenarios with different inter-host latencies.

Example 2. Consider a simple case with two hosts H =
{h1, h2} with the same CPU capacity κh =
10 requests/s, two VNFs Q = {q1, q2}, and only one
request class k with λk = 1 requests/s. Requests need
to subsequently traverse q1 and q2. The inter-host la-
tency δ(h1, h2) is set to 10 ms, while DQoS = 100 ms.
Then, intuitively, the optimal solution is to deploy one
VNF per host.
We solve the problem in Sec. 6.1.1. After the first it-
eration, we obtain Ã = [0.5 0.5

0.5 0.5], ψ = [0.5 0.5
0.5 0.5], and

Z = [1.5 1.5
1.5 1.5]

3. In such a case, using a tie-breaking rule,
we place VNF q1 at host h1. In the second iteration, we

3. In all matrices, rows correspond to hosts and columns to VNFs.

6

Page 6 of 24IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

have Ã = [1 0.38
0 0.62], ψ = [0.8 0.19

0 0.61], and Z = [2 1.38
0 1.62].

We ignore the entries pertaining to VNF q1 that has
been already placed and, since Z(h2, q2) > Z(h1, q2),
we deploy VNF q2 at host h2, which corresponds to the
intuition that, given the small value of δ, VNFs should
be spread across the hosts.

Example 3. Let us now consider the same scenario as in Ex-
ample 2, but assume a much longer latency δ(h1, h2) =
200ms. The best solution will now be to place both VNFs
at the same host.

After the first iteration, we obtain Ã = [0.7 0.7
0.3 0.3], ψ =

[0.5 0.5
0.3 0.3], and Z = [1.7 1.7

1.3 1.3]. Again using a tie-breaking
rule, we place VNF q1 at host h1. In the second iteration,
we have Ã = [1 0.7

0 0.2], ψ = [0.6 0.4
0 0.2], and Z = [2 1.8

0 1.2].
We again ignore the entries in the first column and,
since Z(h1, q2) > Z(h2, q2), we place VNF q2 at host h1,
making optimal decisions.

6.2 CPU allocation

Once the MaxZ heuristic introduced in Sec. 6.1 provides
us with deployment decisions, we need to decide the CPU
allocation, i.e., the values of the µ(q) variables in the original
problem described in Sec. 5. This can be achieved simply
by solving the problem in (10) but keeping the deployment
decision fixed, i.e., replacing the A(h, q) variables with
parameters whose values come from the MaxZ heuristic.
Indeed, we can prove the following property.

Property 2. If the deployment decisions are fixed, then the
problem of optimizing (10) subject to (2)–(9) is convex.

Proof: Several constraints of the original problem
only involve A(h, q) variables, and thus simply become
conditions on the input parameters: this is the case of (1),
(3), and (9). Also, constraints (2) and (4) are linear in the
variables µ(q). With regard to the objective function, (8) is
now linear with respect to µ(q), while (5) is convex, even if
it does not look so prima facie. Indeed, its second derivative
is d

d2µ(q)
1

µ(q)−λ(q) = 2
(µ(q)−Λ(q))3

, which is positive for

any µ(q) > Λ(q). That condition is required for system
stability; therefore, we can conclude that constraint (5) is
convex over the all region of interest. Finally, the objective
function in (10) is in min-max form, which preserves con-
vexity.

Property 2 guarantees that we can make our CPU allo-
cation decisions, i.e., decide on the µ(q) values, in polyno-
mial time. We can further enhance the solution efficiency
by reducing the optimization problem to the resolution of
a system of equations, through the Karush-Kuhn-Tucker
(KKT) conditions.

6.2.1 KKT conditions

In order to derive the KKT conditions for the problem stated
in Sec. 5, we need to re-write objective (10) in standard form.

This requires introducing an auxiliary variable ρ represent-
ing the maximum Dk

D
QoS
k

ratio, and imposing that for each

class k ∈ K:

ρ ≥
Dk

DQoS
k

=
1

DQoS
k





∑

q∈Q

γk(q)

µ(q) − Λ(q)
+

∑

q,r∈Q

γk(q)P(r|q, k)
∑

h1,h2∈H

A(h1, q)A(h2, r)δ(h1, h2)



 .(17)

At this point, the objective is simply to minimize ρ. We
also re-write constraints (2), (4) and (17) in normal form,
and associate to them the multipliers Mq, Mh and Mk

respectively. The resulting Lagrangian function is:

L = ρ+
∑

q∈Q

MqXq +
∑

h∈H

MhYh +
∑

k∈K

MkWk, (18)

where:
Xq = −µ(q) + Λ(q);

Yh =
∑

q∈Q

A(h, q)µ(q) − κh;

Wk =
∑

q∈Q

γk(q)

DQoS
k

1

µ(q)− Λ(q)
+

∑

q,r∈Q

γk(q)P(r|q, k)
∑

h1,h2∈H

A(h1, q)A(h2, r)
δ(h1, h2)

DQoS
k

− ρ.

The first necessary KKT condition, i.e., ∇rρµ(q)L = 0,
translates into the following equations:

∂

∂ρ
L = 0 ⇐⇒ 1−

∑

k∈K

Mk = 0. (19)

Furthermore, for each q ∈ Q, we have:

∂

∂µ(q)
L = 0 ⇐⇒ −Mq +

∑

h∈H

MhA(h, q)+ (20)

−
∑

k∈K

Mkγk(q)

DQoS
k

1

(µ(q)− Λ(q))2
= 0

Finally, complementary slackness requires that either
the inequality constraints are active, or the corresponding
multipliers are zero, i.e.,

MqXq = 0, ∀q ∈ Q, (21)

MhYh = 0, ∀h ∈ H, (22)

MkWk = 0, ∀k ∈ K . (23)

Based on (21)–(23), the multipliers assume the following
meaning:

• Mq is zero for all stable queues, i.e., the queues
fulfilling the condition µ(q) > Λ(q);

• Mh is zero for all non-strained hosts, i.e., hosts used
for less than their CPU capacity κh;

• Mk is zero for all non-critical classes, i.e., classes for
which the Dk

D
QoS
k

ratio is strictly lower than ρ.

7

Page 7 of 24 IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

We can now determine the global computational com-
plexity of our approach, including the VNF placement
through the MaxZ heuristic and the CPU allocation by
optimizing (10).

Property 3. Our solution strategy, including the MaxZ VNF
placement heuristic in Sec. 6.1 and the CPU allocation
strategy in Sec. 6.2 has polynomial computational com-
plexity.

Proof: Running the MaxZ heuristic requires solving
exactly |Q| convex problems, and the complexity of doing
so is cubic in the number of variables, which in turn is linear
in |H| and |Q|. It follows that the total complexity of MaxZ
is O

(

|Q|(|Q||H|)3
)

= O(|Q|4). MaxZ also dominates the
total computational complexity, because deciding the CPU
allocation as described in Sec. 6.2, requires only solving a
system of equations, which has [26] cubic complexity in the
number |Q| of variables.

7 SPECIAL CASE: FULL-LOAD CONDITIONS

In this section, we seek to further reduce the complexity of
the CPU allocation problem. Let us start from the Lagrange
multipliers derived earlier, and recall that we require stabil-
ity, i.e., Λ(q) < µ(q), hence Mq = 0 for all queues q ∈ Q.

Given the above and (20), we can write that, for each
queue q ∈ Q deployed at host h,

Mh =
∑

k∈K

Mk

γk(q)

Dmax
k

1

(µ(q)− Λ(q))
2 . (24)

Recalling the meaning of the multipliers, we can state
the following lemma and properties.

Lemma 1. If CPU assignment decisions are made optimizing
the objective (10), then there exists at least one critical
class, i.e., for which equality holds in (17).

Proof: Constraint (17) must be active for at least
one k ∈ K, otherwise, the selected value of r would not
be optimal.

Property 4. All hosts traversed by service requests of critical
classes are strained.

Proof: Let k be a critical class (hence, Mk > 0), q be
a host serving it, and H(q) the host q is deployed at. From
(24), it follows:

MH(q) ≥Mk

γk(q)

Dmax
k

1

(µ(q) − Λ(q))
2 .

The quantity at the second member is positive (Mk > 0
because class k is strained, and γk(q) > 0 because by
hypothesis clients of class k are served at q). This implies
that MH(q) > 0, and therefore, by (22), that host h is
strained.

Property 5. VNFs deployed at a strained host serve at least
one critical class each.

Proof: Let us consider a queue q, By hypothesis, its
host H(q) is strained, i.e., MH(q) > 0. From (24), it follows:

∑

k∈K

Mk

γk(q)

Dmax
k

1

(µ(q)− Λ(q))
2 > 0,

λ2

λ1

q

h

Fig. 3. A simple system where two classes of clients traverse the same
queue. Host h will always be strained; additionally, depending on the
values of Dmax

k
, either one or both the classes will be critical.

A

B

C

fw

dpi

game

xcode

coll.

det.

billing

video

c.det.

game

Fig. 4. The graph G generated for the system depicted in Fig. 2.
Left, center and right edges correspond to hosts, VNFs and classes
respectively. Green edges are created according to rule (ii), blue edges
according to rule (iii), and yellow edges according to rule (iv).

which can only be if there is at least one class k that is
critical (hence Mk > 0) and whose clients are served by q
(hence γk(q) > 0).

In summary, there is at least one critical class, all the
hosts it traverses are strained, and each of the VNFs de-
ployed on the strained hosts (not only the ones serving
requests of the original critical class) serve at least one
critical class. This can lead to a cascade effect, as shown
in Example 4.

Example 4. Consider the case in Fig. 2. By Lemma 1, at least
one class is critical; let us assume that such a class is
collision detection. From Property 4, all hosts traversed
by collision detection requests, i.e., hosts h and l, are
strained. Since host l is strained, from Property 5 it
follows that each of its VNFs serves at least one critical
class. Since the transcoder queue only serves the video
class, the video class is critical. Similarly, since the game
server only serves the game class, that class is critical
as well. Finally, both video and game classes traverse
host m; therefore, by Property 4, that host is critical as
well.

The cascade effect shown in Example 4 might lead us
to conjecture that all classes are critical and all hosts are
strained. However, this is not true in general. A simple

8

Page 8 of 24IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

h q

k1

k2

Fig. 5. The graph G generated for the system in Fig. 3, which is not
strongly connected (it is impossible to reach k1 from k2).

counterexample is represented in Fig. 3, where two classes
share the same queue. By Lemma 1, one of the two classes
will be critical, and, hence, by Property 4, host h will be
strained. Property 5 tells us what we already know, i.e.,
that one of the two classes will be critical, but it does not
imply that both will be. Indeed, that depends on the values
of Dmax

k : if Dmax
k1

= Dmax
k2

, then both classes are critical;
otherwise, the class with the lowest Dmax

k value will be
critical and the other will not.

However, we can state a sufficient condition for all classes
to be critical (and, hence, all hosts to be strained), regardless
the Dmax

k values. It is based on (i) building a graph G
representing the hosts, VNFs and classes in our system (as
shown in Fig. 4), and (ii) verifying a simple property over it.

Theorem 2. Let G = (V , E) be a directed graph where:
(i) there is a vertex for every host, queue, and class,
i.e., V = H ∪Q ∪ K;
(ii) for every host h and queue q s.t. A(h, q) = 1, add
to E a pair of edges (q, h) and (h, q);
(iii) for every queue q and class k s.t. γk(h) > 0, add to E
an edge (k, q);
(iv) for every queue q and class k s.t. γk(h) > 0 and k is
the only class using q, i.e., γj = 0, ∀j 6= k, add to E an
edge (q, k).
If graph G is strongly connected, then all classes in K are
critical and all hosts in H are strained.

Proof: Lemma 1 guarantees us that there is at least one
critical class k⋆; let us then start walking through the graph
from the corresponding edge and mark all vertices we can
reach as critical (if corresponding to classes) or strained (if
corresponding to hosts). Through edges added according
to rule (ii) and (iii), we will be able to reach all hosts
traversed by clients of the critical class, and those hosts will
be strained as per Property 4. Edges outgoing from the host
vertices, created according to rule (ii), will make us reach
all queues deployed at these hosts. By Property 5, each of
these queues serves at least one critical class. If this class is
unique, i.e., if we have an edge created according to rule
(iv), then those classes are critical as well, and we can repeat
the process.

The strong connectivity property implies that we can
reach all vertices (including all classes and all hosts) from
any vertex of G, including the one critical class whose
existence is guaranteed by Lemma 1.

Fig. 4 presents the graph G resulting from the system in
Fig. 2, which is strongly connected. Fig. 5 presents the graph
for the system in Fig. 3, which is not strongly connected
and, thus, it does not meet the sufficient condition stated in
Theorem 2. Recall that, because that condition is sufficient

but not necessary, k1 and k2 could still be both critical,
depending on their Dmax

k values.
In scenarios like the one in Example 4, where all classes

are critical and all hosts are strained, we have:

∑

q∈Q

γk(q)

DQoS
k

1

µ(q)− Λ(q)
+

+
∑

h1,h2∈H

∑

q,r∈Q

A(h1, q)A(h2, r)γk(q)P(r|q, k)
δ(h1, h2)

DQoS
k

= ρ

∀k ∈ K,
∑

q∈Q

A(h, q)µ(q) = κh, ∀h ∈ H.

The above equalities can be combined with the KKT condi-
tions stated in Sec. 6.2.1, thus forcing Yh = 0 ∀h ∈ H and
Wk = 0 ∀k ∈ K. This greatly simplifies and speeds up the
process of finding the optimal CPU allocation values µ(q).

8 MULTIPLE VNF INSTANCES

So far, we presented our system model and solution strategy
in the case where exactly one instance of each VNF has to be
deployed. This is not true in general; some VNFs may need
to be replicated owing to their complexity and/or load.

If the number Nq of instances of VNF q to be deployed
is known, then we can replace VNF q in the VNF graph
with Nq replicas thereof, labeled q1, q2, . . . qNq , each with
the same incoming and outgoing edges. With regard to the
Λ(q) requests/s that have to be processed by any instance
of VNF q, they are split among the instances. If f(q, i) is
the fraction of requests for VNF q that is processed by

instance qi (and thus
∑Nq
i=1 f(q, i) = 1), then instance qi

gets requests at a rate f(q, i)Λ(q). It is important to stress
that once the f(q, i) splitting fractions are known, then
the resulting problem can be solved with the approach
described in Sec. 6.

Establishing the f(q, i) values is a complex problem;
indeed, straightforward solutions like uniformly splitting
flows (i.e., f(q, i) = 1

Nq
), are in general suboptimal. We

therefore resort to a pattern search [27] iterative approach.
Without loss of generality, we describe our approach in

the simple case Nq = 2. In this case, the splitting values
are f(q, 1) = f and f(q, 2) = 1−f . Given an initial guess f0,
an initial step ∆ and a minimum step ǫ < ∆, we proceed as
follows:

1) we initialize the splitting factor f to the initial
guess f0;

2) using the procedure detailed in Sec. 6, we compute
the objective value (10) for the splitting values f ,
f +∆, and f −∆;

3) if the best result (i.e., the lowest value of (10)) is
obtained for splitting value f +∆ or f −∆, then we
replace f with that value and loop to step 2;

4) otherwise, we reduce ∆ by half;
5) if now ∆ is lower than ǫ, the algorithm terminates;
6) otherwise, we loop to step 2.

The intuition of the pattern-search procedure is similar,
in principle, to gradient-search methods. If we find that
using f +∆ or f −∆ instead of f produces a lower delay,

9

Page 9 of 24 IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

VNF 1 VNF 2 VNF 3 VNF 4

VNF 1 VNF 2 VNF 4

VNF 3

1 1 1 1 1

1 1(b)

(a)
VNF 5 VNF 6

1 1

VNF 5

VNF 6

1

1

1
1

1
1

VNF 1 VNF 2 VNF 4

VNF 3
1 1(c)

VNF 5

VNF 6

1

1

1

1

1

1

1
1

Simple Chain

Lightly Meshed

Heavily Meshed

Fig. 6. The VNF graphs used in our performance evaluation, reflecting
real-world service implementations.

then we replace the current value of f with the new one;
otherwise, we try new f -values closer to the current one.
When we are satisfied that there are no better f -values
further than ǫ from the current one, the search ends.

Notice that in step 2 of our procedure we run the
decision-making procedure described in Sec. 6; this implies
that, once we find the best value of f , we also know the best
VNF placement and CPU allocation decisions.

9 NUMERICAL RESULTS

Reference scenario. We consider a reference topology with
three hosts having CPU capacity κh = 10 requests/ms each.
The hosts are connected by links having latency δ that varies
between 50ms and 400ms. For simplicity, we disregard
the link capacity, i.e., we assume computation to be the
bottleneck in our scenario. Throughout our performance
evaluation, we benchmark the MaxZ placement heuristic in
Sec. 6.1 against the following alternatives:

• global optimum, found through brute-force search of
all possible deployments;

• greedy, where the number of used hosts is minimized,
i.e., VNFs are concentrated as much as possible;

• affinity-based [18], trying to place at the same host
VNFs with high transition probability between them.

After the VNF placement decisions are made, we compute
the optimal CPU allocation, i.e., the optimal µ(q) values, as
explained in Sec. 6.2. It is important to remark that the CPU
allocation strategy is the same for all placement strategies.

We first focus on a single request class k, fix the arrival
rate to λk = 1 requests/ms, and compare the three VNF
graphs depicted in Fig. 6, ranging from a simple chain to a
complex meshed topology. Notice how in graphs (b) and (c)
requests can branch and merge, i.e., the number of requests
outgoing from a VNF does not match the number of incom-
ing ones. This is the case with several real-world functions;
in particular, the light and heavy mesh topologies are akin
to vEPC implementations where user- and control-plane
entities are joint [23] and split [20], [21], i.e., implemented,
respectively, by the same VNF or by separate ones.

Effect of the inter-host latency. Fig. 7 shows the average
global latency as a function of the inter-host latency δ, for
the VNF graphs presented in Fig. 6. We can observe that
the performance of Greedy is always the same regardless
of δ, as all VNFs are deployed at the same host. On the
other hand, the performance of Affinity-based is quite good
for low values of δ, but then quickly degrades, due to
the fact that the affinity-based heuristic disregards inter-
host latency. As far as MaxZ is concerned, it exhibits an
excellent performance: it consistently yields a substantially

lower latency compared to Greedy and Affinity-based, and
is always very close to the optimum.

Fig. 8 focuses on the heavy mesh topology, and breaks
down the total latency yielded by MaxZ into its computation
and traversing latency components. Processing latency only
depends upon the VNF placement, while traversing latency
depends upon both the VNF placement (which determines
how many inter-host links are traversed) and the per-link
latency δ. When δ is low, MaxZ tends to spread the VNFs
across all available hosts, in order to assign more CPU.
As δ increases, the placement becomes more and more
concentrated (thus resulting in lower µ(q) values and higher
processing times), until, when δ is very high, all VNFs are
placed at the same host and there is no traversing latency at
all.

Fig. 7 and Fig. 8 clearly illustrate the importance of flex-
ible CPU allocation. If we only accounted for the minimum
CPU required by VNFs, as in [16], [18], we could place all
of them in the same host, as the Greedy strategy does. This
would result, as we can see from the far right in Fig. 8, in
high processing times and two unused hosts.

Effect of arrival rate. We now fix the inter-host la-
tency to δ = 50ms, and change the arrival rate λ be-
tween 0.1 requests/ms and 2 requests/ms; Fig. 9 summa-
rizes the latency yielded by the the placement strategies
we study. A first observation concerns the Greedy strategy:
since all VNFs are placed in the same host, as λ increases,
VNFs receive an amount of CPU that is barely above the
minimum limit Λ(q). This, as per (5), results in processing
times that grow very large. The difference between the
other placement strategies tends to become less significant;
intuitively, this is because processing times dominate the
total latency, and thus spreading the VNFs as much as
possible is always a sensible solution. MaxZ still consistently
outperforms Affinity-based, and performs very close to the
optimum.

Multi-class scenario. In Fig. 10, we move to a multi-
class scenario where |K| = 3 service classes share the same
VNF graph. The three classes have limit latencies DQoS of
10ms, 45ms, and 2 s, respectively corresponding to safety
applications (e.g., collision detection), real-time applications
(e.g., gaming), and delay-tolerant applications (e.g., video
streaming). Fig. 10 shows that all placement strategies result
in latencies that are roughly proportional to the limit ones.
Also, the relative performance of the placement strategies
remains unmodified – MaxZ outperforms Affinity-based
and is close to the optimum, while Greedy yields much
higher latency. Notice that, for very high values of δ, it is
impossible to meet all QoS constraints, i.e., Dk

D
QoS
k

> 1 for at

least one class k. In these cases, MaxZ limits the damage by
keeping the Dk

D
QoS
k

ratios as low as possible.

It is also interesting to notice, in Fig. 10(center), that the
latency yielded by MaxZ is actually lower than the opti-
mum. This does not however mean that MaxZ outperforms
the optimum; indeed, due to the min-max structure of our
objective (10), the objective value is determined by the class
with the highest Dk

D
QoS
k

ratio. For low-to-medium values of δ

such class is the low-latency one, with a normalized latency
(shown in Fig. 10(left)) around 0.9. Thus, MaxZ and the
optimum strategy obtain the same objective value.

10

Page 10 of 24IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

50 100 150 200 250 300 350 400

Inter-host latency δ [ms]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
N

o
rm

a
liz

e
d

la
te

n
c
y
D

k
/D

Q
o
S

k
Affinity

Greedy

MaxZ

Optimum

50 100 150 200 250 300 350 400

Inter-host latency δ [ms]

0.0

0.1

0.2

0.3

0.4

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

50 100 150 200 250 300 350 400

Inter-host latency δ [ms]

0.0

0.2

0.4

0.6

0.8

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

Fig. 7. Normalized latency as a function of inter-host latency δ for the chain (left), light mesh (center), heavy mesh (right) VNF graphs. Note that the
y-axis scale varies across the plots.

100 200 300 400

Inter-host latency δ [ms]

0

250

500

750

1000

1250

1500

1750

A
v
e

ra
g

e
la

te
n

c
y
D

k
[m

s
]

Processing

Traversing

Fig. 8. Breakdown of the total latency as a function of inter-host la-
tency δ, for the heavy mesh topology and the MaxZ deployment strategy.

Multiple VNF instances. In Fig. 11, we drop the assump-
tion that there is only one instance of each VNF; specifically,
for VNF4 and VNF6 we allow two instances each. We
can immediately see, by comparing Fig. 11 to Fig. 7, that
allowing multiple VNF instances substantially decreases the
total latency. More interestingly, we can observe that MaxZ
always outperforms its alternatives, and is very close to the
optimum, except for some cases when the topology is very
complex.

Large-scale scenarios. We now move to larger-scale,
more complex scenarios, where:

• the VNF graph is the extreme mesh depicted in Fig. 12;
• the hosts are arranged in a ring instead of a full-

mesh.

Fig. 13 is obtained for a ring topology with |H| = 10
hosts, under the assumption that there is exactly one in-
stance of each VNF. We can observe that the relative perfor-
mance of the solution strategies does not change, with MaxZ
still outperforming its alternatives and closely matching the
optimum. By comparing Fig. 13 with Fig. 7(right), we can
observe much higher latencies, exceedingDQoS

k for all strate-
gies other than MaxZ and optimum. This further highlights
how MaxZ is able to provide near-optimal performance
in all conditions, including scarcely-connected topologies
where wrong placement decisions can result in very high
network delays.

In Fig. 14, we keep the extreme mesh VNF graph
(Fig. 12), and allow up to two instances of VNF4 and VNF6.

In both cases, we can observe that MaxZ outperforms both
the affinity-based and the greedy heuristics, for all values
of δ. It is also worth stressing that, unlike the other heuris-
tics, MaxZ is able to guarantee that all QoS limits are met
(i.e., the normalized delay is lower than one) in virtually all
cases. Finally, notice how plots lack the “optimum” line: this
is because obtaining the optimal placement through brute-
forcing proved utterly impractical, even for benchmarking
purposes.

10 CONCLUSION

We targeted the problem of orchestration in 5G networks,
that requires to make decisions about VNF placement, CPU
assignment, and traffic routing. We presented a queuing-
based model accounting for all the main features of 5G
networks, including (i) arbitrarily complex service graphs;
(ii) flexible allocation of CPU power to VNFs sharing the
same host, and its impact on processing time; (iii) the
possibility of having multiple instances on the same VNF.

Based on our model, we presented a methodology
to make the requirement decisions jointly and effectively,
based on two pillars: a VNF placement heuristics called
MaxZ, and a convex formulation of the CPU allocation
problem given placement decisions. We also showed, based
on KKT conditions, that the CPU allocation problem is
further simplified in full-load conditions, where all hosts
are completely utilized. We evaluated our methodology
against multiple VNF graphs and physical topologies of
varying complexity, and found the performance of MaxZ
to consistently exceed that of state-of-the-art alternatives,
and closely match the optimum. Future research will aim at
optimizing the number of instances to be deployed for each
VNF, and at designing a low-complexity heuristic for it, and
will investigate other KPIs than service latency.

ACKNOWLEDGMENT

This work was supported by the European Commission
through the H2020 5G-TRANSFORMER project (Project ID
761536).

REFERENCES

[1] S. Agarwal, F. Malandrino, C.-F. Chiasserini, and S. De, “Joint VNF
Placement and CPU Allocation in 5G,” in IEEE INFOCOM, 2018.

[2] NGMN Alliance, “Description of network slicing concept,” 2016.
[3] Amazon. AWS Greengrass. https://aws.amazon.com/

greengrass/.

11

Page 11 of 24 IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Arrival rate λk [requests/ms]

10
−2

10
−1

10
0

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Arrival rate λk [requests/ms]

10
−2

10
−1

10
0

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Arrival rate λk [requests/ms]

10
−2

10
−1

10
0

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

Fig. 9. Normalized latency (log scale) as a function of arrival rate λ for the chain (left), light mesh (center), heavy mesh (right) VNF graphs.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Inter-host latency δ [ms]

0

1

2

3

4

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Inter-host latency δ [ms]

0.0

0.5

1.0

1.5

2.0

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Inter-host latency δ [ms]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

Fig. 10. Multi-class scenario, heavy mesh graph: normalized latency vs. arrival rate λ for the low-latency (left), medium-latency (center), high-latency
(right) service classes. Note that the y-axis scale varies across the plots.

50 100 150 200 250 300 350 400

Inter-host latency δ [ms]

0.00

0.05

0.10

0.15

0.20

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

50 100 150 200 250 300 350 400

Inter-host latency δ [ms]

0.0

0.1

0.2

0.3

0.4

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

50 100 150 200 250 300 350 400

Inter-host latency δ [ms]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

Fig. 11. Multi-instance scenario: normalized latency vs. inter-host latency δ for the chain (left), light mesh (center), heavy mesh (right) VNF graphs.
Note that the y-axis scale varies across the plots.

VNF 1
VNF 3

VNF 4

VNF 5

VNF 6

VNF 7

VNF 8

VNF 9 VNF 10

VNF 2

1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1
1

1
1

1

1
1

Fig. 12. Extreme mesh VNF graph.

[4] ETSI. GS MEC 009: Mobile Edge Computing (MEC); General
principles for Mobile Edge Service APIs.

[5] ——. (2017) Network Functions Virtualisation (NFV);
Management and Orchestration. http://www.etsi.org/
deliver/etsi gs/NFV-MAN/001 099/001/01.01.01 60/gs
NFV-MAN001v010101p.pdf.

[6] A. Hirwe and K. Kataoka, “LightChain: A lightweight optimiza-
tion of VNF placement for service chaining in NFV,” in IEEE
NetSoft, 2016.

[7] T. W. Kuo, B. H. Liou, K. C. J. Lin, and M. J. Tsai, “Deploying
chains of virtual network functions: On the relation between link
and server usage,” in IEEE INFOCOM, 2016.

[8] A. Baumgartner, V. S. Reddy, and T. Bauschert, “Mobile core net-
work virtualization: A model for combined virtual core network
function placement and topology optimization,” in IEEE NetSoft,

50 100 150 200 250 300

Inter-host latency δ [ms]

0

1

2

3

4

5

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

Fig. 13. Extreme mesh VNF graph, ring topology with H| = 10 hosts:
normalized latency vs. inter-host latency δ.

2015.
[9] F. Ben Jemaa, G. Pujolle, and M. Pariente, “Analytical Models for

QoS-driven VNF Placement and Provisioning in Wireless Carrier
Cloud,” in ACM MSWiM, 2016.

[10] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in IEEE CloudNet,

12

Page 12 of 24IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

50 100 150 200 250 300

Inter-host latency δ [ms]

0.0

0.5

1.0

1.5

2.0
N

o
rm

a
liz

e
d

la
te

n
c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

50 100 150 200 250 300

Inter-host latency δ [ms]

0.0

0.5

1.0

1.5

2.0

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Fig. 14. Extreme mesh VNF graph: normalized latency vs. inter-host
latency δ for ring topologies with |H| = 6 (top), and |H| = 8 (bottom).

2015.
[11] A. Marotta and A. Kassler, “A Power Efficient and Robust Virtual

Network Functions Placement Problem,” in IEEE ITC, 2016.
[12] N. E. Khoury, S. Ayoubi, and C. Assi, “Energy-Aware Placement

and Scheduling of Network Traffic Flows with Deadlines on
Virtual Network Functions,” in IEEE CloudNet, 2016.

[13] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm
for the placement of service function chains,” IEEE Transactions on
Network and Service Management, 2016.

[14] L. Gu, S. Tao, D. Zeng, and H. Jin, “Communication cost efficient
virtualized network function placement for big data processing,”
in IEEE INFOCOM Workshops, 2016.

[15] J. Cao, Y. Zhang, W. An, X. Chen, J. Sun, and Y. Han, “VNF-FG
design and VNF placement for 5G mobile networks,” Science China
Information Sciences, 2017.

[16] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in IEEE INFOCOM, 2015.

[17] B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Castoldi,
“Latency-aware composition of virtual functions in 5G,” in IEEE
NetSoft, 2015.

[18] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A.
Chan, “Optimal virtual network function placement in multi-
cloud service function chaining architecture,” Computer Commu-
nications, 2017.

[19] A. Baumgartner, V. S. Reddy, and T. Bauschert, “Mobile core net-
work virtualization: A model for combined virtual core network
function placement and topology optimization,” in IEEE NetSoft,
2015.

[20] G. Hasegawa and M. Murata, “Joint Bearer Aggregation and
Control-Data Plane Separation in LTE EPC for Increasing M2M
Communication Capacity,” in IEEE GLOBECOM, 2015.

[21] A. Ksentini, M. Bagaa, and T. Taleb, “On Using SDN in 5G: The
Controller Placement Problem,” in IEEE Globecom, 2016.

[22] D. Dietrich, C. Papagianni, P. Papadimitriou, and J. S. Baras,
“Network function placement on virtualized cellular cores,” in
COMSNETS, 2017.

[23] J. Prados-Garzon, J. J. Ramos-Munoz, P. Ameigeiras, P. Andres-
Maldonado, and J. M. Lopez-Soler, “Modeling and Dimensioning
of a Virtualized MME for 5G Mobile Networks,” IEEE Transactions
on Vehicular Technology, 2017.

[24] Intel. Power Management States: P-States, C-States, and
Package C-States. https://software.intel.com/en-us/articles/
power-management-states-p-states-c-states-and-package-c-states.

[25] D. G. Cattrysse and L. N. Van Wassenhove, “A survey of algo-
rithms for the generalized assignment problem,” European journal
of operational research, 1992.

[26] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst,
Templates for the solution of linear systems: building blocks for iterative
methods. Siam, 1994, vol. 43.

[27] R. M. Lewis and V. Torczon, “Pattern search methods for linearly
constrained minimization,” SIAM Journal on Optimization, 2000.

13

Page 13 of 24 IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

1

Summary of the differences

between the submitted paper

and our IEEE INFOCOM conference paper

The basics of our model have been presented in a conference paper, which has been accepted

to the IEEE INFOCOM conference [1]. In the conference paper, we addressed the problems of

VNF placement, CPU allocation, and traffic steering in a joint manner, and presented an efficient

methodology based on the MaxZ placement heuristic. In the journal submission we keep the

same basic solution strategy. At the same time, we extend our work in several directions.

A first high-level goal we set for our journal paper is to target actual 5G networks, as opposed

to generic next-generation networks based on SDN and NFV. This requires (i) studying the

currently-proposed (and indeed, currently-implemented) 5G architectures; (ii) identifying the

main entities therein, the decisions they must make and the input at their disposal; (iii) proposing

a strategy to make their decisions. Specifically, we seek to make orchestration decisions, which

are the responsibility of the NFV orchestrator (NFVO) function. This reflects in:

• an entirely re-written introduction, reflecting the different focus of our paper;

• a new section, Sec. 3, entirely devoted to the 5G architecture of how our proposal fits

therein;

• the title of the journal paper, which reflects the specific task we perform (orchestration)

instead of the generic problem we solve (VNF placement and CPU assignment).

Our second goal was to deepen our analysis of full-load conditions (Sec. 7). In our conference

paper, we have shown that, under such conditions, solving the CPU assignment problem becomes

much simpler. In the journal paper we target the problem of when full-load conditions happen,

and devise a sufficient condition to that end. This reflects in:

• a substantially revised and extended version of the corresponding section (Sec. 7) – all the

material after Example 4 is new;

• a new theorem, Theorem 2, stating the sufficient condition.

February 14, 2018 DRAFT

Page 14 of 24IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

2

Furthermore, we performed an extended complexity analysis of our problem, re-writing Sec. 5.1

of our paper and providing a formal proof (Theorem 1, based on a reduction from GAP) that

the problem itself, and not merely our formulation, is NP-hard.

We also extended the performance evaluation of MaxZ. Specifically, we considered larger-

scale scenarios with a 10-VNF, heavily connected VNF graph and a varying number of hosts

connected in a ring fashion. In such scenarios, wrong placement decisions can potentially yield

very long network delays, and poor performance. This results in:

• an extended Sec. 9, including a description of larger-scale topologies and their relevance;

• new results (Fig. 12–Fig. 14) showing how, even in those highly challenging conditions,

MaxZ still outperforms its alternatives.

Finally, we thoroughly revised and (when needed) re-written the mathematical model descrip-

tion in Sec. 5 and the solution strategy presentation in Sec. 6. The whole manuscript has been

thoroughly revised, so as to improve its clarity and presentation quality.

REFERENCES

[1] S. Agarwal, F. Malandrino, C.-F. Chiasserini, and S. De, “Joint VNF Placement and CPU Allocation in 5G,” in

IEEE INFOCOM, 2018.

February 14, 2018 DRAFT

Page 15 of 24 IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Joint VNF Placement and CPU Allocation in 5G

Satyam Agarwal, Francesco Malandrino, Carla-Fabiana Chiasserini

Politecnico di Torino, Italy

S. De

IIT Delhi, India

Abstract—Thanks to network slicing, 5G networks will support
a variety of services in a flexible and swift manner. In this context,
we seek to make high-quality, joint optimal decisions concerning
the placement of VNFs across the physical hosts for realizing the
services, and the allocation of CPU resources in VNFs sharing
a host. To this end, we present a queuing-based system model,
accounting for all the entities involved in 5G networks. Then,
we propose a fast and efficient solution strategy yielding near-
optimal decisions. We evaluate our approach in multiple scenarios
that well represent real-world services, and find it to consistently
outperform state-of-the-art alternatives and closely match the
optimum.

I. INTRODUCTION

Enabled by network function virtualization (NFV) and soft-

ware defined networking (SDN), network slicing [1] is one

of the most exciting features of 5G networks. Third parties

(“verticals”) will specify the services they want to provide

and the associated requirements, e.g., maximum latency or

minimum throughput, to the network operator. Thanks to NFV,

such services will be expressed as graphs of virtual network

functions (VNFs), running on virtual machines or containers.

Through SDN, the VNF graph will then be mapped onto the

physical and virtual resources available in the network, which

can be seen as a pool of resources the operator can draw from.

In this scenario, there are three main entities to account

for. First, VNFs (e.g., firewall or transcoding) performing

the processing required by different types of services and

running into virtual machines or containers; second, physical

hosts, capable of running VNFs; third, the links connecting

the physical hosts together. Additionally, there are two main

decisions we need to make in order to effectively manage the

network: (i) VNF placement, i.e., which VNFs run at each

physical host, and (ii) allocation, i.e., how the computational

capabilities available at physical hosts are allocated to the

VNFs they run. VNF placement and CPU allocation1 decisions

will eventually be mapped into routing decisions from a

network node to another.

It is our purpose in this paper to make these decisions

jointly, accounting for the complex and often counterintuitive

way they depend upon one another. To this end, we propose

a queuing-based model, synthetically accounting for all the

main aspects of the entities composing 5G networks. For

physical hosts, we properly model their limited computational

capabilities, and the fact that such capabilities must be split

among the VNFs deployed at the same host. For VNFs, we

account for the fact that they have minimum requirements in

terms of computational capabilities, which have to match the

vertical requirements, and that, if additional capabilities are

1In this paper, we only refer to CPU allocation for simplicity; notice
however that our model and methodology can take into account any kind
of resource, e.g., disk or RAM space.

available, they will be exploited by VNFs to run faster. This

leads to a flexible CPU allocation – an aspect that has not

been addressed by previous work. Also, we tackle the case

where, due to high traffic load, multiple instances of the same

VNF are needed. As far as links between hosts are concerned,

we take into account their finite capacity and non-zero delay.

Finally, we model the fact that different classes of service

requests, with different quality of service (QoS) requirements,

coexist in the network and may share a portion of their VNF

graphs.

We adopt a queuing model owing to the nature of 5G traffic.

Indeed, a substantial fraction of this traffic, most notably

coming from Internet-of-things (IoT) and machine-to-machine

(M2M) applications, will consist of requests (customers) that

originate from clients and then go through one or more compu-

tational stages (queues), triggering additional requests in the

process. Queue networks are also the natural way to model

the interaction pattern supported by present-day technologies

such as Amazon Lambda and Amazon Greengrass [2], and

endorsed by ETSI specifications (see the TASK request in [3,

Sec. 6.11]).

Given our system model, we take latency as the main key

performance indicator (KPI) and formulate an optimization

problem that minimizes the ratio between the actual and the

maximum allowed latency, across all service classes. Such a

problem is impractical to solve directly, owing to its over-

whelming complexity; thus, we present an efficient solution

strategy, leveraging on sequential decision making. It is worth

stressing that sequentially does not mean separately: decisions

are made one after the other, but the interaction between them

is still accounted for.

We evaluate the performance of our strategy against state-

of-the-art alternatives, as well as against the global optimum.

Owing to the diverse types of services (many still to be envi-

sioned) that 5G networks will serve, we perform our evaluation

for several different VNF graphs, ranging from simple chains

to meshed graphs and akin to those corresponding to real-

world services, most notably virtual EPC (vEPC).

In summary, our main contributions are as follows:

• we model all the main components of 5G services and

network slices, from VNFs to physical hosts and links;

• we allow VNFs to be connected in arbitrarily graphs,

as opposed to simpler chains or direct acyclic graphs

(DAGs), and account for the need to deploy multiple

instances of the same VNF;

• as a unique feature of our model, we allow flexible

CPU allocation decisions, accounting for the fact that the

same VNF placement can correspond to multiple CPU

allocation strategies;

Page 16 of 24IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

• we study how such allocation decisions influence the

system performance when subsets of VNFs are shared

by multiple services, with different QoS limits;

• we devise an efficient and effective heuristic to make joint

VNF placement and CPU allocation decisions, and find

that it consistently performs very close to the optimum

throughout different VNF graphs;

• we state and prove several properties that optimal CPU

allocation decisions have under full-load conditions, and

use such properties to further simplify the solution pro-

cess.

The remainder of the paper is organized as follows. Sec. II

reviews related work, highlighting the novelty of our contri-

bution. Sec. III and Sec. IV introduce the system model and

problem formulation, and analyze the complexity of the latter.

Sec. V presents our solution concept, while Sec. VI describes

how we deal with the special case of full-load conditions.

Sec. VII addresses scenarios with multiple VNF instances.

Finally, Sec. VIII presents performance evaluation results and

Sec. IX concludes the paper.

II. RELATED WORK

Network-centric optimization. Many works, includ-

ing [4]–[8], tackle the problems of VNF placement and routing

from a network-centric viewpoint, i.e., they aim at minimizing

the load of network resources. In particular, [4] seeks to

balance the load on links and servers, while [5] studies

how to optimize routing to minimize network utilization. The

above approaches formulate mixed-integer linear programming

(MILP) problems and propose heuristic strategies to solve

them. [6], [7] and [8] formulate ILP problems, respectively

aiming at minimizing the cost of used links and network nodes,

minimizing resource utilization subject to QoS requirements,

and minimizing bitrate variations through the VNF graph.

Service provider’s perspective. Several recent works take

the viewpoint of a service provider, supporting multiple ser-

vices that require different, yet overlapping, sets of VNFs,

and seek to maximize its revenue. The works [9], [10] aim

at minimizing the energy consumption resulting from VNF

placement decisions. [11], [12] study how to place VNFs

between network-based and cloud servers so as to minimize

the cost, and [13] studies how to design the VNF graphs

themselves, in order to adapt to the network topology.

User-centric perspective. Closer to our own approach, sev-

eral works take a user-centric perspective, aiming at optimizing

the user experience. [14], [15] study the VNF placement

problem, accounting for the computational capabilities of hosts

as well as network delays. In [16], the authors consider

inter-cloud latencies and VNF response times, and solve the

resulting ILP through an affinity-based heuristic.

Virtual EPC. The Evolved Packet Core (EPC) is a prime

example of a service that can be provided through SDN/NFV.

Interestingly, different works use different VNF graphs to

implement EPC, e.g., splitting user- and control-plane enti-

ties [17]–[19] or joining together the packet and service gate-

ways (PGW and SGW) [20], [21]. Our model and algorithms

work with any VNF graph, which allows us to model any

real-world service, including all implementations of vEPC.

A. Novelty

The closest works to ours, in terms of approach and/or

methodology, are [14], [15], [16], and [20].

However, [14], [15] and [20] model the assignment of

VNFs to physical servers as a generalized assignment problem,

a resource-constrained shortest path problem and a MILP

problem, respectively. This implies that either a server has

enough spare CPU capacity to offer a VNF, or it does not.

Our queuing model, instead, is the first to account for the

flexible allocation of CPU to the VNFs running on a host,

e.g., the fact that VNFs will work faster if placed at a scarcely-

utilized server. Furthermore, [14] and [20] have as objective

the minimization of costs and server utilization, respectively.

Our objective, instead, is to minimize the latency incurred

by requests of different classes, which changes the solution

strategy that can be adopted. Finally, [15] only considers

VNF chains instead of generic graphs, and does not account

for the possibility that the quantity of traffic changes across

processing steps.

The queuing model used in [16] is similar (in principle) to

ours; however, [16] does not address overlaps between VNF

graphs and only considers DAGs. Furthermore, in both [15]

and [16] no CPU allocation decisions are made, and the

objective is to minimize a global metric, ignoring the different

requirements of different service classes. Finally, the affinity-

based placement heuristic proposed in [16] neglects the inter-

host latencies and this, as confirmed by our numerical results

in Sec. VIII, can yield suboptimal performance.

III. SYSTEM MODEL

We model VNFs as M/M/1 queues, q ∈ Q, whose customers

correspond to service requests. The class each customer be-

longs to corresponds to the service each request is associated

to; we denote the set of such classes by K. The service

rate µ(q) of each queue q reflects the amount of CPU each

VNF is assigned to, and therefore influences the time it takes

to process one service request.

Arrival rates at queue q ∈ Q are denoted by λk(q). Note

that these values are class-specific, and reflect the amount of

traffic of different services. Class-specific transfer probabil-

ities P(q2|q1, k) indicate the probability that a customer of

class k enters VNF q2 after being served by VNF q1. We also

indicate with P(q|◦, k) the probability that a request of class k
starts its processing at VNF q.

Physical hosts are represented by elements h ∈ H. Each

host h has a finite CPU capacity κh. Host-specific κh values

account for both different capabilities and different hosts, and

the fact that some hosts may be assigned a low-power CPU

state [22] for energy-saving purposes. This implies that energy

constraints can be accounted for by properly setting the values

of the κh parameters.

Going from host h ∈ H to host l ∈ H entails a deterministic

network latency δ(h, l), which depends on the data transfer

Page 17 of 24 IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

λvideo
λgame

λveh
firewall

transcoder

game server

coll. detector

billing

DPI

h l m
δ(h, l) δ(l, m)
C(h, l) C(l,m)

Fig. 1. Example 1: three service graphs, and six VNFs, corresponding to
the six queues, placed across three physical hosts. Dashed and dotted lines
represent the different paths that service requests can take.

time between the two hosts. Furthermore, the link between

hosts h and l has a finite capacity C(h, l).
For clarity, an example on the use of the above notation is

provided below.

Example 1: Assume that the network has to support

three services: video streaming, gaming, and vehicle col-

lision detection. Then the set of service classes is K =
{video, game, veh}. Each corresponds to a VNF graph, i.e.,

• video streaming: firewall – transcoder – billing;

• gaming: firewall – game server – billing;

• vehicle collision detection: firewall – collision detector.

Suspicious-looking packets belonging to the video streaming

and gaming services can further be routed through a deep

packet inspection (DPI) VNF. Hence, Q={firewall, transcoder,

billing, game server, collision detector, DPI}.

There are three physical hosts H = {h, l,m}, connected to

each other through links characterized by a latency δ and a link

capacity C. Fig. 1 illustrates the above quantities and shows

a possible VNF placement across the three hosts. Routing

can be deterministic, e.g., P(billing|transcoder, video)=1 or

it can be probabilistic, e.g., P(DPI|firewall, gaming)=0.1 and

P(game server|firewall, gaming)=0.9.

IV. PROBLEM FORMULATION AND COMPLEXITY

This section presents our joint problem formulation, in-

cluding both VNF placement and CPU allocation decisions.

For simplicity, we first formulate the problem for scenarios

where exactly one instance of each VNF is to be deployed in

the network; we will discuss the general case where multiple

instances of the same VNF can be deployed in Sec. VII.

Decisions and decision variables. We have two main de-

cision variables: a binary variable A(h, q) ∈ {0, 1} represents

whether VNF q ∈ Q is deployed at host h ∈ H, and a

real variable µ(q) expresses the amount of CPU assigned to

VNF q ∈ Q. Notice how µ(q) maps onto the service rate of

the corresponding queue.

System constraints. As mentioned above, we present our

model in the case where there is exactly one instance of each

VNF deployed in the system. This translates into imposing:
P

h∈H A(h, q) = 1, ∀q ∈ Q. Additionally, we have to honor

the computational capacity limits of physical hosts, i.e.,:
X

q∈Q

A(h, q)µ(q) ≤ κh, ∀h ∈ H. (1)

Arrival rates and system stability. Recall that input

parameters λk(q) express the rate at which new requests of

service class k arrive at queue q ∈ Q. We can then define an

auxiliary variable λ̂k(q), expressing the total rate of requests

of class k that enter queue q, either from outside the system

or from other queues. For any k ∈ K, we have:

λ̂k(q)=P(q|◦, k)
X

q∈Q

λk,q +
X

p∈Q\{q}

P(q|p, k)λ̂k(p). (2)

We can then define another auxiliary variable Λ(q), expressing

the total arrival rate of requests of any class entering queue q:

Λ(q) =
X

k∈K

λ̂k(q).

Using Λ(q), we can impose system stability, requesting that,

for each queue, the arrival rate does not exceed the service

rate:

Λ(q) < µ(q), ∀q ∈ Q. (3)

In other words, each VNF should receive at least enough

CPU to deal with the incoming traffic. If additional CPU is

available at the host, it will be exploited to further speed up

the processing of requests.

Latency. This is our main metric of interest. It is due to two

components: the processing latency and the network transfer

latency.

The processing time, i.e., the time it takes for a service

request of class k to traverse VNF q is represented by an

auxiliary variable Rk(q). For FCFS (first come, first serve)

and PS (processor sharing) queuing disciplines, we have:

Rk(q) =
1

µ(q)− Λ(q)
, ∀q ∈ Q (4)

Note that the right-hand side of (4) does not depend on class k;

intuitively, this is because the queuing disciplines we consider

are unaware of traffic classes. The response times for other

queuing disciplines, including those accounting for priority

levels and/or preemption, cannot be expressed in closed form.

It is also worth stressing that present-day implementations of

multi-access edge computing (MEC) [2] are based on FIFO

discipline, and do not support preemption.

To compute the network latency that requests incur when

transiting between hosts, we first need the expected number

of times, γk(q), that a request of class k visits VNF q ∈ Q,

i.e.,

γk(q) = P(q|◦, k) +
X

p∈Q\{q}

P(q|p, k)γk(p). (5)

In the right-hand side of (5), the first term is the probability

that requests start their processing at queue q, and the second is

the probability that requests arrive there from another queue p.

Page 18 of 24IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Note that γk(q) is not an auxiliary variable, but a quantity that

can be computed offline given the transfer probabilities P.

Using γk(q), the network latency incurred by requests of

class k is:

X

q,r∈Q

γk(q)P(r|q, k)
X

h,l∈H

δ(h, l)A(h, q)A(l, r). (6)

We can read (6) from left to right, as follows. Given a service

request of class k, it will be processed by VNF q for γk(q)
number of times. Every time, it will move to VNF r with

probability P(r|q, k). So doing, it will incur latency δ(h, l) if

q and r are deployed at hosts h and l, respectively (i.e., if

A(h, q) = 1 and A(l, r) = 1).

The average total latency of requests of the generic class k
is therefore given by:

Dk=
X

q∈Q

Rk(q)+
X

q,r∈Q

γk(q)P(r|q, k)
X

h,l∈H

A(h, q)A(l, r)δ(h, l).

Link capacity. Given the finite link capacity C(h, l), which

limits the number of requests that move from any VNF at host

h to any VNF at host l,we have:

X

k∈K

X

q,r∈Q

λ̂k(q)P(r|q, k)A(q, h)A(r, l)≤C(h, l). (7)

Constraint (7) contains a summation over all classes k and all

VNFs q, r ∈ Q, such that q is deployed at h and r is deployed

at l, as expressed by the A-variables. For each of such pair of

VNFs, λ̂k(q) is the rate of the requests of class k that arrive

at q. Multiplying it by P(r|q, k), we get the rate at which

requests move from VNF q to VNF r, hence from host h to

host l.

Objective. Dk defined above represents the average latency

incurred by requests of class k. In our objective function,

we have to combine these values in a way that reflects the

differences between such classes, most notably, their different

QoS limits. Thus, we consider for each class k the ratio of

the actual latency Dk to the limit latency DQoS
k , and seek to

minimize the maximum of such ratios:

min
A,µ

max
k∈K

Dk

DQoS
k

. (8)

Importantly, the above objective function not only ensures

fairness among service classes while accounting for their limit

latency, but it also guarantees that the optimal solution will

match all QoS limits if possible. More formally:

Property 1: If there is a non-empty set of solutions that

meet constraints (1)–(7) and honor the services QoS limits,

then the optimal solution to (8) falls in such a set.

The proof is omitted for brevity and can be found in [23].

Furthermore, when no solution meeting all QoS limits ex-

ists, the the solution optimizing (8) will minimize the damage

by keeping all latencies as close as possible to their limit

values.

A. Problem complexity

The problem of optimizing (8) subject to constraints (1)–(7)

includes both binary (A(h, q)) and continuous (µ(q)) variables.

More importantly, constraints (1) and (7) and objective (8) are

nonlinear and non-convex, as they include products between

variables. The binary part of the problem is akin to the max-

cut problem in graph theory [24], which has been proven

to be NP-hard [25]. Indeed, our problem is even harder, as

it includes evaluating and optimizing a non-convex function

whose coefficients (the µ-variables, corresponding to edge

weights) depend upon the binary variables.

This rules out not only the possibility to directly optimize

the problem through a solver, but also commonplace solution

strategies based on relaxation, i.e., allowing binary variables

to take values anywhere in [0, 1]. Even if we relaxed the

A(h, q) variables, we would still be faced with a non-convex

formulation, for which no algorithm is guaranteed to find a

global optimum. We therefore present an efficient, decoupled

solution strategy, leveraging on sequential decision making.

V. SOLUTION STRATEGY

Our solution strategy is based on decoupling the problems

of VNF placement and CPU allocation, and then sequentially

making these decisions. We begin by presenting our VNF

placement heuristic, called MaxZ, in Sec. V-A, and then

discuss CPU allocation in Sec. V-B.

A. The MaxZ placement heuristic

As mentioned earlier, the two main sources of problem

complexity are binary variables and non-convex functions

in both objective (8) and constraints (1) and (7). Our VNF

placement heuristic walks around these issues by:

1) formulating a convex version of the problem;

2) solving it through an off-the-shelf solver;

3) computing, for each VNF q and host h, a score Z(h, q),
expressing how confident we feel about placing q in h;

4) considering the maximum score Z(h⋆, q⋆) and placing

VNF q⋆ at host h⋆;

5) repeating steps 2–4 until all VNFs are placed.

The name of the heuristic comes from step 4, where we seek

for the highest score Z .

1) Steps 1–2: convex formulation: In order to make the

problem formulation in Sec. IV convex, first we need to get

rid of binary variables; specifically, we replace the binary

variables A(h, q) ∈ {0, 1} with continuous variables Ã(h, q) ∈
[0, 1].

We also need to remove the products between Ã-variables

(e.g., in (6) and (7)), by replacing them with a new variable. To

this end, for each pair of VNFs q and r and physical hosts h
and l, we introduce a new variable Φ(h, l, q, r) ∈ [0, 1], and

impose that:

Φ(h, l, q, r) ≤ Ã(h, q), ∀h, l ∈ H, q, r ∈ Q; (9)

Φ(h, l, q, r) ≤ Ã(l, r), ∀h, l ∈ H, q, r ∈ Q; (10)

Page 19 of 24 IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Φ(h, l, q, r)≥Ã(h, q)+Ã(l, r)−1, ∀h, l ∈ H, q, r ∈ Q.
(11)

The intuition behind constraints (9)–(11) is that Φ(h, l, q, r)
mimics the behavior of the product Ã(h, q)Ã(l, r): if ei-

ther Ã(h, q) or Ã(l, r) are close to 0, then (9) and (10)

guarantee that Φ(h, l, q, r) will also be close to zero; if both

values are close to one, then (11) allows also Φ(h, l, q, r) to

be close to one.

Another product between variables, i.e., a term in the

form A(h, q)µ(q), appears in (1). Following a similar ap-

proach, we introduce a set of new variables, ψ(h, q), mim-

icking the ratio between the A(h, q)µ(q) product and the host

capacity κh. We then impose:

ψ(h, q) ≤ Ã(h, q), ∀h ∈ H, q ∈ Q; (12)
X

q∈Q

ψ(h, q) ≤ 1, ∀h ∈ H , (13)

which mimic (1). By replacing all products between Ã-

variables with a Φ-variable and all products between Ã- and

µ-variables with a ψ-variable, we obtain a convex problem,

which can efficiently be solved through commercial solvers.

2) Steps 3–4: Z-score and decisions: Let us assume that no

VNF has been placed yet. We then solve an instance of the

convex problem described in Sec. V-A1, and use the values

of the variables Ã(h, q) and ψ(h, q) to decide which VNF to

place at which host.

Recall that Ã(h, q) is the relaxed version of our placement

variable A(h, q), so we would be inclined to use that to

make our decision. However, we also need to account for

how much computational capacity VNFs would get, as ex-

pressed by ψ(h, q). If such a value falls below the threshold

Tψ(h, q) =
Λ(q)
κh

, then VNF q may not be able to process the

incoming requests, i.e., constraint (3) may be violated.

To prevent this, we define our Z-score, i.e., how confident

we are about placing VNF q at host h, as follows:

Z(h, q) = Ã(h, q) + 11[ψ(h,q)≥Tψ(h,q)] , (14)

where 11 is the indicator function. Recalling that Ã-values

are constrained between 0 and 1, favoring high values of

(14) means that we prefer a deployment that results in ψ-

values greater than the threshold, if such a deployment exists.

Otherwise, we make the placement decision based on the Ã-

values only.

Specifically, we select the host h⋆ and VNF q⋆ associated

with the maximum Z, i.e., h⋆, q⋆ ← argmaxh∈H,q∈QZ(h, q),
and place VNF q⋆ in host h⋆. We fix this decision and repeat

the procedure till all VNFs are placed (i.e., we perform exactly

|Q| iterations).

We now present two example runs of MaxZ, for two

scenarios with different inter-host latencies.

Example 2: Consider a simple case with two hosts H =
{h1, h2} with the same CPU capacity κh = 10 requests/s,
two VNFs Q = {q1, q2}, and only one request class k
with λk = 1 requests/s. Requests need to subsequently

traverse q1 and q2. The inter-host latency δ(h1, h2) is set to

10 ms, while DQoS = 100 ms. Then, intuitively, the optimal

solution is to deploy one VNF per host.

We solve the problem in Sec. V-A1. After the first iteration,

we obtain Ã = [0.5 0.5
0.5 0.5], ψ = [0.5 0.5

0.5 0.5], and Z = [1.5 1.5
1.5 1.5]

2.

In such a case, using a tie-breaking rule, we place VNF q1 at

host h1. In the second iteration, we have Ã = [1 0.38
0 0.62], ψ =

[0.8 0.19
0 0.61], and Z = [2 1.38

0 1.62]. We ignore the entries pertaining

to VNF q1 that has been already placed and, since Z(h2, q2) >
Z(h1, q2), we deploy VNF q2 at host h2, which corresponds

to the intuition that, given the small value of δ, VNFs should

be spread across the hosts.

Example 3: Let us now consider the same scenario as in

Example 2, but assume a much longer latency δ(h1, h2) =
200ms. The best solution will now be to place both VNFs at

the same host.

After the first iteration, we obtain Ã = [0.7 0.7
0.3 0.3], ψ =

[0.5 0.5
0.3 0.3], and Z = [1.7 1.7

1.3 1.3]. Again using a tie-breaking rule, we

place VNF q1 at host h1. In the second iteration, we have Ã =
[1 0.7
0 0.2], ψ = [0.6 0.4

0 0.2], and Z = [2 1.8
0 1.2]. We again ignore the

entries in the first column and, since Z(h1, q2) > Z(h2, q2),
we place VNF q2 at host h1, making optimal decisions.

B. CPU allocation

Once the MaxZ heuristic introduced in Sec. V-A provides

us with deployment decisions, we need to decide the CPU

allocation, i.e., the values of the µ(q) variables in the original

problem described in Sec. IV. This can be achieved simply by

solving the problem in (8) but keeping the deployment decision

fixed, i.e., replacing the A(h, q) variables with parameters

whose values come from the MaxZ heuristic. Indeed, we can

prove the following property.

Property 2: If the deployment decisions are fixed, then the

problem of optimizing (8) subject to (1)–(7) is convex.

The proof can be found in our technical report [23].

Property 2 guarantees that we can make our CPU allocation

decisions, i.e., decide on the µ(q) values, in polynomial time.

We can further enhance the solution efficiency by reducing the

optimization problem to the resolution of a system of equa-

tions, through the Karush-Kuhn-Tucker (KKT) conditions.

1) KKT conditions: In order to derive the KKT conditions

for the problem stated in Sec. IV, we need to re-write objective

(8) in standard form. This requires introducing an auxiliary

variable ρ representing the maximum Dk

D
QoS

k

ratio, and imposing

that for each class k ∈ K:

ρ≥
1

DQoS
k





X

q∈Q

γk(q)

µ(q)− Λ(q)
+

X

h1,h2∈H

νk(h1, h2)δ(h1, h2)





(15)

where νk(h1, h2) is the expected number of times that a

request of class k ever travels from host h1 to host h2. These

2In all matrices, rows correspond to hosts and columns to VNFs.

Page 20 of 24IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

VNF 1 VNF 2 VNF 3 VNF 4

VNF 1 VNF 2 VNF 4

VNF 3

1 1 1 1 1

1 1(b)

(a)
VNF 5 VNF 6

1 1

VNF 5

VNF 6

1

1

1
1

1
1

VNF 1 VNF 2 VNF 4

VNF 3
1 1(c)

VNF 5

VNF 6

1

1

1

1

1

1

1
1

Simple Chain

Lightly Meshed

Heavily Meshed

Fig. 2. The VNF graphs we consider in our performance evaluation, reflecting
real-world service implementations.

quantities depend upon the placement decisions A(h, q) and

are input parameters to the CPU allocation problem. At this

point, the objective is simply to minimize ρ.

We also re-write constraints (1), (3) and (15) in normal

form, and associate to them the multipliers Mq, Mh and Mk

respectively. The resulting Lagrangian function is:

L = ρ+
X

q∈Q

MqXq +
X

h∈H

MhYh +
X

k∈K

MkWk, (16)

where:

Xq = −µ(q) + Λ(q);

Yh =
X

q∈Q

A(h, q)µ(q) − κh;

Wk=
X

q∈Q

γk(q)

DQoS
k

1

µ(q)− Λ(q)
+

X

h1,h2∈H

νk(h1, h2)
δ(h1, h2)

DQoS
k

−ρ.

The first necessary KKT condition, i.e., ∇rρµ(q)L = 0,

translates into the following equations:

∂

∂ρ
L = 0 ⇐⇒ 1−

X

k∈K

Mk = 0. (17)

Furthermore, for each q ∈ Q, we have:

∂

∂µ(q)
L = 0 ⇐⇒ −Mq +

X

h∈H

MhA(h, q)+ (18)

−
X

k∈K

Mkγk(q)

DQoS
k

1

(µ(q)− Λ(q))
2 = 0

Finally, complementary slackness requires that either the in-

equality constraints are active, or the corresponding multipliers

are zero, i.e.,

MqXq = 0, ∀q ∈ Q, (19)

MhYh = 0, ∀h ∈ H, (20)

MkWk = 0, ∀k ∈ K . (21)

Based on (19)–(21), the multipliers assume the following

meaning:

• Mq is zero for all stable queues, i.e., the queues fulfilling

the condition µ(q) > Λ(q);
• Mh is zero for all non-strained hosts, i.e., hosts used for

less than their CPU capacity κh;

• Mk is zero for all non-critical classes, i.e., classes for

which the Dk

D
QoS
k

ratio is strictly lower than ρ.

We can now determine the global computational complexity

of our approach, including the VNF placement through the

MaxZ heuristic and the CPU allocation by optimizing (8).

Property 3: Our solution strategy, including the MaxZ

VNF placement heuristic in Sec. V-A and the CPU allocation

strategy in Sec. V-B has polynomial computational complexity.

The proof can be found in [23].

VI. SPECIAL CASE: FULL-LOAD CONDITIONS

In this section, we seek to further reduce the complexity of

the CPU allocation problem. Let us start from the Lagrange

multipliers derived earlier, and recall that we require stability,

i.e., Λ(q) < µ(q), hence Mq = 0 for all queues q ∈ Q;

Given the above and (18), we can write that, for each

queue q ∈ Q deployed at host h,

Mh =
X

k∈K

Mk

γk(q)

Dmax
k

1

(µ(q)− Λ(q))2
. (22)

Recalling the meaning of the multipliers, we can state the

following lemma and properties. Proofs are omitted for brevity

and reported in [23].

Lemma 1: If CPU assignment decisions are made optimizing

the objective (8), then there exists at least one critical class,

i.e., for which equality holds in (15).

Property 4: All hosts traversed by service requests of critical

classes are strained.

Property 5: VNFs deployed at a strained host serve at least

one critical class each.

In summary, there is at least one critical class, all the hosts

it traverses are strained, and each of the VNFs deployed on

the strained hosts (not only the ones serving requests of the

original critical class) serve at least one critical class. This can

lead to a cascade effect, as shown in Example 4.

Example 4: Consider the case in Fig. 1. By Lemma 1, at

least one class is critical; let us assume that such a class is

collision detection. From Property 4, all hosts traversed by

collision detection requests, i.e., hosts h and l, are strained.

Since host l is strained, from Property 5 it follows that each of

its VNFs serves at least one critical class. Since the transcoder

queue only serves the video class, the video class is critical.

Similarly, since the game server only serves the game class,

that class is critical as well. Finally, both video and game

classes traverse host m; therefore, by Property 4, that host is

critical as well.

In scenarios like the one in Example 4, where all classes

are critical and all hosts are strained, we have:

X

q∈Q

γk(q)

DQoS
k

1

µ(q) − Λ(q)
+

X

h1,h2∈H

νk(h1, h2)
δ(h1, h2)

DQoS
k

= ρ

∀k ∈ K,

X

q∈Q

A(h, q)µ(q) = κh, ∀h ∈ H.

Page 21 of 24 IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

50 100 150 200 250 300 350 400

Inter-host latency δ [ms]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
o

rm
a
liz

e
d

la
te

n
c
y
D

k
/D

Q
oS

k

Affinity

Greedy

MaxZ

Optimum

50 100 150 200 250 300 350 400

Inter-host latency δ [ms]

0.0

0.1

0.2

0.3

0.4

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
oS

k

Affinity

Greedy

MaxZ

Optimum

50 100 150 200 250 300 350 400

Inter-host latency δ [ms]

0.0

0.2

0.4

0.6

0.8

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
oS

k

Affinity

Greedy

MaxZ

Optimum

Fig. 3. Normalized latency as a function of inter-host latency δ for the chain (left), light mesh (center), heavy mesh (right) VNF graphs. Note that the y-axis
scale varies across the plots.

100 200 300 400

Inter-host latency δ [ms]

0

250

500

750

1000

1250

1500

1750

A
v
e

ra
g

e
la

te
n

c
y
D

k
[m

s
]

Processing

Traversing

Fig. 4. Breakdown of the total latency as a function of inter-host latency δ,
for the heavy mesh topology and the MaxZ deployment strategy.

The above equalities can be combined with the KKT condi-

tions stated in Sec. V-B1, thus forcing Yh = 0 ∀h ∈ H and

Wk = 0 ∀k ∈ K. This greatly simplifies and speeds up the

process of finding the optimal CPU allocation values µ(q).
Even more importantly, the equalities above also simplify the

computation of the µ(q) values within each iteration of the

MaxZ heuristic described in Sec. V-A.

VII. MULTIPLE VNF INSTANCES

So far, we presented our system model and solution strategy

in the case where exactly one instance of each VNF has to be

deployed. This is not true in general; some VNFs may need

to be replicated owing to their complexity and/or load.

If the number Nq of instances of VNF q to be deployed

is known, then we can replace VNF q in the VNF graph

with Nq replicas thereof, labeled q1, q2, . . . qNq , each with

the same incoming and outgoing edges. With regard to the

Λ(q) requests/s that have to be processed by any instance

of VNF q, they are split among the instances. If f(q, i)
is the fraction of requests for VNF q that is processed by

instance qi (and thus
PNq

i=1 f(q, i) = 1), then instance qi gets

requests at a rate f(q, i)Λ(q). It is important to stress that once

the f(q, i) splitting fractions are known, then the resulting

problem can be solved with the approach described in Sec. V.

Establishing the f(q, i) values is a complex problem; in-

deed, straightforward solutions like uniformly splitting flows

(i.e., f(q, i) = 1
Nq

), are in general suboptimal. We therefore

resort to a pattern search [26] iterative approach.

Without loss of generality, we describe our approach in

the simple case Nq = 2. In this case, the splitting values

are f(q, 1) = f and f(q, 2) = 1−f . Given an initial guess f0,

an initial step Δ and a minimum step ǫ < Δ, we proceed as

follows:

1) we initialize the splitting factor f to the initial guess f0;

2) using the procedure detailed in Sec. V, we compute the

objective value (8) for the splitting values f , f + Δ,

and f −Δ;

3) if the best result (i.e., the lowest value of (8)) is obtained

for splitting value f +Δ or f −Δ, then we replace f
with that value and loop to step 2;

4) otherwise, we reduce Δ by half;

5) if now Δ is lower than ǫ, the algorithm terminates;

6) otherwise, we loop to step 2.

The intuition of the pattern-search procedure is similar, in prin-

ciple, to gradient-search methods. If we find that using f +Δ
or f −Δ instead of f produces a lower delay, then we replace

the current value of f with the new one; otherwise, we try

new f -values closer to the current one. When we are satisfied

that there are no better f -values further than ǫ from the current

one, the search ends.

Notice that in step 2 of our procedure we run the decision-

making procedure described in Sec. V; this implies that, once

we find the best value of f , we also know the best VNF

placement and CPU allocation decisions.

VIII. NUMERICAL RESULTS

Reference scenario. We consider a reference topology with

three hosts having CPU capacity κh = 10 requests/ms each.

The hosts are connected by links having latency δ that varies

between 50ms and 400ms. For simplicity, we disregard the

link capacity, i.e., we assume computation to be the bottleneck

in our scenario. Throughout our performance evaluation, we

benchmark the MaxZ placement heuristic in Sec. V-A against

the following alternatives:

• global optimum, found through brute-force search of all

possible deployments;

• greedy, where the number of used hosts is minimized,

i.e., VNFs are concentrated as much as possible;

• affinity-based [16], trying to place at the same host VNFs

with high transition probability between them.

After the VNF placement decisions are made, we compute

the optimal CPU allocation, i.e., the optimal µ(q) values, as

explained in Sec. V-B. It is important to remark that the CPU

allocation strategy is the same for all placement strategies.

Page 22 of 24IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Arrival rate λk [requests/ms]

10
−2

10
−1

10
0

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
oS

k

Affinity

Greedy

MaxZ

Optimum

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Arrival rate λk [requests/ms]

10
−2

10
−1

10
0

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
oS

k

Affinity

Greedy

MaxZ

Optimum

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Arrival rate λk [requests/ms]

10
−2

10
−1

10
0

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
oS

k

Affinity

Greedy

MaxZ

Optimum

Fig. 5. Normalized latency (log scale) as a function of arrival rate λ for the chain (left), light mesh (center), heavy mesh (right) VNF graphs.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Inter-host latency δ [ms]

0

1

2

3

4

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
oS

k

Affinity

Greedy

MaxZ

Optimum

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Inter-host latency δ [ms]

0.0

0.5

1.0

1.5

2.0

N
o

rm
a
liz

e
d

la
te

n
c
y
D

k
/D

Q
oS

k

Affinity

Greedy

MaxZ

Optimum

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Inter-host latency δ [ms]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a
liz

e
d

la
te

n
c
y
D

k
/D

Q
oS

k

Affinity

Greedy

MaxZ

Optimum

Fig. 6. Multi-class scenario, heavy mesh graph: normalized latency vs. arrival rate λ for the low-latency (left), medium-latency (center), high-latency (right)
service classes. Note that the y-axis scale varies across the plots.

50 100 150 200 250 300 350 400

Inter-host latency δ [ms]

0.00

0.05

0.10

0.15

0.20

N
o

rm
a
liz

e
d

la
te

n
c
y
D

k
/D

Q
oS

k

Affinity

Greedy

MaxZ

Optimum

50 100 150 200 250 300 350 400

Inter-host latency δ [ms]

0.0

0.1

0.2

0.3

0.4

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
oS

k

Affinity

Greedy

MaxZ

Optimum

50 100 150 200 250 300 350 400

Inter-host latency δ [ms]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
o

rm
a

liz
e

d
la

te
n

c
y
D

k
/D

Q
oS

k

Affinity

Greedy

MaxZ

Optimum

Fig. 7. Multi-instance scenario: normalized latency vs. inter-host latency δ for the chain (left), light mesh (center), heavy mesh (right) VNF graphs. Note
that the y-axis scale varies across the plots.

We first focus on a single request class k, fix the arrival

rate to λk = 1 requests/ms, and compare the three VNF

graphs depicted in Fig. 2, ranging from a simple chain to a

complex meshed topology. Notice how in graphs (b) and (c)

requests can branch and merge, i.e., the number of requests

outgoing from a VNF does not match the number of incoming

ones. This is the case with several real-world functions; in

particular, the light and heavy mesh topologies are akin to

vEPC implementations where user- and control-plane entities

are joint [21] and split [18], [19].

Effect of the inter-host latency. Fig. 3 shows the average

global latency as a function of the inter-host latency δ, for

the VNF graphs presented in Fig. 2. We can observe that the

performance of Greedy is always the same regardless of δ, as

all VNFs are deployed at the same host. On the other hand,

the performance of Affinity-based is quite good for low values

of δ, but then quickly degrades, due to the fact that the affinity-

based heuristic disregards inter-host latency. As far as MaxZ is

concerned, it exhibits an excellent performance: it consistently

yields a substantially lower latency compared to Greedy and

Affinity-based, and is always very close to the optimum.

Fig. 4 focuses on the heavy mesh topology, and breaks

down the total latency yielded by MaxZ into its computation

and traversing latency components. Processing latency only

depends upon the VNF placement, while traversing latency

depends upon both the VNF placement (which determines how

many inter-host links are traversed) and the per-link latency δ.

When δ is low, MaxZ tends to spread the VNFs across all

available hosts, in order to assign more CPU. As δ increases,

the placement becomes more and more concentrated (thus

resulting in lower µ(q) values and higher processing times),

until, when δ is very high, all VNFs are placed at the same

host and there is no traversing latency at all.

Fig. 3 and Fig. 4 clearly illustrate the importance of flexible

CPU allocation. If we only accounted for the minimum CPU

required by VNFs, as in [14], [16], we could place all of them

in the same host, as the Greedy strategy does. This would

result, as we can see from the far right in Fig. 4, in high

processing times and two unused hosts.

Effect of arrival rate. We now fix the inter-host la-

tency to δ = 50ms, and change the arrival rate λ be-

tween 0.1 requests/ms and 2 requests/ms; Fig. 5 summarizes

Page 23 of 24 IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

the latency yielded by the the placement strategies we study.

A first observation concerns the Greedy strategy: since all

VNFs are placed in the same host, as λ increases, VNFs

receive an amount of CPU that is barely above the minimum

limit Λ(q). This, as per (4), results in processing times that

grow very large. The difference between the other placement

strategies tends to become less significant; intuitively, this is

because processing times dominate the total latency, and thus

spreading the VNFs as much as possible is always a sensible

solution. MaxZ still consistently outperforms Affinity-based,

and performs very close to the optimum.

Multi-class scenario. In Fig. 6, we move to a multi-

class scenario where |K| = 3 service classes share the same

VNF graph. The three classes have limit latencies DQoS of

10ms, 45ms, and 2 s, respectively corresponding to safety

applications (e.g., collision detection), real-time applications

(e.g., gaming), and delay-tolerant applications (e.g., video

streaming). Fig. 6 shows that all placement strategies result in

latencies that are roughly proportional to the limit ones. Also,

the relative performance of the placement strategies remains

unmodified – MaxZ outperforms Affinity-based and is close to

the optimum, while Greedy yields much higher latency. Notice

that, for very high values of δ, it is impossible to meet all QoS

constraints, i.e., Dk

D
QoS
k

> 1 for at least one class k. In these

cases, MaxZ limits the damage by keeping the Dk

D
QoS

k

ratios as

low as possible. It is also interesting to notice, in Fig. 6(center),

that the latency yielded by MaxZ is actually lower than the

optimum. This does not mean that MaxZ outperforms the

optimum, rather that it gives a lower latency to the medium-

latency, whose latency is closest to the QoS limit.

Multiple VNF instances. In Fig. 7, we drop the assumption

that there is only one instance of each VNF; specifically,

for VNF4 and VNF6 we allow two instances each. We can

immediately see, by comparing Fig. 7 to Fig. 3, that allow-

ing multiple VNF instances substantially decreases the total

latency. More interestingly, we can observe that MaxZ always

outperforms its alternatives, and is very close to the optimum,

except for some cases when the topology is very complex.

IX. CONCLUSION

We presented a model for SDN/NFV-based 5G networks

that is able to to capture all their main features, including

arbitrary VNF graphs, flexible CPU allocation to VNFs, and

the possibility to have multiple instances of the same VNF.

Leveraging this model, we presented a methodology, based on

the MaxZ placement heuristic, to make joint VNF placement

and CPU assignment decisions.

We combined MaxZ with a methodology to make optimal

CPU allocation decisions, requiring to solve a convex opti-

mization problem in the general case and a simple system of

equations in full-load conditions. By evaluating our solution

over several VNF graphs of different complexity, we consis-

tently found it to outperform state-of-the-art alternatives and

closely track optimal performance.

One direction for future work is enhancing the performance

of our heuristic in multi-instance scenarios, by improving the

pattern search approach we adopted and further customizing

it to our needs.

ACKNOWLEDGEMENT

This work is supported by the European Commission

through the H2020 5G-TRANSFORMER project (Project ID

761536).

REFERENCES

[1] NGMN Alliance, “Description of network slicing concept,” 2016.
[2] Amazon. AWS Greengrass. https://aws.amazon.com/greengrass/.
[3] ETSI. GS MEC 009: Mobile Edge Computing (MEC); General princi-

ples for Mobile Edge Service APIs.
[4] A. Hirwe and K. Kataoka, “LightChain: A lightweight optimization of

VNF placement for service chaining in NFV,” in IEEE NetSoft, 2016.
[5] T. W. Kuo, B. H. Liou, K. C. J. Lin, and M. J. Tsai, “Deploying chains

of virtual network functions: On the relation between link and server
usage,” in IEEE INFOCOM, 2016.

[6] A. Baumgartner, V. S. Reddy, and T. Bauschert, “Mobile core network
virtualization: A model for combined virtual core network function
placement and topology optimization,” in IEEE NetSoft, 2015.

[7] F. Ben Jemaa, G. Pujolle, and M. Pariente, “Analytical Models for QoS-
driven VNF Placement and Provisioning in Wireless Carrier Cloud,” in
ACM MSWiM, 2016.

[8] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in IEEE CloudNet, 2015.

[9] A. Marotta and A. Kassler, “A Power Efficient and Robust Virtual
Network Functions Placement Problem,” in IEEE ITC, 2016.

[10] N. E. Khoury, S. Ayoubi, and C. Assi, “Energy-Aware Placement and
Scheduling of Network Traffic Flows with Deadlines on Virtual Network
Functions,” in IEEE CloudNet, 2016.

[11] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm for the
placement of service function chains,” IEEE Transactions on Network

and Service Management, 2016.
[12] L. Gu, S. Tao, D. Zeng, and H. Jin, “Communication cost efficient

virtualized network function placement for big data processing,” in IEEE
INFOCOM Workshops, 2016.

[13] J. Cao, Y. Zhang, W. An, X. Chen, J. Sun, and Y. Han, “VNF-FG
design and VNF placement for 5G mobile networks,” Science China
Information Sciences, 2017.

[14] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in IEEE INFOCOM, 2015.

[15] B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Castoldi,
“Latency-aware composition of virtual functions in 5G,” in IEEE Net-

Soft, 2015.
[16] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan,

“Optimal virtual network function placement in multi-cloud service
function chaining architecture,” Computer Communications, 2017.

[17] A. Baumgartner, V. S. Reddy, and T. Bauschert, “Mobile core network
virtualization: A model for combined virtual core network function
placement and topology optimization,” in IEEE NetSoft, 2015.

[18] G. Hasegawa and M. Murata, “Joint Bearer Aggregation and Control-
Data Plane Separation in LTE EPC for Increasing M2M Communication
Capacity,” in IEEE GLOBECOM, 2015.

[19] A. Ksentini, M. Bagaa, and T. Taleb, “On Using SDN in 5G: The
Controller Placement Problem,” in IEEE Globecom, 2016.

[20] D. Dietrich, C. Papagianni, P. Papadimitriou, and J. S. Baras, “Network
function placement on virtualized cellular cores,” in COMSNETS, 2017.

[21] J. Prados-Garzon, J. J. Ramos-Munoz, P. Ameigeiras, P. Andres-
Maldonado, and J. M. Lopez-Soler, “Modeling and Dimensioning of
a Virtualized MME for 5G Mobile Networks,” IEEE Transactions on
Vehicular Technology, 2017.

[22] Intel. Power Management States: P-States, C-States, and
Package C-States. https://software.intel.com/en-us/articles/
power-management-states-p-states-c-states-and-package-c-states.

[23] Proofs. https://1drv.ms/b/s!AlVUQf67dIbfcSZH2bZfrOTKLQc.
[24] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-flow

problem,” Journal of the ACM, 1988.
[25] C. H. Papadimitriou and M. Yannakakis, “Optimization, approximation,

and complexity classes,” Journal of computer and system sciences, 1991.
[26] R. M. Lewis and V. Torczon, “Pattern search methods for linearly

constrained minimization,” SIAM Journal on Optimization, 2000.

Page 24 of 24IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

