
1

eWU-TV: User-centric Energy-efficient Digital TV
Broadcast over Wi-Fi Networks

Chetna Singhal, Student Member, IEEE, Swades De, Senior Member, IEEE, Ramona Trestian, Member, IEEE, and
Gabriel-Miro Muntean, Member, IEEE

Abstract—This paper presents an innovative multi-faceted
architecture, named eWU-TV, that provides an energy efficient,
user-centric, adaptive digital television (DTV) broadcast over Wi-
Fi. To cater to the varied properties of the user equipments
(UEs), the proposed framework broadcasts DTV content in the
form of scalable video coded content that is adapted to suit
the subscribers’ requirements. The user-centricity is in terms
of UE device display size, user preferences for video quality
profile based on device energy saving, and UE transmission
technology support (DVB-T/H or Wi-Fi). Mathematical models
on device battery discharge, QoE, and user preference are devised
that closely approximate the results of device battery discharge
experiments on DTV reception by heterogeneous devices over
Wi-Fi/DVB-T, subjective video quality assessment study, and
statistical survey of user preference. The proposed eWU-TV
performance optimization framework is based on the developed
models. The framework ensures that the adaptive scalable broad-
cast reception via Wi-Fi serves more number of users with higher
quality of user experience and with provisions for significant
device energy saving.

Index Terms—Scalable video broadcast, Wi-Fi, DVB, hetero-
geneous users, user preference, energy saving, user QoE.

I. INTRODUCTION

There has been tremendous technological growth on hand-
held high-end mobile devices in terms of improved processor,
graphics, and display capabilities. Increasing affordability of
such high-end mobile devices and mass-market adoption have
led to a massive traffic growth. One of the key applications
that is becoming commonplace is digital television (DTV) over
wireless networks, wherein the service providers broadcast
multimedia content to stationary and mobile customers. It is
known that multimedia-based applications have strict quality
of service (QoS) requirements, and they consume extensive
energy. Although the mobile users have a wide choice over
advanced mobile devices, one of the main impediments of
multimedia content reception is their battery life. This battery
life limitation of high-end mobile devices represent one of the
highest contributors to the user dissatisfaction [1].

The battery specifications by the smartphone manufacturers
are in terms of standby mode life, talktime mode life, and
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underlying technology (eg., 3G or 4G). Table I shows the bat-
tery specifications of a few example smartphone devices. It is
important to note that these devices are increasingly being used
for watching videos, online-multimedia applications, and DTV.
Therefore, it is necessary to study the ways to optimize the
amount of device battery discharge when playing multimedia
content on various user equipments (UEs).

At the same time Wi-Fi is a well established wireless access
network technology. The data exchange over Wi-Fi has been
found to be four times larger than that over cellular, on a daily
basis [2]. Hence, the popularity of Wi-Fi technology among
mobile data users is expected to make it a viable option for
addressing the rapidly increasing mobile DTV service demand.
Some of the pertinent advantages of DTV over Wi-Fi networks
as compared to DVB-T/H are:
1) On average 90 percent of all smartphone users are active
Wi-Fi users [3], and smartphones already have Wi-Fi feature
and no additional DVB reception module (like CSL-DVB-T
stick) is needed for DTV.
2) Unlike DVB-T/H reception, which is supported on Windows
7 and Android v4.x only, Wi-Fi connection capability is a well
supported feature of the UEs and it does not have any specific
device operating system (OS) constraint.
3) Unlike DVB-T/H reception, which needs additional DVB
stick drivers and softwares like AirDTV or ArcSoft TotalMedia
5, DTV over Wi-Fi is accessible on a simple web browser and
hence no additional drivers or software need to be installed.
4) DTV over Wi-Fi supports multiple devices simultaneously,
which is the need-of-the-hour, since often people own multiple
devices. Hence, instead of having multiple DVB-T/H connec-
tions and individual DVB-T reception modules fitted to each
user device, DTV over Wi-Fi is a one-stop solution to serve
all the users with devices of different specifications in a cost-
effective and hassle-free manner.

This paper proposes eWU-TV, an Energy-efficient frame-
work for DTV broadcast over Wi-Fi networks that provides
an adaptive broadcast solution to cater to UE heterogeneity
and flexible DVB or Wi-Fi support. The proposed joint-
optimization framework eWU-TV has been motivated by the
experimental finding that lower device battery discharge occurs
when receiving broadcast content over Wi-Fi rather than
over DVB-T. The framework is also supported by subjective
video quality tests and statistical study of user preferences on
reception quality versus energy saving trade-off. Based on the
observations from experimental and statistical studies, accurate
parametric models have been developed for QoE optimization
and device energy saving trade-off of heterogeneous users.
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TABLE I: Battery specifications of the test devices [4], [5]

Device Battery specifications
Vodafone 858
Smart

Li-Ion 1200 mAh battery

Stand-by 250 h (2G) / 380 h (3G)
Talk time 4 h (2G) / 4 h30 min (3G)

Vodafone Smart
Mini

Li-Ion 1400 mAh battery

Stand-by 500 h (2G)/ 300 h (3G)
Talk time 13 h (2G)/ 7 h (3G)

Samsung Galaxy
S3

Li-Ion 2100 mAh battery

Stand-by 590 h (2G) / 790 h (3G)
Talk time 21 h40 m (2G) / 11 h40 m (3G)

Viliv S5 UMPC Li-Ion 3920 mAh battery
(ultra-mobile Stand-by 200 h
personal computer) Battery life 6 h

The eWU-TV framework takes into consideration: 1) user
heterogeneity in terms of user device display size (small,
medium, and large); 2) user preferences for a specified video
quality profile in order to save device battery; 3) transmission
technology support (DVB or Wi-Fi).

The proposed eWU-TV solution uses the adaptive Wi-Fi
based framework for broadcasting of DTV content for last-
leg transmission. Furthermore an optimized and adaptive SVC
encoding scheme based on the developed parametric models
enables a Wi-Fi server to transcode the DVB content. The
SVC encoding parameters are obtained through user-centric
optimization framework. By incorporating the user preference
information in video encoding, the proposed scheme helps
achieve a higher energy saving as compared to the conven-
tional DVB system while ensuring acceptable QoE levels.

This paper main contributions are: 1) User preference mod-
eling based on statistical survey on acceptable QoE versus
energy saving trade-off of broadcast users. 2) QoE modeling
for subjective video quality assessment in scalable video
broadcast to heterogeneous devices. 3) Overall device energy
saving modeling that comprises of device battery discharge
model based on experimental study and time slicing broadcast
based energy saving. To the best of our knowledge, no prior
work has modeled the impact of scalable video encoding
parameters on the heterogeneous device battery discharge. 4)
Adaptive user preference based energy efficient SVC broadcast
optimization for DTV reception over Wi-Fi.

The rest of this paper is organized as follows. Section II
discusses related works and section III presents the system
architecture of the proposed framework and describes its
major components. This is followed by a description of the
experimental study components in section IV. Subsequently,
section V presents the experimental results and parametric
modeling of QoE, user preferences, and overall device energy
saving. Section VI describes the adaptive DTV over Wi-Fi
eWU-TV framework, corresponding simulation results, and
includes related discussions. Finally, the concluding remarks
are drawn in section VII.

II. RELATED WORKS

For mobile rich media content delivery, one of the most
used multimedia standard is H.264/MPEG-4 AVC [6], [7]. The
joint video team of ITU-T VCEG and the ISO/IEC MPEG has
standardized the scalable video coding (SVC) [8] extension of
H.264/AVC [9] which achieves a rate-distortion performance
comparable to that of H.264/AVC, and has similar visual
perceived quality achieved with roughly 10% lower bit rate
[10]. SVC is primarily used for adaptive multimedia services
[11]. The scalability is in terms of spatial resolution, frame
rate, and quantization level. The content is in the form of
video layers, with the base layer being the most important
content that ensures the delivery of a minimum acceptable
video quality. The enhancement layers improve the decoded
video quality when received in addition to the base layer.

A SVC based energy saving approach for digital video
broadcast-handheld (DVB-H) systems was proposed in [12],
and a time slicing based energy consumption study was
performed in [13], [14]. In fact, DVB Next Generation broad-
casting system to Handheld (DVB-NGH) [15] is an upcoming
handheld evolution of the second-generation digital terrestrial
TV standard DVB-T2 and has layered video coding with
multiple physical layer pipes. However device heterogeneity
in broadcast scenario, which is an essential component to
enhance end-user quality of experience (QoE), was not con-
sidered in these studies. The energy consumption of Android
mobile devices in the context of wireless unicast multimedia
transmission was studied in [16]. Energy-aware adaptive solu-
tions for multimedia delivery to mobile devices were proposed
in the context of broadband wireless [17] and cellular [18]
networks, but not in the broadcast technology space.

Resource allocation studies were reported for hybrid DVB-
return channel via satellite (DVB-RCS) and Wi-Fi networks
[19] and hybrid Wi-Fi and DVB-satellite (DVB-S) networks
[20]. Energy consumption and media access control (MAC)
based energy conservation were studied for Wi-Fi data com-
munication [21], Wi-Fi based phones [22], and multimedia-
centric wireless devices [23]. The studies in [19]–[22] were
entirely focused towards point-to-point applications like voice
over internet protocol (VoIP) and file transfer protocol (FTP),
whereas [23] considered multimedia streaming application.
Mobile TV extension to Wi-Fi networks as a system solution
was discussed in [24], and network selection system enabling
handover procedures between DVB-H and Wi-Fi networks was
discussed in [25]. Wi-Fi device compliance on video multicast
and interoperability with VoIP traffic were emperically studied
in [26]. The above studies however did not consider multime-
dia broadcast applications and the associated issues of user
heterogeneity, adaptive QoE optimization and energy saving.

The authors of [23], [27], [28] studied the device network
interface energy consumption to compare between 3G and
Wi-Fi connectivity. [23], [27] discussed MAC based solutions
for device energy conservation, whereas [28] studied code of-
floading for improved device energy saving for point-to-point
applications. These works did not compare the device energy
consumption for multimedia broadcast over Wi-Fi and DVB-
terrestrial (DVB-T)/DVB-H, or discussed adaptive multimedia
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Fig. 1: An example scenario for eWU-TV.

broadcast techniques to conserve user device energy.
Overall, to our best knowledge, user preference based

optimization for energy-efficient multimedia broadcast over
wireless to heterogeneous UEs has not been studied yet. To
this end, no solution has been proposed in the literature that
jointly accounts for users’ device heterogeneity (display size
category), user preference, QoE, and overall device energy
saving. Further, the advantage of increased device energy
saving of Wi-Fi based adaptive DTV broadcast as compared
to DVB based DTV broadcast, has not been reported.

III. eWU-TV SYSTEM

This section presents the proposed eWU-TV system, includ-
ing its underlying architecture and its major components.

A. eWU-TV System Overview

A use-case example scenario of the eWU-TV system is
illustrated in Fig. 1.

The example scenario consists of a DVB network, a Wi-
Fi network, a media server, and several heterogeneous UEs
connected to the Wi-Fi network. The media server receives
DVB-T/S/H DTV content through the DVB network by using
a DVB-T/H receiver. The SVC-based DTV content is then
broadcast to the UEs of different display size (SD – small
size display, MD – medium size display, and LD – large
size display device) through the Wi-Fi network using time
slicing transmission mechanism (cf. Fig. 2(a)). The eWU-TV
framework aims to ensure that each of the UEs receives a
subset of the SVC layers (cf. Fig. 2(b)) based on the UE-
driven factors, like display size, user preference, etc.

Video scalability and time sliced transmission of SVC layers
offer higher device energy saving. Time slicing of SVC video
layers enables radio receiver of the UE to be switched on only
during the SVC layers transmission that are of interest, and to
be switched off otherwise, thereby saving UE energy. In time
slicing based layered video broadcast, the UEs know a priori
the specific layers constituted in the IP packet before receiving
the burst. As shown in Fig. 2(b), each layer corresponds to a

Fig. 2: (a) Time slicing transmission scheme. (b) SVC spatial
and temporal scalability grid.

Fig. 3: eWU-TV system architecture.

different burst (consisting of data and parity bits) within the
recurring window. This allows a UE to safely skip the bursts
containing the layers that are irrelevant to it.

B. eWU-TV System Architecture

Fig. 3 illustrates the eWU-TV system architecture, which is
distributed and consists of the media server side and the UE
(synonymously called the device) side. The media server is
connected to a Belkin-N Wi-Fi router using Ethernet LAN ca-
ble. The eWU-TV media server consists of several functional
blocks: (i) DVB reception and storage block – responsible for
receiving and storage of the DVB-T/S DTV content through
the DVB network; (ii) adaptive SVC encoding block – respon-
sible for adaptively encoding the DTV content using SVC;
(iii) time slicing block – responsible for transmitting the SVC
encoded content using a time slicing transmission scheme;
(iv) central database – responsible for storing UE related
information, e.g., user preferences and device capabilities. On
the other side, the UE consists of: (i) user video quality
profile – provides information related to user preferences, e.g.,
quality-oriented or energy savings-oriented users; (ii) device
profile – provides information about the display size category,
SVC layer subscription, etc.; (iii) power management and time
slicing module – monitors the battery of the UE and takes
advantage of the time slicing scheme to save energy.

A UE communicate the user quality profile (e.g., based on
its remaining battery) and device capability information (e.g.,
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screen display size category, SVC layer subscription) to the
media server as part of the control information at the time
of service subscription or through periodic updates based on
dynamic usage pattern and device performance. The media
server uses these control information to adaptively encode
DTV content using SVC and then transmits using time slicing
scheme.

IV. EXPERIMENTAL TEST-BED ENVIRONMENT

This section introduces the real experimental test-bed setup
used for conducting energy consumption measurements and
the subjective tests for video quality assessment. The experi-
ments are aimed to provide an in-depth understanding of the
following aspects:

a) device heterogeneity dependent energy consumption;
b) energy consumption in local playback;
c) energy consumption while receiving DTV content over

DVB network;
d) energy consumption in scalable reception over Wi-Fi;
e) energy versus quality trade-off through subjective tests;
f) the impacts of device heterogeneity, energy saving, and

QoE on user preferences through subjective tests.
This study offers a better understanding on device energy
consumption and user preferences. The results are further used
to model the proposed eWU-TV framework in Section V.

A. Experimental Test-Bed Setup

A real experimental test-bed for the UE energy consumption
measurement and analysis in a multimedia broadcast envi-
ronment has been build as illustrated in Fig. 4. The setup
consists of the following components: a laptop which stores
the power consumption measurements of the mobile device,
an Arduino Duemilanove [29] board, a CSL Android DVB-T
adapter [30] for receiving the broadcast content from DVB-
S/T DTV source, and a Wi-Fi enabled mobile device to receive
broadcast content over Wi-Fi from the DTV Media Server.
Three different display size category mobile devices, described
subsequently in Section IV-B, have been used for the study.
The mobile device is connected to an Arduino Duemilanove
board that is connected to a laptop through a USB port. The
mobile device has a lithium-ion battery with several pins. The
two pins labeled as positive (+) and negative (-) are of interest.
The power consumption of the mobile device is measured by
connecting a high precision 0.18Ω measurement resistor in
series between the negative battery terminal and its connector
on the phone. This was done by removing the battery of
the mobile device and powering it externally. The Arduino
Duemilanove board was used for measuring the battery voltage
as well as the voltage drop across the resistor in order to
determine the device power consumption. A Java application
running on the laptop was used to calculate (by using Ohm’s
law) the device power consumption based on the voltage
records sent by the Arduino board that were collected at a
frequency of 1 Hz.

From the measured power consumption, the energy con-
sumed by the device in receiving a test video sequence over

T seconds is computed as:

Energy [J] =

T∑
k=1

Powerk [mW]

1000
(1)

Battery life [hrs] =
Battery capacity [mAh]× Battery voltage [V]

Average Power [mW]
(2)

where Powerk is the measured power consumption at the
time instance of k seconds (k ≤ T ). To avoid discrepancy due
to environmental, external, and device intrinsic unstabilizing
factors, the experimental readings were obtained over at least
four iterations and averaged to obtain the Average Energy.

B. Test Devices

Three device types were used for the experimental study,
with each device type appertaining to a different display size
category. The characteristics of the three devices are listed
below:

1) Device 1: Vodafone 858 Smart is a small size display
(SD) category Android (OS - v2.2 Froyo) device.

2) Device 2: Vodafone Smart Mini and Samsung Galaxy
S3 are medium size display (MD) category Android (OS -
v4.1 Jelly bean, v4.4 KitKat, respectively) devices.

3) Device 3: Viliv S5 tablet is a large size display (LD)
category Intel Atom (OS - Windows 7) UMPC device.

Each of these devices has a Li-Ion battery (connected in
the setup shown in 4, specifications enlisted in Table I), Wi-Fi
802.11 b/g support, and web browser with Adobe Flash plug-
in. An android application AirDTV∗ was installed on Samsung
Galaxy S3 and a Windows 7 software ArcSoft Total Media 5
was installed on Viliv S5 UMPC to playback the DVB content
received using CSL DVB-T stick [30] over the RTÉ network
[31].

C. Video Test Sequences

In order to analyze the impact of the encoding parameters
and scalable video reception over the Wi-Fi network on the
device energy consumption, three different test sequences,
namely, ‘Harbor’, ‘Town’, and ‘Tree’, were considered. All
these video test sequences cover a wide spatial and temporal
perceptual information space [32]. Snapshots of these test
sequences are illustrated in Fig. 5. Each video sequence
selected for this study has different characteristic properties.
For example, the ‘Harbor’ video represents a sequence with
sharp edges but having a relatively slow motion, depicted
as Harbor HL in Fig. 5, since it has high spatial and low
temporal complexities. The ‘Town’ video represents a broad
view of the centre of a busy town, with many details presented
in a fast manner, depicted as Town HH in Fig. 5, since it
has high spatial and high temporal complexities. The ‘Tree’
video represents panning and zooming on a tree adjacent to a
building, with less details in the first half and many details in
the later half of the video. In Fig. 5, it is depicted as Tree LL,
since it has low spatial and low temporal complexities in
first half and as Tree LH, since it has low spatial and high
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Fig. 4: UE battery discharge experimental setup.

Fig. 5: Sample video test sequences.

temporal complexities in the later half. Each of these video
test sequences are encoded using SVC at different spatial,
temporal, and quality scalability levels. SVC encoder reference
software JSVM 9 19 12 [33] was used for this purpose. The
temporal (video frame rate) and spatial (QCIF: 176×144, CIF:
352×288, and D1: 704×576 resolution) video encoding levels
that were used in the study are in accordance with the SVC
grid that is depicted in Fig. 2. The quality scalability in SVC
video is controlled by encoding quantization parameter (QP),
which can vary at discrete integer-levels in the range [1, 50].

In order to study the impact of DVB-T reception on the
device energy consumption, the DVB content was received by
the UE over RTÉ (Raidió Teilifs Éireann) [31] network that
broadcasts different radio and TV stations. The contents on

∗https://play.google.com/store/apps/details?id=com.dexatek.airdtv.player

Fig. 6: RTÉ DVB-T TV stations content snapshots.

the TV stations included advertisement on TV3, news on RTE
News Now and TG4, other entertainment programs on 3e,
RTE jr, and RTE One. The snapshots of the test contents on
these TV stations are illustrated in Fig. 6. However, the radio
stations had varied soundtracks, interviews or radio jockey
commentary as the broadcast content.

D. Scenarios for UE Battery Discharge Experiment

The heterogeneity of UEs is considered in terms of their
display size. Hence, the UEs of all three display size categories
(SD, MD, and LD) were used in the experiment. Several
external applications like battery monitor†, current widget‡,

†https://play.google.com/store/apps/details?id=battery.monitor/
‡https://play.google.com/store/apps/details?id=com.manor.currentwidget/
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and advanced application killer§, were used to ensure that
the initial battery backup, battery conditions (battery status:
healthy, temperature, and battery percentage), as well as the
essential and minimal background processes running remained
the same for each experimental iteration. The energy con-
sumption/battery discharge was experimentally studied in three
phases:

Phase 1: Local playback of video test sequence, when the
UE battery discharge was monitored while playing back its
locally stored video sequence (encoded at various scalability
levels). The DTV source and CSL DVB-T stick of Fig. 4 were
not needed in this phase. The UEs’ Wi-Fi mode was also
switched off.

Phase 2: Video reception over DVB, when the UE energy
consumption was measured while receiving the DTV content
over RTÉ [31] network using the CSL DVB-T stick. Since the
software needed for the DVB-T reception using the CSL DVB-
T stick had OS constraint (Windows 7 for Arcsoft TotalMedia
5 and Android v4.x for AirDTV), tests were conducted only
for Device 2 (Samsung Galaxy S3) and Device 3 (Viliv
UMPC).

Phase 3: Video reception over Wi-Fi, when the UE energy
consumption was measured while receiving the SVC video
encoded at different quality scalability levels from an adobe
flash media server machine (DTV source) over Wi-Fi.

E. Subjective Video Quality Assessment

Video quality assessment was conducted with the video
test sequences (‘Harbor’, ‘Town’, and ‘Tree’) in accordance
with the subjective assessment methodology recommendations
ITU-R BT 500-11 [34] and ITU-T P.910 [32]. Absolute cate-
gory rating (ACR) method [32] has been used for subjective
video quality tests, wherein video test sequences (∼10 sec) are
presented one at a time in a random order. These sequences
are spaced by a ≤ 10 sec assessment time, during which
the subject evaluates the quality of the shown sequence on
a five-level mean opinion score (MOS) scale. MOS = 1
corresponds to ‘Bad’, MOS = 2 corresponds to ‘Poor’, MOS
= 3 corresponds to ‘Fair’, MOS = 4 corresponds to ‘Good’,
and MOS = 5 corresponds to ‘Excellent’ QoE level.

The subjective test constituted of video quality ratings
by 25 subjects in the age group of 20 to 45 years and
citizens/residents of countries that cover a diverse geographical
region. The SVC video encoded at different spatial, temporal,
and quality levels were presented to the subjects on each of
the three test devices described in Section IV-B. The MOS
ratings obtained from the tests are averaged for each device
category (SD, MD, LD) and video test sequence. The aim of
this test is to evaluate the QoE variation at different SVC video
scalability levels (temporal and quality) for the heterogeneous
UEs. The heterogeneity of devices was incorporated in the
tests by using the three display size category test devices.

F. User Preference Study

Following the subjective tests, user preference related terms
used here are defined below.
§https://play.google.com/store/apps/details?id=com.rechild.advancedtaskkiller/

Definition 1. User preference P signifies how much a user
prefers a particular video quality level in order to save
the device battery. According to the MOS scale [32], the
acceptable levels of video quality are ‘excellent’ (MOS = 5),
‘good’ (MOS = 4), and ‘fair’ (MOS = 3). For any user, P is
a measure that is a function of these video quality levels and
the corresponding energy savings.

Definition 2. Preference score (PS) scale is devised similar to
the MOS scale. PS values and the corresponding significance
are shown in Table II.

TABLE II: Preference score (PS) scale for P

PS Preference level
1 Not at all preferred
2 Less preferred
3 Somewhat preferred
4 Preferred
5 Most preferred

A user preference record of the subjects was collected using
a questionnaire and the procedure as per the subjective video
quality assessment methods in [32]. This pertained to different
UE categories for viewing videos at different quality profiles.
A sample of the user preference questionnaire is given in Table
III. The sample response shows the user’s preferences towards
energy savings for a ‘good’ video quality profile.

V. EXPERIMENTAL RESULTS ANALYSIS AND PARAMETRIC
MODELING

This section presents an in-depth analysis of results ob-
tained from the video reception experiments and subjective
preference survey, described in Section IV. These results are
used to derive relevant parametric models. Subsequently, the
developed models are used in Section VI to build an optimized
eWU-TV system framework.

A. UE Battery Discharge Experimental Results and Paramet-
ric Model

We now present the results of the battery discharge experi-
ment (described in Section IV-D) along with the parametric
model that approximates the UE battery energy discharge
(given by (1)) for scalable video broadcast reception and
playback. Only the results on ‘Harbor’ video are plotted here,
as the trends with the other videos (‘Town’ and ‘Tree’) are
qualitatively similar. Before the experimental results, we dis-
cuss the parametric battery discharge model which is generic
for any UE receiving broadcast content over DVB-T/H or Wi-
Fi.

1) Battery discharge model: The battery discharge model
proposed here is to predict the discharge of UE battery energy
D(q, t) during scalable video playback or reception+playback
for a given quantization step size q and frame rate t. To
capture the impact of q and t on D(q, t) we define normalized
Dt(t) and Dq(q) with respect to D(q, tmax) (discharge corre-
sponding to tmax and a chosen q) and D(qmin, t) (discharge
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TABLE III: Sample user preference response to a question for ‘good’ video quality profile

Please give your preference towards receiving ‘good’ instead of ‘excellent’ quality video, if you save certain fraction of your device battery.

1-10% battery saving 5. Most preferred 4. Preferred 3. Somewhat preferred 2. Less preferred 1. Not at all preferred
X

10-20% battery saving 5. Most preferred 4. Preferred 3. Somewhat preferred 2. Less preferred 1. Not at all preferred
X

20-30% battery saving 5. Most preferred 4. Preferred 3. Somewhat preferred 2. Less preferred 1. Not at all preferred
X

30-40% battery saving 5. Most preferred 4. Preferred 3. Somewhat preferred 2. Less preferred 1. Not at all preferred
X

40-50% battery saving 5. Most preferred 4. Preferred 3. Somewhat preferred 2. Less preferred 1. Not at all preferred
X

50-60% battery saving 5. Most preferred 4. Preferred 3. Somewhat preferred 2. Less preferred 1. Not at all preferred
X

60-70% battery saving 5. Most preferred 4. Preferred 3. Somewhat preferred 2. Less preferred 1. Not at all preferred
X

70-80% battery saving 5. Most preferred 4. Preferred 3. Somewhat preferred 2. Less preferred 1. Not at all preferred
X

80-90% battery saving 5. Most preferred 4. Preferred 3. Somewhat preferred 2. Less preferred 1. Not at all preferred
X

90-95% battery saving 5. Most preferred 4. Preferred 3. Somewhat preferred 2. Less preferred 1. Not at all preferred
X

corresponding to qmin and a chosen t), respectively. Accord-
ingly, the proposed parametric discharge model is defined as
in equation (3):

D(q, t) = DmaxDq(q)Dt(t), with (3)

Dt(t) =
D(q, t)

D(q, tmax)
(3a)

Dq(q) =
D(q, t)

D(qmin, t)
(3b)

where Dmax = D(qmin, tmax) is the maximum battery
discharge when receiving or playing back the video encoded
at minimum quantization level qmin and maximum frame
rate tmax. The validity of separable impact of q and t, i.e.,
D(q, t) in equation (3) through Dt(t) and Dq(q) is discussed
subsequently via the plots of experimental results in Sections
V-A2 through V-A4.

Dt(t) in equation (3a) models the increase of normalized
UE battery discharge as the frame rate t increases. It is
necessary that Dt(t) = 1 at t = tmax and Dt(t) = 0 at
t = 0. Additionally, based on the experimental data in Figs.
7(a) and 8(a), we use a power function to model Dt(t), i.e.,

Dt(t) =

(
t

tmax

)a
(4)

Dq(q) in equation (3b) models the reduction of normalized
battery discharge as the quantization level q increases. Here
also, it is necessary that Dq(q) = 1 at q = qmin and Dq(q) =
0 at q = ∞. As in case of Dt(t), based on the experimental
results in Figs. 7(b) and 8(b), we use an inverse-power function
to model Dq(q), i.e.,

Dq(q) =

(
q

qmin

)−b
(5)

The overall battery discharge model is obtained by combin-

ing equations (3), (4), and (5):

D(q, t) = Dmax

(
t

tmax

)a(
q

qmin

)−b
(6)

where a and b are the model parameters that are dependent on
the UE, video content, and video playback/reception+playback
system.

2) Phase 1 Local Playback Results and Modeling: The
aim of phase 1 (local playback) experiments is to study the
impact of device heterogeneity and scalable video playback
on the device energy consumption. The three test sequences
(‘Harbor’, ‘Tree’, and ‘Town’) were played from the local
memory, first at the spatial resolution level according to
display sizes (i.e., QCIF video on SD, CIF on MD, and D1
on LD device), and then at the higher resolution levels (i.e.,
CIF and D1 on SD, and D1 on MD device). The battery
discharge values were recorded for different SVC encoding
levels (quality level, i.e., QP or q; temporal level, i.e., t).
In Fig. 7, the measured energy discharge data from local
playback of ‘Harbor’ video sequence are plotted in terms of
Dt(t) against t (Fig. 7(a)), Dq(q) against q (Fig. 7(b)), and
the overall discharge D(q, t) against t (Fig. 7(c)), along with
the corresponding plots (continuous lines) from the parametric
models. The overlapping points from the experimental data
(at different q in Fig. 7(a) and at different t in Fig. 7(b))
clearly demonstrate the validity that the impacts of q and t are
separable respectively through the functions Dt(t) and Dq(q).
Further, the continuous line plots in Figs. 7(a) and 7(b) with
the respective optimum parameters a and b as well as in Fig.
7(c) demonstrate the accuracy of the parametric models in
equations (4), (5), and (6).

The optimum parameter values of the battery discharge
model D(q, t) (in equations (3) and (6)) and the model’s accu-
racy are listed in Table IV. The root mean square error (RMSE)
of the parametric model with respect to the experimental data
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Fig. 7: SVC playback experimental results in terms of (a) Dt(t), (b) Dq(q), and (c) overall battery discharge D(q, t), with different test
devices and ‘Harbor’ video sequence at different quantization levels and frame rates, along with the corresponding parametric models with
optimum parameters a and b.

is found to be at most 0.85%. This quantitatively verifies that
the proposed parametric model is an accurate approximation of
the experimental data. This model has been used subsequently
in Section V-D for the overall device energy saving model.

3) Phase 2 Results - Video over DVB-T: The aim of this
phase is to study the impact of DVB-T reception on the UE
energy consumption. The results are shown in Table V. (Recall
from Section IV-B that, DVB-T reception requires Windows
7 or Android v4.x OS support, whereas the available device
1 (SD category; Vodafone 858 Smart) has Android v2.2 OS,
and hence could not be used in this part of the experiment.) It
is seen that test device 3 (LD category) has a higher battery
discharge than test device 2 (MD category) for each DVB-T

TV station (on average 48%) and radio station reception (on
average 116%). Also, on each test device the battery discharge
is higher (on average 44%) for receiving video content over
TV stations than only audio content over radio stations. Thus,
significantly high energy consumption in DVB-T reception
over LD device is apparent.

4) Phase 3 Video over Wi-Fi Results and Modeling: Phase 3
(video over Wi-Fi) experiments are to study the impact of scal-
able video playback and reception over Wi-Fi on the device en-
ergy consumption. The three test sequences (‘Harbor’, ‘Tree’,
and ‘Town’) were broadcast over Wi-Fi. The content was first
received at the resolution level based on device display size
(i.e, QCIF on SD, CIF on MD, and D1 on LD device), and
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TABLE IV: Battery discharge model parameters and model’s accuracy

Video Device Video Playback DTV over Wi-Fi
sequence Dmax a RMSE b RMSE Dmax a RMSE b RMSE

(J) (%) (%) (J) (%) (%)
Harbor QCIF 1 3.2053 0.0443 0.2412 0.0322 0.8501 4.0660 0.0132 0.0113 0.0164 0.5411
Harbor CIF 1 3.3415 0.0398 0.0287 0.0260 0.8591 4.9308 0.0099 0.1442 0.0092 0.7720

2 7.0718 0.0090 0.1001 0.0057 0.0744 11.7503 0.0110 0.0622 0.0055 0.2513
Harbor D1 1 7.5252 0.0467 0.2422 0.0147 0.0434 8.4956 0.1322 0.0967 0.0527 0.1833

2 8.8257 0.0097 0.2767 0.0066 0.1333 12.4560 0.0142 0.1667 0.0064 0.1111
3 26.0409 0.0161 0.0589 0.0045 0.0893 46.7164 0.0163 0.0122 0.0058 0.0200

Town QCIF 1 3.0172 0.0369 0.2619 0.0386 0.8321 3.8806 0.0221 0.2390 0.0099 0.2807
Town CIF 1 3.4945 0.0413 0.2386 0.0394 0.4313 4.7006 0.0068 0.5000 0.0053 0.0229

2 6.9595 0.0116 0.1741 0.0049 0.5648 11.2709 0.0082 0.2001 0.0060 0.0293
Town D1 1 6.2057 0.0133 0.0709 0.0064 0.5555 6.8360 0.0953 0.1121 0.0277 0.0438

2 8.8690 0.0115 0.2414 0.0045 0.1421 11.8109 0.0080 0.0667 0.0096 0.3344
3 25.6176 0.0131 0.0833 0.0030 0.0004 43.8854 0.0210 0.0007 0.0065 0.0922

Tree QCIF 1 3.0495 0.0643 0.1127 0.0326 0.3199 3.8708 0.0159 0.2611 0.0151 0.5214
Tree CIF 1 3.3204 0.0285 0.6802 0.0229 0.6617 4.7947 0.0131 0.2412 0.0088 0.0592

2 6.8702 0.0078 0.0988 0.0031 0.4777 12.1450 0.0141 0.1386 0.0083 0.2542
Tree D1 1 6.6535 0.0129 0.0335 0.0055 0.1010 7.2081 0.1017 0.0255 0.0340 0.2366

2 9.1886 0.0109 0.2276 0.0091 0.0555 12.2803 0.0091 0.1111 0.0078 0.0109
3 25.6406 0.0126 0.0322 0.0027 0.0667 46.5552 0.0168 0.0195 0.0059 0.0780

TABLE V: Battery energy discharge (in Joules) in DTV
reception over DVB-T

Radio/TV station name Samsung Galaxy S3 Viliv Tablet

T
V

st
at

io
ns

3e 31.0305 56.4373
RTÉ jr 30.7555 54.0137
RTÉ News Now 30.3537 54.7916
TV3 32.3957 56.7902
TG4 31.6872 56.2769
RTÉ One 29.6395 59.4397

R
ad

io
st

at
io

ns RTÉ 2FM 15.3604 44.5533
RTÉ 2xM 19.1246 45.2947
RTÉ Gold 19.0742 45.6188
RTÉ jr Radio 19.2701 45.5976
RTÉ Lyric FM 15.1891 44.5569
RTÉ Pulse 18.8510 45.0896
RTÉ Radio na Gaeltachta 15.5592 44.7227
RTÉ Radio 1 Extra 14.7542 43.9130
RTÉ Radio 1 14.6117 43.7454

then it was received at the higher resolution levels (i.e. CIF
and D1 on SD, and D1 on MD device). The battery discharge
levels are recorded at different SVC resolutions (encoding
quantization level q or QP and frame rate t). The measured
battery discharge data are depicted through Dt(t), Dq(q), and
the overall model D(q, t) plots with ‘Harbor’ video sequence,
as shown in Fig. 8. The corresponding variations from the
parametric models (in (3) and (6)) are also shown here in
continuous lines. Here also, the overlapping points from the
experimental data and the matched plots from the parametric
model justify the validity of the model. Numerical values of
the optimum parameters a and b and the model’s accuracy
with respect to the experimental measurements are presented
in Table IV. The RMSE of the parametric model D(q, t) with
respect to the measured data is at most 0.77%, which quantifies
accuracy of the proposed model. These parametric values have
been used subsequently in Section VI for the optimization in

adaptive eWU-TV framework.
5) Comparison of local playback, DTV over DVB-T, and

DTV over Wi-Fi.: Figs. 9(a) and 9(b) show respectively the
average battery energy discharge and average battery life of
the test devices in the local playback, reception+playback
over DVB-T, and reception+playback over Wi-Fi. The average
battery discharge and battery life are obtained from four
iterations of the experiments. As Fig. 9(a) and Fig. 9(b)
indicate, in all the test devices, receiving DTV content over
Wi-Fi results in a lesser battery discharge and longer battery
life as compared to DVB-T reception. An additional advantage
of Wi-Fi is that, UEs like test device 1, that are unable to
receive DVB-T content due to OS or driver incompatibility,
are able to receive the DTV content over Wi-Fi. These energy
saving as well as compatibility advantages of Wi-Fi motivates
towards the proposed Wi-Fi based DTV broadcast framework
for heterogeneous users, which is presented in Section VI.

B. Subjective Video Quality Assessment Results and Paramet-
ric Model

For each of the test devices, the subjective MOS values are
averaged and studied with respect to different granularity of
quantization (QP or q) and frame rate t of the SVC video.
Intuitively, the average MOS for each test video sequence
would decrease with increased value of QP and it would
increase with increased t, and the trends of variation in average
MOS with respect to video QP and t are expected to be similar
on different device types (e.g., QCIF, CIF, D1). Consequently,
the average MOS can be defined as function of the video
encoding parameters QP and t for any user device type and
video content.

For the parametric modeling of MOS (i.e., video quality or
QoE) with respect to SVC scalability (t and QP ), following
[35], [36], we define perceptive video quality, Q(q, t) that
approximates the MOS, where q = 2(QP−4)/6. Specifically,
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Fig. 8: SVC broadcast over Wi-Fi experimental results in terms of (a) Dt(t), (b) Dq(q), and (c) overall battery discharge D(q, t), with
different test devices and ‘Harbor’ video sequence at different quantization levels and frame rates, along with the corresponding parametric
models with optimum parameters a and b.

as noted in [35], the parametric quality measure has a direct
relationship with the subjective measure MOS, given by equa-
tion (7):

MOS = 4×Q(q, t) + 1 (7)

Thus, numerically, Q(q, t) = 0 corresponds to MOS = 1,
Q(q, t) = (0.0− 0.25] corresponds to MOS = 2, Q(q, t) =
(0.25− 0.5] corresponds to MOS = 3, Q(q, t) = (0.5− 0.75]
corresponds to MOS = 4, and Q(q, t) = (0.75− 1.0] corre-
sponds to MOS = 5. Q(q, t) is specified with video and device
specific parameters λ and g. For a given spatial resolution, the

quality parametric model Q(q, t) is defined as in equation (8):

Q(q, t) = Qmax ·Qt(t) ·Qq(q), with (8)

Qt(t) =
Q(q, t)

Q(q, tmax)
=

1− e(−λ·t/tmax)

1− e−λ (8a)

Qq(q) =
Q(q, t)

Q(qmin, t)
=
e(−g·q/qmin)

e−g
(8b)

Here, Qmax is the maximum quality of video received at a
UE when it is encoded at the minimum quantization level qmin
and at the highest frame rate tmax. In the quality parametric
model, equations (8a) and (8b) suggest that, the impact of
q and t on Q(q, t) is separable as a product of Qq(q) (a
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(a) (b)

Fig. 9: Comparison of local playback, DTV over DVB-T, and DTV over Wi-Fi: (a) average energy discharge of battery; (b) average battery
life.
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Fig. 10: Subjective video quality test data in terms of (a) Qt(t), (b) Qq(q), and (c) overall quality Q(q, t), with different test devices and
‘Harbor’ video sequence at different quantization and frame rates, along with the corresponding parametric models with optimum parameters
λ and g.

function of q only) and Qt(t) (a function of t only). Qt(t)
represents the MOS normalized with respect to Q(q, tmax),
and it increases with frame rate t, as shown in Fig. 10(a).
Qq(q) on the other hand represents the MOS normalized
with respect to Q(qmin, t). Qq(q) plotted in Fig. 10 shows
a decreasing trend as the quantization level q increases. The
optimum parameters in the model, λ in (8a) and g in (8b), are
obtained from the subjective tests, presented in Section IV-E.
The plots (continuous lines) with the UE and video dependent
optimum parameter λ (for ‘Harbor’ video sequence) in Fig.
10(a) show a good parametric approximation with respect to
the empirical values with different t and q values. Similarly,

the UE and video dependent optimum g values are obtained for
Qq(q), as shown in Fig. 10(b). The parametric video quality
variation for ‘Harbor’ video sequence in terms of MOS at
different frame rates t and quantization levels q is also shown
in Fig. 10. It is evident that the MOS reduces with increase in
q and increases with increase in t. This trend of video quality
variations is similar for any test video sequence and hence it
is a generic property of the video content. The optimum UE
and video dependent parameters Qmax, λ, and g are listed in
Table VI, which also shows the accuracy of the model with
respect to the subjective test results. Specifically, the RMSE
is found to be only at most 0.46%. This model is further used
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TABLE VI: Subjective video quality model parameters and
model’s accuracy

Video Device QoE model parameters
sequence Qmax λ RMSE g RMSE

(%) (%)
Harbor 1 4.78 7.0628 0.0019 0.0047 0.0713

2 4.55 15.9004 0.0015 0.0048 0.2790
3 4.85 14.4538 0.0023 0.0073 0.2818

Town 1 4.25 10.4566 0.0011 0.0039 0.0740
2 4.00 16.3664 0.0007 0.0056 0.0705
3 4.35 14.5852 0.0002 0.0053 0.2301

Tree 1 2.20 9.2064 0.0036 0.0045 0.4621
2 4.32 17.7992 0.0021 0.0061 0.3224
3 4.35 16.1124 0.0017 0.0041 0.3198

in eWU-TV optimization framework in Section VI.

C. User Preference Study Results and Mathematical Modeling

Having noted the UE energy consumption and video quality
results in Sections V-A1 and V-B, we now study and charac-
terize the user preference that jointly accounts UE energy and
video quality.

Based on the subjective video quality test questionnaire,
the average users’ PS versus energy saving (PS-ES) trends
are shown in Fig. 11 for the ‘good’ and ‘fair’ video quality
profiles. The statistical user preference data that was collected
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Fig. 11: Average preference score for the ‘good’ and ‘fair’
video quality profiles for increasing energy saving, obtained
from the subjective test responses and mathematical model.

during the study has a variation with respect to device energy
saving values. The PS increases with respect to increase in
device energy saving for the two video quality profiles. It is
observed that the trends can be best represented by an inverse
exponential function. Accordingly, we propose to model the
average PS as a function of energy saving by using an inverse
exponential function for the two video quality profiles (‘good’
and ‘fair’) as: f(y) = 1−e−d·y

1−e−d , where d is the parameter to
ascertain the closest approximation of PS-ES variation for each
of the video quality profiles.

The user’s preference P depends on the chosen video
quality profile as well as the corresponding energy saving,
which is defined as follows:

P(E) =ρexcellent · Pexcellent(E) + ρgood · Pgood(E)

+ ρfair · Pfair(E)
(9)

TABLE VII: Two sample F -Test and T -Test results

Video quality profile
‘Fair’ profile ‘Good’ profile

α 0.05 0.05
F 1.180934 1.107766
F critical1 0.440663 0.440663
F critical2 3.178893 3.178893
t Stat 0.000284 -0.001747
Pr{T ≤ t} 0.999776 0.998625
t critical 2.100922 2.100922

where ρ is an indicator function. For example, for an ‘excel-
lent’ video quality profile chosen by a user, ρexcellent = 1,
ρgood = 0, ρfair = 0, and Pexcellent(E) = 5.

For a ‘good’ video quality profile chosen by a user,
ρexcellent = 0, ρgood = 1, ρfair = 0. The inverse exponential
function that best fits the PS-ES plot with the chosen ‘good’
quality profile is given as:

Pgood(E) = Pmaxgood ·
(

1− e−dgood·E/Emax

1− e−dgood
)

(10)

where Pmaxgood is the maximum average PS for a ‘good’ video
quality profile obtained from the study conducted. dgood is
the parameter for the ‘good’ video quality profile for the
approximate mathematical modeling of the PS-ES function.

For a chosen ‘fair’ video quality profile, ρexcellent = 0,
ρgood = 0, ρfair = 1, and the corresponding inverse exponen-
tial function is:

Pfair(E) = Pmaxfair ·
(

1− e−dfair·E/Emax

1− e−dfair

)
(11)

Pmaxfair is the maximum average PS for a ‘fair’ video quality
profile obtained from the subjective test. dfair is the parameter
for the ‘fair’ video quality profile.

The proposed user preference modeling function P in (10)
and (11) along with the statistical study based observations are
shown in Fig. 11 for ‘good’ and ‘fair’ video quality profiles,
respectively. Here, the inverse exponential function parameters
for accurate modeling of PS-ES functions, (10) and (11), are
dgood = 2.49 and dfair = 0.88, for ‘good’ and ‘fair’ video
quality profiles, respectively. The absolute error between the
mathematical model and the statistical test results for these
profiles are 0.67% and 0.76%, respectively.

By performing F -tests and T -tests on the statistically ob-
served PS and mathematically modeled PS results for each
video quality profile, we ascertain that there is no statistical
difference between the values of the two sets of results. The
results of these tests are shown in Table VII. The F -test null
hypothesis (i.e. variances of two samples are equal) can be
rejected if F value (F ) < lower critical F value (F critical1)
or F > higher critical F value (F critical2). As it can be seen
from Table VII, F critical1 < F < F critical2, for both video
quality profiles. Hence, we have performed the two sample T -
tests with the assumption that the variances of the two sample
are equal because there is not enough evidence to reject the
F -test null hypothesis at the significance level α = 0.05.
The T -test results for each video quality profile in Table VII
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indicate that T -test statistics (t Stat) < T -test critical value
(t critical) and the p value (Pr{T ≤ t}) > α. This accepts
the T -test null hypothesis (i.e. there is no statistical difference
between the average of two samples) and demonstrates that
there is no statistical difference between the average results
provided by the mathematical model proposed for PS and the
average values provided by the statistical observations of PS.
This finding is stated with a high level of confidence, 95%
(the significance level α = 0.05).

D. Overall Device Energy Saving Model

The UEs are able to save energy in three possible ways
under the adaptive scalable video broadcast system. Firstly, the
scalable video playback has the potential to reduce the device
battery discharge (discussed in Section V-A2). Secondly, the
scalable video reception over Wi-Fi further provides a reduced
battery discharge both in terms of the receiver modules battery
discharge and scalable video playback (reflected in discussions
of Section V-A4). Thirdly, the scalable video layer aware
time slicing is an adaptive broadcast transmission technique
that increases the UE energy saving capability. Hence, the
overall device energy saving model is derived based on the
three energy saving components, i.e., scalable video playback,
scalable video reception, and scalable video layer aware time
slicing transmission. Also, this model is a function of the video
encoding parameters, i.e., quantization level q, frame rate t,
and spatial resolution s and is derived based on the battery
discharge parametric model in equation (6). The overall UE
energy saving is formulated as in equation (12):

Ei(q, t, s) = Ep,i(q, t, s) + ERx,i(q, t, s) + Ets,i(q, t, s)

Ep,i(q, t, s) = Dmaxp,i,s −Dp,i,s(q, t)

ERx,i(q, t, s) = Dmaxw,i,s −Dp,imax
− (Dw,i,s(q, t)

−Dp,i,s(q, t))

Ets,i(q, t, s) =

1−

ci∑
j=1

rj

R
− H ci r1

b

ERx,i(q, t, s)

(12)

In equation (12) Ei(q, t, s) is the overall energy saving for
device i when receiving and playingback ci scalable video
encoded layers with q quantization level, t frame rate, and
s spatial resolution. Ep,i(q, t, s) is the energy saving for the
scalable video playback for user device i and is derived from
the battery discharge model (BD model) discussed in Section
V-A1 and is given by (3). Dp,i,s(q, t) represents the BD model
and Dmaxp,i,s represents maximum device battery discharge
for scalable video playback of spatial resolution s on device
i. ERx,i(q, t, s) is the energy saving of the device reception
module for the scalable video reception over wireless network
by user device i and is also derived from the BD model given
by (3). Dw,i,s(q, t) represents the BD model and Dmaxw,i,s
represents maximum device battery discharge for scalable
video (spatial resolution s) reception over Wi-Fi (i.e. DTV
over Wi-Fi) by device i. Ets,i(q, t, s) is the device energy
saving due to time sliced broadcast of scalable video content.

Since time slicing approach allows DRX at the UEs, it thereby
facilitates the UE to save energy by turning-off the radio when
not receiving data bursts. Ets,i(q, t, s) is calculated as the
fraction of device i’s reception module’s energy saved due
to time slicing. It is obtained by using the ratio of the time
duration for which the UE’s radio components are turned-off
over the total time of a video transmission cycle. Device i
receives upto ci SVC video layers, where 1 ≤ ci ≤ L, L
is the maximum number of layers being broadcast, H is the
overhead duration (typically 100 ms [12]), b is the burst size
of the base layer (bits), and rj is the rate allocated to j layer
(bps). r1 is the bit-rate of the base layer (at q quantization
level, tmin frame rate, and s as QCIF spatial resolution).

After simplification and incorporation of the BD model
given by equation (3) with parameters tabulated in Table IV,
the overall energy saving model given by equation (12) reduces
to the following equation:

Ei(q, t, s) =

1−

ci∑
j=1

rj

R
− H ci r1

b


{
Dmaxw,i,s

−Dmaxp,i,s +Dmaxw,i,s

(
t

tmax

)aw,i,s
(

q

qmin

)−bw,i,s

−Dmaxp,i,s

(
t

tmax

)ap,i,s
(

q

qmin

)−bp,i,s
}

+Dmaxw,i,s

(
1 +

(
t

tmax

)aw,i,s
(

q

qmin

)−bw,i,s
)

(13)

In equation (13), parameters ap,i,s and aw,i,s are the param-
eter a of the BD model (given by (3)) for scalable video
of spatial resolution s playback and reception over Wi-Fi,
respectively, by device i. Similarly, parameters bp,i,s and bw,i,s
are the parameter b of the BD model (given by equation (3)) for
scalable video of spatial resolution s playback and reception
over Wi-Fi, respectively, by device i. Since these parameters
of the overall device energy saving model depends on the
user device, video content, and video encoding parameters
(quantization level, frame rate, and spatial resolution). Hence,
this model accurately captures the overall device energy saving
for heterogeneous users receiving adaptive scalable time sliced
broadcast video content.

VI. ADAPTIVE eWU-TV OPTIMIZED FRAMEWORK

Based on the observations in Section V, below a Wi-Fi
based adaptive eWU-TV framework is proposed to achieve
a jointly optimized solution for QoE and UE energy saving.

A. Adaptive eWU-TV Framework

The main optimization components in the adaptive eWU-
TV framework are: adaptive SVC encoding at the server and
time sliced reception at the UE decoder module.

1) Server-side adaptive SVC encoding and time slicing:
SVC layers (cf. Fig. 2) provides spatial resolution and frame
rate levels. Since the UE battery discharge also varies with
QP , an optimum QP is desired to suit the energy saving
requirements of the broadcast receivers of various display size.
The server strives to maximize the number of users served
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Nserved. In order to maximize Nserved while adhering to
the user preferences on QoE, the SVC content is adaptively
encoded via the following optimization criteria of QP .

maximize
QP

Nserved, Nserved ≤ N

subject to Q(q, tli) ≥ 0.25 (i.e., MOS ≥ 3, using eq. (7)) and
Pi(Ei(q, tli , sli)) ≥ 3, 1 ≤ i ≤ Nserved

(14)

where Nserved is the number of users receiving video with
quality Q(q, tli) ≥ 0.25, out of the total N subscribers.
Q(q, tli) is the quality of video corresponding to li SVC video
layers that are received by user i and is given by equation (8),
Pi(Ei(q, tli , sli)) is the PS for user i given by equation (9),
and Ei(q, tli , sli) is the overall device energy saving for user
i given by equation (13). Note that, the underlying constraint
on Pi(Ei(q, tli , sli)) in eWU-TV ensures that the delivered
video quality and the energy saving offered to the UE is at
least ‘preferred’ by the subscriber.

2) UE-side SVC decoder module: Since a UE of any
display size has a lesser battery discharge when receiving
SVC content at its suitable resolution level (e.g., test device 1
of SD category receiving QCIF video), to save battery a UE
should receive only the SVC video layers that suits its display
resolution. Since QoE (given by equation (8)) increases with
the UE’s received number of SVC layers, UE i receives as
many SVC layers as possible (encoded at qopt quantization
level, obtained from equation (14)) that suits its preference
of QoE and energy saving. This maximum allowable subset
of layers is determined at a UE using a QoE optimization
formulation, given as:

maximize
li

Pi(Ei(qopt, tli , sli)), 1 ≤ li ≤ lmax
si

subject to Qi(qopt, tli) ≥ 0.25 (i.e., MOS ≥ 3, using eq. (7)) and
Pi(Ei(qopt, tli , sli)) ≥ 3, 1 ≤ i ≤ Nserved

(15)

where li is the number of SVC video layers received by user
i out of the total lmaxsi layers, si is the spatial resolution corre-
sponding to user i’s display size category (QCIF corresponds
to SD, CIF corresponds to MD, and D1 corresponds to LD),
Q(q, tli) is the quality of video received by user i given by
equation (8), Pi(Ei(qopt, tli , sli)) is the PS for user i given by
equation (9), and Ei(qopt, tli , sli) is the overall device energy
saving for user i given by equation (13).

B. Simulation-based Performance Evaluation of eWU-TV

In order to assess the performance of the proposed eWU-
TV framework in comparison with adaptive time sliced DVB-
H and standard DVB-T broadcast, a broadcast environment
was simulated with the system parameters listed in Table VIII.
The performance evaluation is done in terms of number of
subscribers served, UE energy savings, and QoE. An example
simulation scenario with 20.42% Wi-Fi coverage area of the
DVB-H cell is shown in Fig. 12. Four different simulation
scenarios were considered with varied proportion of SD, MD,
and LD UE types as (33:33:34), (20:20:60), (20:60:20), and
(60:20:20), respectively. The total number of UEs considered

TABLE VIII: Simulation parameters

Parameter Value
DVB Wi-Fi

Channel bandwidth 8MHz 20MHz
Frequency 800MHz 2.4GHz
Carrier spacing 4KHz 5MHz
Transmission mode 2K N
Number of data carriers 1705 48
Receiver noise figure 5.2dB 4.0dB
Transmitter output power 63.8dBm 20dBm
Transmitter cable and connector loss 3.0dB 3.0dB
Transmitter power splitter loss 3.0dB 3.0dB
Transmitter antenna gain 13.1dBi 10.0dBi
Receiver antenna gain −7.3dBi −1.89dBi
Building loss 14.0dB 14.0dB
Receiver noise input power −99dBm −126.96dBm
Shadowing standard deviation 8dB 10dB
Guard interval 14µsec 0.8µsec
Wireless channel model Gaussian
Shadowing model Log-normal
Path loss model Free space
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Fig. 12: An example simulation scenario with 20.42% Wi-Fi
area coverage and 1000 uniformly randomly distributed users
of UE types in equal proportion (33:33:34).

were 1000. Out of each display size category, equal proportion
of users were considered to have chosen ‘excellent’, ‘good’,
and ‘fair’ video quality profile.

The average UE energy saving E achieved according to
the model given by (12) for different representative video
sequences are tabulated in Table IX. E captures the UE
energy saving in terms of scalable video playback Ep,i(q, t, s),
scalable video reception over Wi-Fi module ERx,i(q, t, s), and
time sliced broadcast reception Ets,i(q, t, s). It is observed
from Table IX that the test device 1 has the highest, device
2 has lesser, and device 3 has the least amount of device
energy saving, for each test video sequence. Thus, as compared
to the conventional DVB-T/H broadcast systems, eWU-TV
framework allows the UEs with smaller display size to save
more energy from playback and reception of time sliced
scalable video broadcast content.

The performance of the proposed framework is computed
in terms of the following parameters:

1) Nserved, i.e. number of served users with Qi(qopt, tli) ≥
0.25, and 1 ≤ i ≤ Nserved.

2) Overall energy saving, defined as: E =
Nserved∑

i=1
Ei(qopt,tli ,sli )

N , where ith served user receives
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TABLE IX: Average UE energy saving E achieved over DVB-H in eWU-TV framework

Video Device Playback Wi-Fi reception module Time slicing Overall saving
sequence type Ep,i(q, t, s) (%) ERx,i(q, t, s) (%) Ets,i(q, t, s) (%) Ei(q, t, s) (%)
Harbor 1 27.24 37.39 81.74 72.49

2 12.40 18.15 72.84 58.81
3 4.02 8.01 64.39 41.25

Town 1 32.40 48.03 85.30 74.11
2 14.80 25.19 76.29 61.79
3 4.25 9.86 68.32 51.82

Tree 1 38.95 55.13 87.19 82.14
2 21.05 29.91 78.40 67.13
3 4.38 14.37 70.16 56.26
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Fig. 13: Comparative performance of eWU-TV, adaptive DVB-H, and DVB-T on ‘Harbor’ video sequence, with respect to Wi-Fi coverage
area having equal proportion of three device types: (a) ratio of number of users served; (b) difference in average energy saving; (c) difference
in average QoE.

li SVC video layers, and Ei(qopt, tli , sli) is given by
equation (13).

3) Average QoE, defined as: Q =

Nserved∑
i=1

Qi(qopt,tli )

N , where
ith served user receives li video layers encoded at qopt
quantization level and tli frame rate. Qi(qopt, tli) is
given by equation (8).

Fig. 13 shows the relative performance of eWU-TV frame-
work relative to adaptive DVB-H as well as DVB-T in terms
of ratio of Nserved, difference in average energy saving E ,
and average QoS Q, for Scenario 1 (with 33:33:34 % of
different UE display category) and increasing Wi-Fi coverage
area within a DVB cell.

The performance gain in the eWU-TV framework is appar-
ent from all the plots. In particular, it can be noted that, at
50% Wi-Fi coverage within the DVB cell, eWU-TV serves
respectively 1.25 and 1.5 times more number of subscribers
compared to adaptive DVB-H and DVB-T. At the same
fractional coverage of Wi-Fi, Energy saving E in eWU-TV is
respectively 15% and 60% more compared to adaptive DVB-
H and DVB-T. Furthermore, at the same Wi-Fi coverage the
QoE performance Q of eWU-TV is respectively 15% and 21%
more than adaptive DVB-H and DVB-T. It is also observed
that, as the Wi-Fi coverage increases in the DVB cell, more
number of subscribers are getting served with higher QoE and
increased UE energy saving.

The simulation results with 50% Wi-Fi coverage area of the
cell are listed in Table X. It can be noted from these scenarios
that, in the eWU-TV framework the average number of users

served with MOS > 3 (‘fair’) is 31.19% higher compared
to adaptive DVB-H system and 84.47% compared to DVB-T
system. In terms of UE energy conservation, eWU-TV system
achieves an overall saving up to 46.71% compared to adaptive
DVB-H. This is because, the proposed framework makes use
of the flexibility of Wi-Fi that results in a lower UE battery
discharge (as seen from the experiments; cf. Section V-A5). In
terms of QoE, eWU-TV guarantees respectively 67.46% and
173.47% more Q compared to adaptive DVB-H and DVB-T.
Thus, overall, the eWU-TV framework enables more users to
be served with an improved QoE and a higher energy saving.
These advantages of the eWU-TV system are because, the Wi-
Fi servers offer more adaptability to optimizing scalable video
content to the smaller subsets of heterogeneous UEs in their
respective vicinities - which increases as the Wi-Fi coverage
is increased, and the UEs’ adaptive SVC content reception.
Hence, eWU-TV is an overall better alternative to DVB-T and
adaptive DVB-H systems.

VII. CONCLUSION

This paper has introduced a novel DTV over Wi-Fi archi-
tecture, called eWU-TV, that adaptively broadcasts scalable
video content using time slicing transmission technique to
suit the heterogeneous users with varying display and energy
constraints. The proposed framework is user-centric in terms of
UE display size, user preferences, and transmission technology
support. The proposed scheme is well supported by UE battery
discharge experiments and subjective video quality assessment
study for scalable DTV broadcast reception by heterogeneous
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TABLE X: Performance of eWU-TV versus adaptive DVB-H and DVB-T on ‘Harbor’ video sequence, with different population
densities of UE types and 50% Wi-Fi coverage area in a DVB-T/H cell

Scenario Proportion of Evaluation parameter
devices (%) Nserved E (%) Q (%)

SD MD LD DVB-T Adaptive eWU-TV Adaptive eWU-TV DVB-T Adaptive eWU-TV
DVB-H DVB-H DVB-H

1 33 33 34 418 605 757 47.95 67.21 28.11 32.46 53.19
2 20 20 60 240 378 612 32.02 51.96 20.48 40.56 66.47
3 20 60 20 406 586 742 49.06 68.90 20.72 35.01 57.38
4 60 20 20 566 723 896 56.21 83.78 15.46 26.30 46.87

devices over Wi-Fi and DVB-T transmission technologies.
Additionally, the user preferences for a video quality profile
based on the device energy saving has been obtained through a
statistical survey. Based on the experimental studies, paramet-
ric models have been developed to characterize the UE energy
discharge, subjective video quality, user preferences, and the
overall UE energy saving. Based on these models, optimum
SVC encoding parameters are obtained via the proposed adap-
tive eWU-TV optimization framework, which improves QoE
as well as energy efficiency of the broadcast receivers. eWU-
TV also ensures that higher number of users are served with
preferred QoE levels in accordance with the individual users’
selected video quality profile. Through extensive simulation
based testing it has been demonstrated that the proposed eWU-
TV framework is a better alternative to the conventional DVB-
T/H systems.
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