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Gaussian Mixture based Context-aware Short-Term
Characterization of Wireless Channels

Priyadarshi Mukherjee, Deepak Mishra, and Swades De

Abstract—5G wireless communication technologies aim at
simultaneously achieving energy efficiency and spectral efficiency.
5G also demands high communication reliability. In this context,
fine-grained temporal characterization of wireless channel can
be used to enhance both. To this end, we propose a novel
context-aware characterization of the temporally-varying wireless
channel. Our characterization of temporal variation of the
channel is based on the method of finite mixture of Gaussian
distributions. However, unlike the classical Gaussian mixture
model, the proposed characterization does not use an iterative
algorithm for its parameter estimation; it depends on the current
channel state and its statistics. Based on this characterization
we estimate the quantity of data that can be transferred over
the channel in a time interval without knowing the actual
channel state in that duration. We propose an application context
dependent upper bound on the time interval over which this
estimation can be made. Our numerical results demonstrate that
the present channel state plays a crucial role. When the proposed
characterization is used in the context of channel adaptive
communication, energy efficiency obtained is as high as 3.15
times over its nearest approach. A nontrivial trade-off between
energy efficiency and precision of the proposed characterization
is also investigated.

Index Terms—Fading channel, temporal characterization,
ultra-reliable low-latency communications, Gaussian mixture
model, inter-feedback duration, energy efficiency

I. INTRODUCTION AND BACKGROUND

The Internet traffic has been growing at an explosive rate in
recent years. According to Ericsson, global Internet traffic is
expected to increase more than five times between 2018 and
2024 [1]. This increased traffic will also lead to an increase in
energy consumption of the wireless devices. However, high
energy consumption is unaffordable in energy-constrained
scenarios, such as in wireless sensor network (WSN) and
Internet of Things (IoT) applications. In this context, energy-
efficient green communication [2], [3] have attracted a lot of
recent attention in industry as well as academia.

A. Prior Art and Motivation

WSN and IoT applications require energy to be judiciously
used. Some of these applications also demand ultra-reliable
low-latency communication (URLLC) [4] over wireless chan-
nel. Hence the current state of the fading wireless channel
plays a crucial role in these reliability as well as battery-
constrained scenarios, and therefore it is important to focus
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on temporal characteristics of the unreliable wireless channel.
One of the major objectives of the desired channel charac-
terization is prediction of the fading state of channel in next
few slots. To the best of our knowledge, none of the existing
wireless channel characterizations serve the purpose.

However, in the context of future states, wireless channel
state prediction has been a well-investigated topic [5]–[11].
The authors in [6], [7] proposed the use of autoregressive
models that use minimum mean square error criterion in
predicting the future state of channel. A method based on sum-
of-sinusoids was proposed in [8] for the same purpose, but
specifically for a Rayleigh fading scenario. It was shown that
when the channel is modeled as a sum of complex sinusoids,
then it can be effectively estimated by frequency estimation
techniques, e.g., estimation of signal parameters via rotational
invariance techniques and multiple signal classification. An
adaptive Kalman algorithm was proposed in [9] for model-
ing and prediction of mobile radio channels. Channel state
prediction in the context of OFDM was investigated in [10],
where a low complexity estimation method using polynomial
approximation was proposed. A predictive resource allocation
technique was proposed in [11] in context of energy-efficient
video streaming. The work in [12] revisited wireless channel
prediction and proposed a relay selection scheme in context
of URLLC. Various channel-aware link layer retransmissions
strategies have also been proposed in literature [13]–[16] that
aim at reducing chances of blind data retransmissions and also
maximize throughput.

We observe that, although there have been prior studies on
channel state prediction, they were mainly channel character-
istics independent in nature. To improve upon the prior art, in
this work we propose a generalized Gaussian Mixture (GM)
distribution based temporal characterization of channel that is
also able to estimate the future states of the channel depending
on its current state.

The proposed characterization will be helpful in achieving
short-term goals, such as estimation of the possible amount of
data transferred in a certain time interval without requiring
the actual channel state information (CSI) in that interval.
Hence this characterization will meet the demands of URLLC
while the cost incurred due to CSI feedback will be saved,
resulting in significant energy saving [17]. As instantaneous
CSI feedback in each slot incurs high cost, the proposed
scheme effectively bridges the gap between fully-blind [18]
and fully-instantaneous [19] schemes. Further, the proposed
characterization approach can be efficiently used in a system
that applies channel adaptive communication to increase the
energy efficiency in an environment with varying channel.
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There are a few existing works that aimed to fill the
gap between fully-blind and fully-instantaneous schemes. The
study in [20] proposed a Huffman coding based feedback
compression algorithm. The authors in [21] investigated vari-
ous feedback subsampling based schemes for exploiting time
diversity in temporally-correlated channels. In [22], a new
limited feedback framework was proposed using dictionary-
based sparse channel estimation algorithms. However, the
studies [20]–[22] assumed the channel to be invariant over
a time interval equal to coherence time. On the contrary, the
proposed characterization allows the user to have a control on
the inter-feedback interval, resulting in a better utilization of
the channel irrespective of the time scale of its dynamics.

Though Rayleigh model is a reasonable assumption in
context of fading experienced in most wireless scenarios, it
does not consider the effect of line-of-sight (LOS) signal
component. A more generalized fading model that accounts for
the LOS component is the Rician model, which is considered
in this work. It is important to observe that, though the Rician
fading model is taken in the analysis, the observations made
in this study are applicable in all fading scenarios.

Note that, GM modeling of wireless channel is not new.
The studies in [23]–[25] modeled the channel in terms of a
GM to meet different objectives. Specifically, high-complexity
algorithms were employed in these works to mathematically
approximate the channel model by a convex combination of
Gaussian random variables. In contrast, this is the first work
that models the short-term temporal variation of a wireless
fading channel using GM distribution without the use of any
such algorithm. In particular, we prove that temporal variations
of the channel actually follow a GM, and unlike [23]–[25], it
need not be approximated by a GM distribution.

B. Contributions
The key contributions in this work are as follows:
• Temporal variation of a wireless channel is modeled as a

finite sum of Gaussian distributions, i.e., in the form of
a GM distribution that depends on current channel state.
The proposed characterization is applicable for all the
existing fading channel models.

• Unlike the conventional definitions of outage probability
and ergodic capacity, our proposed definitions of short
term outage probability and short term channel capacity
accurately capture short-term temporal variations of the
channel. Convergence of the short-term outage and ca-
pacity definitions to the outage probability and ergodic
capacity are also proven.

• An application-dependent upper bound is obtained on the
time interval over which the short-term characterization
is done. An efficient algorithm is proposed to obtain the
upper bound. The impact of temporally varying channel
on the proposed upper bound and energy efficiency of
the system is also discussed. A non-trivial trade-off that
exists between the quality of prediction and the upper
bound is investigated.

• Detailed investigation is carried out to validate the anal-
ysis and provide insights on the proposed characteriza-
tion. Our results demonstrate that, when the proposed

characterization is used in context of channel-adaptive
communication, energy efficiency obtained is as high as
3.15 times over its nearest competitive approach.

C. Paper Organization

The paper is organized as follows. Section II introduces the
system model, the temporal variation of wireless channel, and
the Gaussian modeling of both the received signal envelope
as well as the signal-to-noise ratio (SNR) at the receiver
(Rx). Section III presents the proposed characterization of
temporal variation of channel. In Section IV, definitions of
short term outage probability and short term channel capacity
are introduced and their respective closed-form expressions are
derived. Section V proposes an upper bound on time interval
over which the characterization is done, Section VI presents
the effect of the proposed characterization on adaptive com-
munication system, followed by discussion and concluding
remarks in Section VII.

II. SYSTEM MODEL AND TEMPORAL VARIATION OF
WIRELESS CHANNEL

A. System Model

We consider communication between a node pair in a
mobile environment. The system is assumed slotted, with
slot duration Tp seconds. Without any loss of generality, we
consider a quasi-static block fading channel model [26], [27],
i.e., the channel remains constant for a block duration (which
in this case is taken as Tp), but vary from one block to another.

Before the transmitter (Tx) sends data to the Rx, it sends a
pilot signal to Rx 1. Rx responds with useful CSI feedback to
Tx along with maximum Doppler frequency fD [29].
fD corresponding to node velocity v of Rx is fD ∼= vfc

c ,
where fc is the carrier frequency and c is the velocity of light
in vacuum (fc = 900 MHz is considered in this work). The
product fDTp signifies the temporal variation rate of the wire-
less channel. From [30] we consider that fDTp < 0.1 indicates
correlated slow fading channel, whereas fDTp > 0.2 implies
that the two samples of the channel are almost independent,
i.e., the channel is fast fading.

The CSI requirement at Tx in every time slot results in
large demand of energy, which is sometimes unaffordable
in energy-constrained scenarios. At the same time if Tx
estimates the channel state only from the available channel
statistics, it cannot take the advantage of current channel state.
Some existing works [20]–[22] consider coherence time based
slotting, resulting in under-utilization of channel. Thus there
exists a gap, which we aim to address in this work.

B. Wireless Channel and Its Temporal Variation

We consider, data transmission is taking place in a wide-
sense stationary (W.S.S.) Rician fading scenario with signals
of transmission power P . The received signal y at Rx is:

y =
√
P h x+ n, (1)

1Based on the channel reciprocity of a TDD-based wireless system [28],
it is assumed that the channel gain of the uplink is the same as that of the
downlink estimated by Rx.
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where x is the signal transmitted, h is the time varying channel
gain, and n is independent Additive White Gaussian Noise
(AWGN) at Rx with zero mean and variance σ2

o . Channel gain
h at time t is generally modeled in the form of a complex
random process as h(t) = hI(t) + jhQ(t), where hI(t)
and hQ(t) represent the in-phase and quadrature components,
respectively. Based on Clarke’s two dimensional isotropic
scattering model, hI(t) and hQ(t) corresponding to Rician
fading scenario are defined as [31]:

hI(t) =
1√

1 +K

[
1√
NP

NP∑
n=1

cos (ωDt cosαn + φn) +

√
K cos (ωDt cosα0 + φ0)

]
and (2)

hQ(t) =
1√

1 +K

[
1√
NP

NP∑
n=1

sin (ωDt cosαn + φn) +

√
K sin (ωDt cosα0 + φ0)

]
.

Here NP is the number of propagation paths, ωD = 2πfD
is the maximum radian Doppler frequency, αn and φn are
respectively the azimuth angle of arrival and initial phase of
the nth propagation path, K is the ratio of the specular power
to the scattered power, and α0 and φ0 are respectively the
azimuth angle of arrival and the initial phase of the specular
component.
h (index t is removed for brevity) can be ex-

pressed as h = |h|ejκ with κ taking values between
−π and π. In a rich scattering environment, we have
NP → ∞ and according to the central limit the-

orem, both
1√

NP (1 +K)

NP∑
n=1

cos (ωDt cosαn + φn) and

1√
NP (1 +K)

NP∑
n=1

sin (ωDt cosαn + φn) tend to be Gaus-

sian. With φ0 being uniformly distributed over [−π, π) [31],
|h| tends to the Rician distribution; its probability distribution
function (PDF) is stated below in (3).

Remark 1. Practical channels do not always have a very rich
scattering environment and hence it is impractical to always
take the NP →∞ assumption. However, Xiao et al. [31] have
shown that the PDF of |h| with NP as low as NP = 8 is
in very good agreement with the theoretical values obtained
when considering NP → ∞. Hence, the considered model
stands valid for practical channels irrespective of number of
scattering components present.

We further assume that E[x] = 0, E[x2] = 1, and E[|h|2] =
1, where E[·] denotes the expectation operator. The PDF of
received signal envelope Θ =

√
P |h| is [32]:

fΘ(α, µΘ,K) =
2(1 +K)αe−K

µΘ
e
− (1+K)α2

µΘ

I0

[
2α

√
K(1 +K)

µΘ

]
, α ≥ 0. (3)

Here µΘ = E[Θ], K is the Rice factor, and I0(·) denotes the

zero-order modified Bessel function of the first kind. Estimate
of Rice factor K is known from [33]. From [34] we know that

the time-derivative of Θ, i.e., Θ̇= lim
∆t→0

Θ(t+ ∆t)−Θ(t)

∆t
is

a zero mean Gaussian random variable (RV) with variance σ̇Θ,
i.e., Θ̇ ∼ N (0, σ̇Θ), where

σ̇Θ =
πfD

(K + 1)

√
P (2K + 1). (4)

To the best of our knowledge, till date Θ̇ has been used to
obtain two key second-order statistics of the channel [35],
namely, level crossing rate (LCR) and average fade duration

(AFD). Mathematically, LCR =

∫ ∞
0

Θ̇fΘΘ̇(Θth, Θ̇)dΘ̇ and

AFD =
Pr {Θ < Θth}

LCR
, where Θth is the target threshold and

fΘΘ̇(Θ, Θ̇) is the joint PDF of Θ(t) and Θ̇(t) at the same
time instant. Θ being Rician, received SNR Z = P |h|2

σ2
o

is a
non-central χ2 RV with two degrees of freedom. The PDF of
Z is [32]:

fZ(z, µz,K) =
(1 +K)e−K

µZ
e
− (1+K)z

µZ

I0

[
2

√
K(1 +K)z

µZ

]
, z ≥ 0. (5)

Here µZ = E[Z]. Just like Θ̇, Ż ∆
= dZ

dt is also a zero mean
Gaussian RV, i.e., Ż ∼ N (0, σ̇Z). The standard deviation of
Ż, i.e., σ̇Z can be obtained as follows.

Proposition 1. The standard deviation of Ż in a Rician fading
scenario is

σ̇Z =
2P

σ2
o

πfD
(K + 1)

√
2K + 1. (6)

Proof. Variance of Ż, Var(Ż) is given by:

Var(Ż) = Var
(
d

dt

{
P |h|2

σ2
o

})
=Var

(
d

dt

{
Θ2

σ2
o

})
=Var

(
2

σ2
o

ΘΘ̇

)
=

4

σ4
o

Var(ΘΘ̇). (7)

From [36] we know that Θ̇ and Θ are independent. Using
the definition of variance for product of two independent RV,
we get Var(Ż) = 4

σ4
o

{
E[Θ2]E[Θ̇2]− E[Θ]2E[Θ̇]2

}
. From the

definition of Θ̇, we have E[Θ̇] = 0. Accordingly the above
equation gets reduced as Var(Ż) = 4

σ4
o

{
E[Θ2]E[Θ̇2]

}
=

4P 2

σ4
o

(
πfD
K+1

)2

(2K + 1). Hence we get, σ̇Z =
√

Var(Ż) =
2P
σ2
o

πfD
(K+1)

√
2K + 1.

Note that though Proposition 1 calculates Var(Ż), Ż is not
analytically proved to be a Gaussian RV. However as observed
in Fig. 1(b), considering Ż to be zero-mean Gaussian results in
an root mean square error (RMSE) on the order of 10−4 when
we compare the probability distribution of the actual signal
power and the one obtained by our proposed characterization
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(discussed in Section III). This justifies Ż as a zero-mean
Gaussian RV with the calculated variance.

Remark 2. The approach of isotropic scattering is not
popular, especially in modeling 5G systems. The works in
[37], [38] based on various real environments show that the
scattering nature at Rx is anisotropic. The authors in [39]–
[41] investigated the channel at Rx side and proposed various
channel models. However, our current work is based on the
temporal variation of wireless channel, which is Gaussian in
nature [34] irrespective of whether the scattering considered
is isotropic or not. Hence the proposed characterization stands
valid even in anisotropic scattering scenarios.

C. Gaussian Modeling of Received Signal Envelope and SNR

If the received signal envelope Θ at time t is Θ(t) = θ0,
then Θ in the next slot, i.e., after time Tp, is expressed as

Θ(t+ Tp) ≈ θ0 + Θ̇ · Tp, where (8)

Θ̇ ∼ N (0, σ̇Θ). Since practically Tp � 1 s, we obtain (8)
using first order approximation of Taylor series expansion of
Θ(t+ Tp) along the following lines:

Θ(t+ Tp) =Θ(t) + Θ̇ · Tp + Θ̈ ·
T 2
p

2!
+ · · ·

=Θ(t) + Θ̇ · Tp +O(T 2
p )

≈θ0 + Θ̇ · Tp. (9)

Accordingly we define a RV Θ1(= Θ̇ · Tp) that denotes
temporal variation of the signal envelope in next one slot.

Theorem 1. Θ1 is not an unconstrained Gaussian RV, but a
truncated Gaussian RV in [−θ0,+∞).

Proof. We prove this theorem by contradiction. As Θ1 =
Θ̇ · Tp, we have Θ1 ∼ N (0, σ̇Θ1

), where σ̇Θ1
= σ̇Θ · Tp =

πfDTp
(K+1)

√
P (2K + 1).

Θ1(θ1) ∼ N (0, σ̇Θ1
) ∀θ1 implies that θ1 ∈ (−∞,+∞).

Let θ1 ∈ (−∞,−θ0), which is a subset of (−∞,+∞). Then
from (9) we have Θ(t + Tp) ≈ θ0 + θ1 < 0. But Θ(t + Tp)
being signal envelope, it is a non-negative quantity. We have
thus reached a contradiction, that θ1 /∈ (−∞,−θ0) but θ1 ∈
[−θ0,+∞). In other words, Θ1 cannot be an unconstrained
Gaussian RV, but it is a truncated Gaussian RV in [−θ0,+∞)
with its PDF as:

fΘ1
(θ1) =


1

√
2πσ̇Θ1

[
1−Φ

(
− θ0
σ̇Θ1

)]e−
θ21

2σ̇2
Θ1 , θ1 ≥ −θ0

0, elsewhere.
(10)

Here Φ(x) =

x∫
−∞

1√
2π
e−

t2

2 dt is the cumulative distribution

function of standard univariate normal distribution. Value of
σ̇Θ1

depends upon the fading distribution model.

Similarly, Θ after 2 time slots is Θ(t + 2Tp) ≈ θ0 + Θ2,
where Θ2 is also a zero mean Gaussian RV like Θ1 with
σ̇2

Θ2
= 2σ̇2

Θ1
; just the difference being that Θ2 resembles the

temporal variation of Θ over the next two slots, whereas Θ1

denotes temporal variation over next one slot only.

Remark 3. Generalizing this concept over next N slots, we
can say that if Θ(t) = θ0, then

fΘN (θN ) =


1

√
2πσ̇ΘN

[
1−Φ

(
− θ0
σ̇ΘN

)]e−
θ2N

2σ̇2
ΘN , θN ≥ −θ0

0, elsewhere.
(11)

Here σ̇2
ΘN

= Nσ̇2
Θ1

. Extending this concept to the received
SNR, we can make an analogous statement.

Remark 4. If the received SNR at time t is Z(t) = Z0, then

fZN (zN ) =


1

√
2πσ̇ZN

[
1−Φ

(
− Z0
σ̇ZN

)]e−
z2N

2σ̇2
ZN , zN ≥ −Z0

0, elsewhere.
(12)

Here σ̇2
ZN

= Nσ̇2
Z1

, where σ̇Z1 = σ̇Z · Tp.

It may be noted that Remarks 1 and 2 hold for N ·Tp → 0.
Taking this into consideration, we propose a GM characteri-
zation of the temporal variation of Θ and Z. This character-
ization has ζ component distributions. Details regarding the
choice of ζ (and hence N ) is investigated later in Section V.

D. Case of Imperfect CSI at the Transmitter

Previously we characterized Θ(t+Tp) in terms of Θ(t) = θ0

and temporal variation of Θ over the immediate slot, i.e., Θ1.
It was proved in Theorem 1 that Θ1 is a truncated Gaussian
RV in [−θ0,+∞). Hence, if Tx has imperfect knowledge of
Θ(t), it also affects Θ1. In this regard, let Θ(t) = θ̂0, where
θ̂0 =

√
P |ĥ| is the imperfect CSI available at the Tx and ĥ is

modeled by the Gauss-Markov formulation form as [42]:

ĥ =
√

1− ϕ2h+ ϕe. (13)

CSI imperfection parameter ϕ ∈ [0, 1] indicates the quality of
instantaneous CSI, i.e., ϕ = 0 corresponds to perfect CSI
and ϕ = 1 corresponds to having only statistical channel
knowledge. The quantity e represents the varying component
of the channel and is assumed to be a circularly symmetric
complex Gaussian random variable with zero mean and unit
variance, i.e., e ∼ CN (0, 1). Note that the introduced CSI
imperfection accounts for channel estimation errors and/or
channel variations during the feedback delay.

Thus we observe from (13) that in the imperfect CSI
scenario, Θ1 is a truncated Gaussian RV in [−θ̂0,+∞) and
not [−θ0,+∞). However from Theorem 1 we note that the
mean and/or variance of Θ1 remains unaffected.

Generalizing the effect of imperfect CSI at TX, Remark 3
and Remark 4 (as Z = P |h|2

σ2
o

) are revised as:
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Remark 5. If Θ(t) = θ̂0,

fΘN (θN ) =


1

√
2πσ̇ΘN

[
1−Φ

(
− θ̂0
σ̇ΘN

)]e−
θ2N

2σ̇2
ΘN , θN ≥ −θ̂0

0, elsewhere.
(14)

Remark 6. If Z(t) = Ẑ0 = P |ĥ|2
σ2
o

, then

fZN (zN ) =


1

√
2πσ̇ZN

[
1−Φ

(
− Ẑ0
σ̇ZN

)]e−
z2N

2σ̇2
ZN , zN ≥ −Ẑ0

0, elsewhere.
(15)

Since the CSI imperfection affects the truncation interval but
not the corresponding moments of ΘN or ZN , the proposed
model in next section stands valid even with imperfect CSI.

III. PROPOSED GAUSSIAN MIXTURE MODEL

From the last section we see that, if Θ(t) = θ0, then the
probable received signal envelope after N slots Θ(t+NTp) ≈
θ0+ΘN can be characterized as a truncated Gaussian RV with
its mean being θ0 and variance σ̇2

ΘN
. Thus it can be observed

that the mean of Θ(t+NTp) is a deterministic quantity that can
be obtained from the channel estimate sent by Rx to Tx, and
the variance is obtained from maximum Doppler frequency
fD and Rice factor K.

It is important to note here that in general, mean, variance,
or any moment of a RV are time-invariant quantities that define
the RV. But in this case it is not so; here the CSI received at
Tx acts as the mean while variance is obtained from fD and
K. In other words, Θ(t) does not denote the same RV at
t = t1 and t = t2. Hence the proposed characterization of
the channel is hybrid in nature, i.e., it depends on the channel
characteristics as well as its instantaneous value. We use this
very interesting property of Θ to model its variation over next
ζ slots, where the present state of the channel, i.e., Θ(t) plays
a very important role.

Since for a given Θ(t) = θ0 the variation of Θ in each
of the next ζ slots follows a scaled Gaussian distribution, we
propose to model the entire variation of Θ over the next ζ
slots in terms of a GM distribution.

According to the theory of classical GM model [43], any
arbitrary probability distribution fA(a) can be expressed as a
convex combination of finite number of Gaussian distributions
fBi(bi) in the following form:

fA(a) =

ζ∑
i=1

πifBi(bi), (16)

where fBi(bi) is the ith component Gaussian distribution,

i.e., fBi(bi) = 1√
2πσbi

e
−

(bi−µbi )
2

2σ2
bi and πi is its corresponding

weight with constraints 0 ≤ πi ≤ 1 and
ζ∑
i=1

πi = 1. The

optimal values of the unknown parameters, i.e., πi, µbi , and

σbi∀1 ≤ i ≤ ζ are generally obtained by iterative Expectation-
Maximization (EM) algorithm [44]. The run-time complexity
of the EM algorithm is O(K2L), where K is the number of
Gaussian components in the GM distribution, and L is the
size of data set on which GM distribution is considered to
obtain the optimal set of parameters. We introduce Theorems
2 and 3 that characterize Θ and Z respectively in terms of
GM distribution as follows.

Theorem 2. If Ψ denotes the temporal variation of Θ over
the next ζ slots from time t, it can be characterized in terms
of Θ(t) = θ0 by a GM distribution whose PDF is:

fΨ(β | Θ(t) = θ0, ζ)

=


1

ζ

ζ∑
i=1

1
√

2πσ̇Θi

[
1− Φ

(
− θ0
σ̇Θi

)]e− β2

2σ̇2
Θi , β ≥ −θ0

0, elsewhere.
(17)

Proof. From [34] we know that irrespective of the underlying
fading distribution, the rate of temporal variation of Θ is a zero
mean Gaussian RV. Moreover we also know from Remark 3
that based on the current channel state Θ(t), the temporal
variation of the next ith slot can be modeled as a truncated
Gaussian distribution. Hence in observing the effective Θ over
each of next ζ slots, it will be a mixture combination of ζ
different Gaussian distributions. In other words, the temporal
variation of Θ over next ζ slots will be a GM distribution as
given by (17).

It should be noted that we use the concept of equal
weightage in Theorem 2. That is, 1

ζ in the theorem implies
that equal weightage is given to all of the next ζ slots. This
is because we are interested in characterizing the variation of
Θ over next ζ slots as a whole, without giving any additional
priority or being biased to any of these ζ slots.

On similar lines, we also characterize the variation of
received SNR in next ζ slots as follows.

Theorem 3. If Ω denotes the temporal variation of Z over
the next ζ slots from time t, then it can represented in terms
of Z(t) = Z0 by a GM distribution, whose PDF is:

fΩ(γ | Z(t) = Z0, ζ)

=


1

ζ

ζ∑
j=1

1
√

2πσ̇Zj

[
1− Φ

(
− Z0

σ̇Zj

)]e− γ2

2σ̇2
Zj , γ ≥ −Z0

0, elsewhere.
(18)

Proof. The proof is in line with the proof of Theorem 3.

Remark 7. It is important to note from Theorem 1 and 2
that both Ψ and Ω actually follow GM distribution. Unlike
the classical GM definition, they are not any arbitrary PDFs
approximated by a convex combination of Gaussian RVs.
Hence we do not require the high complexity iterative EM
algorithm to estimate their parameters. Instead, we simply
require the channel state at time instant t and the channel
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Fig. 1. Proof of concept for various Rice factor K. System parameters: node
velocity v = 6 kmph, slot duration Tp = 500 µs, ϕ = 0, and ζ = 10.

statistics, fD and Rice factor K. Hence, the proposed model
is of minimal complexity and always executes in constant time,
i.e., its run time complexity is O(1).

Fig. 1 demonstrates that the probability distributions of the
actual signal envelope (and power) match very closely with the
probability distributions obtained through the proposed char-
acterization. Extensive Monte-Carlo simulation-based results
presented in Fig. 1(a) and (b) validate the Theorems 2 and
3. Monte-Carlo simulation being an exhaustive technique, we
have obtained the corresponding PDFs from 106 samples of
the channel generated by the Clarke’s model according to (3)
and (5), with the system parameters as stated in Fig. 1. While
Fig. 1(a) also shows the special case of Rayleigh distribution
as Rician distribution with K = 0, Fig. 1(b) demonstrates
the transformation of a non-central χ2 distribution with two
degrees of freedom to the well known exponential distribution
for K = 0.

Remark 8. Though the GM distribution has been proposed
for Rician fading channel, the proposed characterization is in
general valid for all fading distributions. This generalization
is based on the fact that irrespective of the underlying fading
distribution of channel, the time derivative of received signal
amplitude at Rx is always a zero mean Gaussian RV [34].
Only the variance of the RV changes depending on the slot
duration Tp and the underlying fading distribution.

Remark 9. Based on Section II-D if we consider the imperfect
CSI scenario here, Theorems 2 and 3 remain the same except
for a subtle difference; θ0 and Z0 get replaced by θ̂0 and Ẑ0

respectively, as expressed earlier in Remarks 5 and 6.

Unlike the existing channel characterizations, the proposed
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AR [7], ϕ = 0.2

Fig. 2. Variation of RMSE of channel state prediction versus prediction
window ζ. System parameters: node velocity = 6 kmph, slot duration
Tp = 500 µs, and Rice factor K = 40.

model also serves the purpose of channel state prediction
over the next few slots. In this context, it may be noted
that there exist a number of channel prediction techniques
that are used for channel prediction. While several tests have
been conducted to evaluate and compare the performance of
the existing techniques, Duel-Hallen [5] demonstrated that the
auto-regressive (AR) model based prediction outperforms the
others on real measurement data.

To normalize the prediction range, it is often expressed in
spatial units, i.e., wavelengths. When the maximum Doppler
frequency is fD, τ seconds ahead prediction corresponds to a
prediction range of fDτ . Therefore, with slot duration Tp =
500 µsec, ζ slot ahead prediction implies a prediction range of
ζ · fDTp wavelengths. Accordingly in Fig. 2 we compare the
AR-based method with our scheme, where root mean square
error (RMSE) is plotted against the prediction range. Note that
the figure demonstrates both the cases of perfect and imperfect
CSI scenarios, i.e., ϕ = 0, 0.1, and 0.2.

For the AR-based technique, following the parameter values
considered in [7] we take an observation window of past 200
samples, a predictor filter of order 20, and Burg method is
employed. The plots demonstrate that the proposed character-
ization significantly outperforms the AR-based approach; the
average improvement in performance (∆Imp) being ∆Imp =
36.94%, 17.51%, and 13.53% corresponding to ϕ = 0, 0.1,
and 0.2, respectively. Hence we observe that ∆Imp decreases
with increasing ϕ. We also observe that in both the cases,
performance in the perfect CSI feedback scenario i.e., when
ϕ = 0, acts as an upper bound to the scenarios when ϕ 6= 0.

Remark 10. Methods in [5], [7] are for long-term prediction
whereas the proposed method here is essentially for short-
term characterization. This can also be observed from Fig. 2,
where we note that for any particular ϕ, ∆Imp decreases with
increasing ζ. For example when ϕ = 0.1, ∆Imp = 38.12%
and 9.79% corresponding to the wavelengths ζ = 0.025 and
0.4750, respectively. However, the proposed characterization
helps model the temporal channel variations more effectively,
which will be discussed subsequently.

Note that the proposed method characterizes the signal en-
velope using a RV, and thus the outcome is a random quantity
that changes in different trials. Hence we have considered
the averaged-out performance of the proposed method over
105 trials and accordingly obtained the plots in Fig. 2. When
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Fig. 3. Joint effect of prediction window ζ and node velocity v on RMSE of
channel state estimation. System parameters: ϕ = 0, Tp = 500 µs, and Rice
factor K = 40.

ϕ = 0, mean and variance of the error in the figure is 0.0080
and 5.1289 × 10−5, respectively. Similarly the moments can
also be calculated from the plot corresponding to ϕ = 0.1.

In this case, we are doing the prediction by taking both the
current channel state as well as the probability distribution
of channel variation into account. On the other hand, the
AR-based approach does the same by using a set of update
equations on the training data set. Thus, the AR-based ap-
proach relies solely on the training data set and not on the
statistical properties of the channel or its variation. This is
the reason behind significantly lower RMSE of the proposed
characterization. It may be noted further that Fig. 2. exhibits
an overall increasing trend of RMSE with ζ irrespective of the
approach, which is intuitive.

Lastly, we highlight that a W.S.S. scenario is considered in
this work which is considered in Fig. 2 plots as well, whereas
the study in [7] originally dealt with a non-stationary one.
The proposed characterization may or may not outperform
the characterization approach in [7] in a non-stationary set-
up. Therefore, we do not make any claim on the performance
of the proposed characterization in a non-stationary channel
setup; we keep it aside as a topic of future work.

Fig. 3 shows joint effect of ζ and v on the estimation error,
i.e., RMSE. It shows that, for a given ζ, RMSE increases with
v; for ζ = 40 slots, RMSE = 0.0148 and 0.1054, respectively
for v = 2.5 and 20 kmph. The reason behind this is attributed
to the decrease of correlation with increasing v, which is
captured by the fDTp product [30]. The figure also reaffirms
the observation made in Fig. 2 that RMSE increases with ζ
when v is constant; for v = 12.5 kmph, RMSE = 0.0152 and
0.1592, respectively for ζ = 10 and 110 slots. Note that the
error increases with increase in either of ζ or v, or both. We
exploit this property in Section V and propose an upper bound
ζ(max) as a function of the fading scenario.

Remark 11. ‘Node velocity’ v in the proposed characteri-
zation may give an impression that it holds only in mobile
scenarios. However, v does not necessarily imply mobile Tx
and/or Rx. It also applies to scenarios, where the Tx and
Rx nodes are static but the scatterers present along the path
are in motion [45]. Hence, in applications like IoT, where
nodes may be statically placed, scatterers could be the primary
reasons for Doppler effect. Thus the characterization applies

to scenarios even with static Tx and/or Rx in presence of
slow moving scatterers, like walking pedestrians or foliage
movement, which equate to highly correlated scenarios. In
fact, the system performance significantly improves in such
scenarios, as they represent v → 0 but v 6= 0, which will be
discussed in Section V.

IV. PERFORMANCE ANALYSIS OF PROPOSED GM
CHARACTERIZATION

The existing performance metrics, such as, outage proba-
bility and ergodic capacity are solely based on channel statis-
tics, which do not capture the effects of short-term channel
variation. In the other extreme, the conventional adaptive
communication strategies (ACS) rely on instantaneous channel
state in every transmission moment, i.e., time slot. Thus,
the ACS approach accounts for the short-term phenomena of
channel variation, but at the cost of high bandwidth and energy
consumption overhead.

In contrast to the above approaches we estimate channel
state in short-term basis without requiring feedback in every
slot. Accordingly, we define short-term outage probability and
short-term channel capacity. The essence of this ‘short-term’
channel characterization lies in exploiting the temporal cor-
relation present in the channel. Thus, the proposed approach
intelligently collects the dynamic CSI for an improved trade-
off between short-term capacity gain and the overheads.

A. Short-term Outage Probability
Outage probability (P out) is defined as the probability that

the received SNR Z at Rx falls below a certain specified
threshold Zth [35], i.e.,

P out = Pr {Z < Zth} =

∫ Zth

0

fZ(z)dz. (19)

We are interested in estimating the outage probability in
next ζ slots based on current Z(t), when Z(t) = Z0(< Zth).
This outage probability is different from the P out defined in
[35], as it incorporates the knowledge of Z(t) and it holds
only for the next ζ slots from the time instant t when Z(t)
was obtained. Hence we define short term outage probability
P (ST)

out (Z(t), ζ) as follows.
From Theorem 3, we know that fΩ(γ | Z(t) = Z0, ζ) is

the PDF of variation of Z for next ζ time slots given that
Z(t) = Z0 and accordingly we define P (ST)

out (Z(t) = Z0, ζ).
Hence from (18) and (19) we get

P (ST)
out (Z(t) = Z0, ζ) =

1

ζ

ζ∑
j=1

1

1− Φ
(
− Z0

σ̇Zj

) (20)

×
∫ Zth

0

1√
2πσ̇Zj

e
− (γ−Z0)2

2σ̇2
Zj dγ

=
1

ζ

ζ∑
j=1

Q
(
− Z0

σ̇Zj

)
−Q

(
Zth−Z0

σ̇Zj

)
1− Φ

(
− Z0

σ̇Zj

) ,

where Q(x) =
1√
2π

∫ ∞
x

e−
t2

2 dt. The importance of

P (ST)
out (Z(t), ζ) is that, unlike P out, it gives us an estimate of
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outage probability in next ζ slots when Z(t) = Z0(< Zth).
For instance if P (ST)

out (Z(t) = Z0, ζ) = ε, this implies that
when Z(t) = Z0, on average Z will remain below Zth in ε
fraction of the next ζ slots.

B. Short-term Channel Capacity

Analogous to short term outage probability, we introduce
the definition of short term channel capacity. Short term
channel capacity C(ST)(Z(t), ζ) is defined as the channel
capacity in the next ζ slots, which depends on the current
channel state Z(t). C(ST)(Z(t), ζ) is defined as follows.

Ergodic capacity [35] of a fading channel is defined as

C = EZ [log2 (1 + z)] =

∫ ∞
0

log2 (1 + z) fZ(z)dz, (21)

where Z = P |h|2
σ2
o

. Using Theorem 3, we define C(ST)(Z(t), ζ)

on the basis of current sensed SNR Z(t) = Z0 and its variation
over next ζ slots. Accordingly from (18) and (21) we get

C(ST)(Z(t) = Z0, ζ) =
1

ζ

ζ∑
j=1

1

1− Φ
(
− Z0

σ̇Zj

)
×
∫ ∞

0

log2(1 + γ)

× 1√
2πσ̇Zj

e
− (γ−Z0)2

2σ̇2
Zj dγ. (22)

It is important to note that C 6= C(ST), as C is a statistical
average and it does not depend on Z0 unlike C(ST). C(ST)

is especially useful in scenarios where we aim to estimate
the future behavior of the channel in the next few time slots
depending on the current channel state. As C(ST) is a function
of Z0, it is intuitive that C(ST) > C when Z0 � 1 and vice-
versa otherwise.

To the best of our knowledge, an exact solution of the
integral in (22) cannot be obtained in closed-form. In order to
obtain an approximate solution, we take help of Taylor series
expansion of log2(1 + γ) about the mean value of γ, i.e., Z0

to obtain an approximation [46]:

log2(1 + γ) ≈ 1

ln 2

[
ln(1 + Z0) +

γ − Z0

1 + Z0
−

1

2

(
γ − Z0

1 + Z0

)2

+O[(γ − Z0)2]

]
. (23)

Using (23) in (22), we get a tight approximation of
C(ST)(Z(t) = Z0, ζ) as shown in (24). RMSE is 0.0076 (very
close to 0) in Fig. 4(b) signifies excellent precision of the
proposed approximation.

Remark 12. We observe from the definition of P (ST)
out (Z(t), ζ)

and C(ST)(Z(t), ζ) that both of them are functions of time.
Hence their temporal averages for a given value of ζ are:

P (ST)
out (ζ) = lim

λ→∞

1

λ

λ∑
i=1

P (ST)
out (Z(ti), ζ) and (25)
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Fig. 4. Validation of Remark 12. System parameters: node velocity = 12
kmph, slot duration Tp = 500 µs, ϕ = 0, Zth = 0 dB, and ζ = 10.

C(ST)(ζ) = lim
λ→∞

1

λ

λ∑
i=1

C(ST)(Z(ti), ζ).

As the channel considered is wide-sense stationary, P (ST)
out

and C(ST) converge to their respective well-known statistical
averages, P out (expressed in (19)) and C (expressed in (21)).

Numerical Verification: In Fig. 4(a) it is observed that for a
given threshold Zth, P (ST)

out matches very closely with the P out

irrespective of the value of Rice factor K. Similarly, C(ST)

is compared with C in Fig. 4(b) to show the validation of
Remark 12.

With the help of these definitions we quantify the perfor-
mance of channel taking into consideration the aspect of its
temporal variation, which is discussed next.

Remark 13. ζ · Tp is a measure of inter-feedback duration
as it captures the time duration between two consecutive CSI
feedbacks from Rx in a particular fading scenario.

Unlike C, C(ST)(Z(t), ζ) takes into account the present
channel condition. Using C(ST)(Z(t), ζ) we can estimate the
amount of data that can be transferred from Tx to Rx in next
ζ slots with a fixed transmission power P , without requiring
to actually know Z in those ζ slots. Thus, the proposed GM
characterization allows to estimate the amount of data that can
be transferred in a certain time interval without any investment
in obtaining CSI during the entire interval. This in turn also
results in enhanced energy efficiency of the system.

C. Effect of Z(t) on Energy Efficiency

In order to estimate the channel, Tx sends a pilot signal.
The channel estimate is obtained as feedback from Rx. We
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Ĉ(ST)(Z(t) = Z0, ζ) ≈ 1

ζ ln 2

ζ∑
j=1

1

1− Φ
(
− Z0

σ̇Zj

)
×
∫ ∞

0

[
ln(1 + Z0)− 1

2

(
γ − Z0

1 + Z0

)2

+O[(γ − Z0)2]

]
× 1√

2πσ̇Zj
e
− (γ−Z0)2

2σ̇2
Zj dγ

≈ 1

ζ ln 2

ζ∑
j=1

1

1− Φ
(
− Z0

σ̇Zj

) [ln (1 + Z0)Q

(
− Z0

σ̇Zj

)
−

σ̇2
Zj

2
√
π (1 + Z0)

2 Γ

(
1.5,

Z2
0

2σ̇2
Zj

)]
. (24)

Here Γ(s, x) =

∫ ∞
x

ts−1e−tdt is the upper incomplete Gamma function.
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assume that the pilot signal duration Tf is very small compared
to Tp, i.e., Tf = δTp where δ � 1 [47]. Accordingly, the
achievable throughput for next ζ slots based on the proposed
characterization is:

Λprop(Z(t), ζ) =
ζTp − Tf
ζTp

C(ST)(Z(t), ζ)

=
ζ − δ
ζ

C(ST)(Z(t), ζ). (26)

If P is the transmission power and Ppilot is the power of
the pilot signal, then energy-efficiency η of the system (in
bits/Joule) with respect to the proposed characterization is:

η(ζ)(Z(t), ζ) =
Estimated data transfer capabilityD(ST)

Energy consumed to transfer the data

=
Λprop(Z(t), ζ)ζ

P [ζ − δ]Tp + 2PpilotTf
. (27)

Similarly we consider the case when CSI is required in
every slot. Accordingly the achievable throughput is:

Λext(Z(t)) =
Tp − Tf
Tp

log2 (1 + Z(t))

=(1− δ) log2 (1 + Z(t)) (28)

and the corresponding energy-efficiency is η(1)(Z(t)) =
Λext(Z(t))

P [1−δ]Tp+2PpilotTf
bits/Joule. It is to be noted that, as Tf = δTp,

energy efficiency η also varies with changing δ, when the
remaining parameters are constant.

Fig. 5 shows the variation of η against Z(t). As both
η(ζ) and η(1) take Z(t) into consideration, they are useful
in various applications where Z(t) plays a significant role.
We observe that though both of them increase proportionately
with Z(t), η(ζ) always exceeds η(1) by a monotonically
increasing margin. As it can be noted from the figure, the gap
consistently increases with increasing Z(t) and it reaches as
high as approximately 4 times over the per-slot feedback based
communication system. It is important to note from Fig. 5 that
the proposed characterization offers not only higher energy
efficiency, but also C(ST)(17, 20) is much higher compared
to C(ST)(0, 20). Lastly note that, though η corresponding to
Z(t) = Ẑ0 with ϕ = 0.1, 0.2 follows a similar upward
trend, unlike the other plots, they are not smooth in nature.
This lack of smoothness in the plot can be attributed to the
random nature of error term e in (13), i.e., e ∼ CN (0, 1),
which increases with increasing ϕ. This observation brings
out the advantage of the proposed GM characterization of
temporally-varying wireless channel, and hence we conclude
that the temporal channel variations can be exploited to reduce
channel sensing frequency, leading to a considerable gain in
energy efficiency of the communication system.

V. CHOICE OF OPTIMAL ζ

We defined C(ST)(Z(t), ζ) in Section IV-B, but we have
not yet defined its range of ζ for a given Z(t). Though it
appears that ζ can take any arbitrary positive integer value, it
is actually not the case.

A. The Need for an Optimal ζ

The proposed characterization exploits the temporal corre-
lation present in channel. Hence, ζ is dependent on the nature
of fading scenario as well as the application for which it is
being estimated, i.e., the error tolerance level et. This can be
understood from Fig. 6. In this context, we define error as:

Error ∆ζ =
|C(ST)

ana (Z(t),ζ)−C(ST)
sim (Z(t),ζ)|

C
(ST)
sim (Z(t),ζ)

· 100%.

Fig. 6 shows the variation of ∆ζ with ζ, where et = 5% is
considered as an example. The value of this error tolerance is
application specific. With respect to et we observe from Fig. 6
that allowable ζ(max) decreases with increasing node velocity
v, such that ∆ζ ≤ et for a given set of system parameters
Z(t), v, Tp,

P
σ2
o

, and K. From Fig. 6 we observe that, at v = 5
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kmph, ∆ζ for ζ = 60 slots is far below the chosen et = 5%,
whereas at v = 20 kmph, ζ is restricted to ζ(max) = 32 slots.
This physically means that ζ(max) is inversely proportional
to node velocity for a given et. Hence we conclude that the
choice of ζ cannot be arbitrary. Accordingly we propose an
upper bound ζ(max) as a function of the fading scenario.

We estimate ζ(max) based on an acceptable limit of tem-
poral correlation in between the samples. In other words, the
application context plays a critical role in determining ζ(max).
Hence the proposed characterization is termed as context-
aware characterization of the temporally varying channel.

In the following, we propose two approaches for estimation
of ζ(max), which are based on temporal correlation.

1) Correlation based Choice of ζ(max): In this sub-section,
we estimate ζ(max) based on the temporal correlation present
in the channel. From [30] we have, correlation coefficient ρ
for a given fD and Tp is given by:

ρ(ζ) = J0 (2πfD ζTp) , (29)

where J0(·) is Bessel function of first kind and of zeroth order
and ζTp is time in between samples under consideration.

We are interested in saving energy by optimally avoiding
unnecessary pilot signal transmission based on CSI feedback.
To this end, the number of slots between two pilot signal
transmissions is maximized. Hence ζ(max) is estimated in
a way that the correlation between two successive channel
samples separated by a time interval ζ(max)Tp seconds does
not fall below a user-defined acceptable reliability limit ρ(l),
i.e., ζ(max) = max

ρ(ζ)≥ρ(l)
{ζ}, for a given set of fD and Tp.

ρ(l) ∈ [0, 1] is a system parameter that depends on the
application at hand. It is an abstraction of the desired accuracy
of prediction. ρ(l)= 1 implies that absolutely no error is
allowed, and ρ(l)= 0 represents the other extreme. If ρ
between channel samples separated by ζ(max) time slots goes
below ρ(l), it implies that the previously sensed Z(t) is no
longer good for providing the minimum acceptable reliability.

However due to the oscillatory nature of J0(·), ρ(ζ) is not a
monotonically decreasing function of ζ. It may happen that we
obtain multiple values of ζ(max) for a particular ρ(l) in a given
fading scenario, which is not a practically feasible solution.
To obtain a reasonable solution, we consider J0(·) only upto
the point where its argument reaches the first zero. As J0(x)
reaches 0 for the first time at x = 2.4048, [0, 2.4048] now
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Fig. 7. Illustration of ρ based choice of ζ(max).

becomes our domain of interest, where J0(·) is monotonically
decreasing. Accordingly we replace J0(·) by a tight cosine
approximation as:

J0(x)
∆
= 0.32 + 0.68 cos(0.8565x) x ∈ [0, 2.4048]. (30)

It may be noted from Fig. 7(a) that the proposed analytical
approximation very closely follows J0(·) in [0, 2.4048]. The
RMSE value 0.0002 (very close to 0) and R-square statistics
value 0.9999 (very close to 1) signify goodness of the pro-
posed approximation. The authors in [48] had proposed the
following approximation in the same domain of interest:

J0(x)
∆
= 1− x2

4
+
x4

64
+ o(z4) x ∈ [0, 2.4048]. (31)

It can also be observed from Fig. 7(a) that (31) is a good
approximation of J0(·) in [0, 1.5], but not beyond. On the other
hand, the proposed approximation in (30) closely follows J0(·)
in the entire [0, 2.4048] range.

Using (29) and (30), we estimate ζ(max) for a given set of
fD and Tp as:

ζ(max) =

⌈
0.1858

fDTp
cos−1

(
ρ(l) − 0.32

0.68

)⌉
. (32)

Note that ζ(max) is not an independent parameter. It is a
function of fD, Tp, and ρ(l). As ρ(l) ∈ [0, 1], it is possible
to have very high values of ζ(max) only when we have
extremely small values of fDTp and as Tp > 0, asymptotically
ζ(max) → ∞ as fD → 0. This observation is intuitive also;
very small value of fDTp implies that the channel is varying
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at a very slow rate, i.e., it is a highly correlated scenario and
hence, we obtain a large value of ζ(max).

This has been explained in Fig. 7(b), which shows the
variation of ζ(max) with node velocity v for various levels
of desired accuracy, i.e., ρ(l). It is observed from the figure
that ζ(max) follows a decreasing trend with increase in v, i.e.,
as the channel changes from slowly-fading to fast fading. This
is because increasing v results in high fDTp product, i.e., the
channel is now less correlated than it was with lower v. Our
claim regarding the ζ(max) → ∞ scenario is also verified in
this figure, where we see that irrespective of ρ(l), ζ(max) shoots
up as v decreases, i.e., fD → 0.

It can also be observed from the figure that in case of lower
values of v, there is a considerable gap among the ζ(max) for
various ρ(l). For example, at v = 5 kmph, ζ(max) = 103 slots
for ρ(l) = 0.6 whereas ζ(max) = 49 slots for ρ(l) = 0.9. But
this gap gradually decreases as v increases. At v = 60 kmph,
ζ(max) = 9 slots for ρ(l) = 0.6, whereas ζ(max) = 5 slots
for ρ(l) = 0.9. It can be further observed from Fig. 7(b) that
for a given v, ζ(max) is higher for lower values of ρ(l). This
observation highlights the trade-off that exists in between the
accuracy of estimation denoted by higher value of ρ(l) and
number of time slots ζ(max) that can be effectively estimated;
the more accurate we are, lesser is the value of ζ(max).

2) Error of Estimate based Choice of ζ(max): Sometimes
we are not provided with ρ(l) but an acceptable standard
error of estimate threshold σ(l)

e is given. In such applications,
we estimate ζ(max) as discussed in this sub-section. The
corresponding analysis is presented in Appendix A.

B. Effect of Mobility on System Performance

We now discuss the effect of node velocity v on η. From
Fig. 8 it can be noted that η exhibits an overall decreasing trend
with v. It is observed that increase in v results in high fDTp,
which implies that the channel is relatively less correlated at
a higher fDTp. This decrease in correlation with increasing
v results in smaller ζ(max) for a given ρ(l). As a result, η
decreases with increasing v for a given ρ(l) or σ(l)

e .
It is also noted from Fig. 8 that higher Z(t) results in a

higher η at any particular v. For instance at v = 20 kmph with
ϕ = 0, we have η = 4.701×105, 6.654×105, and 8.772×105

bits/Joule for Z(t) = 8, 12, and 16 dB, respectively. Thus,
Fig. 8 in a way reinstates the point that was made in Fig. 5
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regarding the fact that the channel being in deep fade is not
equivalent to when it is in good state. Therefore, it is possible
to transfer a large amount of data with higher energy efficiency
when the channel is in good state than when it is not. Lastly,
the lack of smoothness corresponding to the ϕ 6= 0 scenario
has been explained earlier in Fig 5.

C. Trade-off between Optimal ζ and Energy Efficiency
It is important to note here that unlike ρ, ρ(l) is not an

independent parameter. While ρ denotes the correlation present
in the channel, ρ(l) is an application-dependent parameter as
defined by the user. ρ(l) is an abstraction of the minimum
required degree of accuracy in estimation. As noted in sections
V-A1 and V-A2 that a trade-off exists between quality of
estimation and ζ(max), there also exists a trade-off between
energy efficiency η and ρ(l).

From (27) we have η(max) =
Λprop(Z(t),ζ(max))ζ(max)

P [ζ(max)−δ]Tp+2PpilotTf
where

ζ(max) is calculated from (32) or (A-2) depending on the
respective availability of ρ(l) or σ(l)

e . Fig. 9 shows that for
a given set of system parameters, energy efficiency monoton-
ically decreases with increasing ρ(l).

It can be further observed from Fig. 9 that the rate of
decrease of η(max) with ρ(l) increases with increasing node
velocity. For ϕ = 0, we have ∂η(max)

∂ρ(l) = −1.3178 × 105

and −3.5156 × 105 corresponding to v = 5 and 20, kmph
respectively. The above observation implies that the correlation
in channel decreases with increasing v. As a result the inter-
feedback duration also decreases with increasing v for a given
ρ(l), and hence the trade-off. A similar variation of η against
σ

(l)
e can also be obtained. It is further interesting to note that

although the nature of plots remain same, the relative gap in
performance between the ϕ = 0 and ϕ 6= 0 scenarios show an
increasing trend with increasing ϕ, which is intuitive also.

Finally, as ζ denotes the number of components in the
proposed GM characterization, unlike the classical GM, it is
the application at hand and not any iterative algorithm that
determines the number of components of the GM distribution.

VI. EFFECT OF PROPOSED CHARACTERIZATION ON
ADAPTIVE COMMUNICATION SYSTEM

In this section we discuss the effect of the proposed char-
acterization on channel adaptive communication.
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= {8, 14} dB, and ρ(l) = 0.8.

Limited battery energy being one of the tightest constraints,
transmission power level control is important for maximizing
data throughput and node lifetime simultaneously. Hence we
invoke a power adaptive transmission strategy [49] based on
the proposed characterization that increases the overall energy
efficiency of the system.

Discrete set of transmission power levels P =
{P1, · · · , P|P|} is considered where P1 < P2 < · · · < P|P| at
Tx and | · | denotes the cardinality of P. A particular P is
chosen based on the received Z(t) estimate from Rx. Each
Z(t) is assigned to a region [Zj−1, Zj), j = 1, · · · , |P| with
Z0 = 0 and Z|P| = ∞. Boundaries Zj (j = 1, · · · , |P| − 1)
and |P| are chosen depending on the application; the better
we want to make use of channel, larger is the value of |P|,
and vice-versa.

Power level Pj is selected at Tx if Z(t) ∈ [Zj−1, Zj). Tx
then continues to transmit with Pj for the next ζ slots without
any further pilot signal transmission. Accordingly, the energy
efficiency η(max) is obtained for a given ρ(l) or σ(l)

e .
Fig. 10(a) shows the effect of the proposed characterization

in context of adaptive transmission power control. It can be
noted that, in terms of energy efficiency the proposed GM
characterization-based strategy offers a consistent gain of more
than 3.15 times over and above the per-slot feedback based
power control, irrespective of the value of Z(t). Sudden rise
in η are noted at Z(t) = 8 dB and Z(t) = 14 dB, which are
because these are the thresholds at which P changes.

From (27) we get η(ζ)(Z(t), ζ) =
Λprop(Z(t),ζ)ζ

P [ζ−δ]Tp+2PpilotTf
, from

(28) we get η(1)(Z(t)) = Λext(Z(t))
P [1−δ]Tp+2PpilotTf

, and pilot signal
duration Tf = δTp. Thus, the gain of the proposed char-
acterization is also dependent on δ. Therefore, although the
proposed characterization consistently offers a gain in terms of
energy efficiency, the gain margin depends on the pilot signal
duration. The shorter the pilot signal duration, the more is the
time for data transmission, and vice-versa.

The corresponding throughput performance plot in Fig.
10(b) demonstrates that the proposed transmission strategy
does not incur any loss in terms of throughput; we also observe
a consistent gap that exists between Λprop and Λext irrespective
of Z(t). Thus, for a baseline throughput performance, the
proposed characterization offers significant gain in energy ef-
ficiency, as it does not require pilot signal transmission in each
time slot. Lastly, we also observe the ϕ 6= 0 scenario, where
Λ follows the general trend, though in a rugged manner. This
behavior can be attributed to the randomness of e ∼ CN (0, 1),
which has been explained earlier in context of Fig. 5.

Unlike transmission power adaptive communication sys-
tem, when a rate-adaptive multi-level modulation based com-
munication system is used, the analytical relation (22) of
Cest(Z(t) = Z0, ζ) with Z(t) for a given ζ ceases to apply.
In this case the effective throughput depends on the assigned
modulation m, chosen based on Z(t). However, here also the
concept of ζ(max) helps to improve the energy efficiency. The
corresponding discussion is presented in Appendix B.

Significance of the proposed approach

Channel-aware resource allocation approaches in the exist-
ing literature [20]–[22] consider the wireless channel state
to be static over the coherence time duration tch = 0.423

fD
[50]. To this end, the study in [12] demonstrated that this
assumption is a good rule-of-thumb for systems that focus
on average performance, for example traditional cellular or
WiFi-type systems. However, in scenarios, where worst-case
performance guarantee is required, such as in URLLC, this
assumption falls short. At the same time, deciding transmission
strategy based on CSI feedback in every time slot involves
significant communication and energy consumption overheads,
as observed in Fig. 10(a). In this context, the definition of
ζ(max) serves the purpose; depending on the user-defined
acceptable reliability limit ρ(l) or standard error of estimate
σ

(l)
e , the inter-feedback interval ζ(max) is estimated to assess

the amount of data that can be transferred in this time interval
without any additional CSI feedback from the Rx.

Fig. 11 demonstrates the advantage of the proposed charac-
terization in terms effectively tracking the temporally-varying
channel. In this figure we calculate error ∆err(i) = Pact(i) −
Pest(i), where Pact(i) and Pest(i) respectively denote the actual
and estimated transmission power in the ith slot. For simplicity,
the following mapping is done: P = {−20,−10, 0} dBm
→ {1, 2, 3}, to calculate ∆err. ∆err = 0 implies correct choice
of transmission power in the ith slot. We observe from the
figure that ∆err 6= 0 over ∼ 13.4% of transmission slots in the
proposed characterization, whereas it is ∼ 38.8% in tch-based
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scheme. This justifies our claim, and also in a way it reaffirms
the claim in [12].

Lastly, from Fig. 9 we observe that higher ρ(l) results in
lower energy efficiency. At the same time, higher ρ(l) results in
better channel utilization, as ζ(max) decreases with increasing
ρ(l) (observed in Fig. 7(b)). Based on this trade-off, user
can specify the acceptable ρ(l) and accordingly ζ(max) is
obtained by using the proposed characterization. An analogous
argument can also be presented with σ(l)

e .

VII. CONCLUDING REMARKS

In this paper, we characterized the temporal variation of
the W.S.S wireless channel based on its current state. In
the proposed generalized model, the temporal variations of
channel is modeled as a finite GM distribution. We validated
the proposed model through analysis and extensive Monte-
Carlo simulations. The time interval over which this charac-
terization is done depends on the fading scenario as well as the
application at hand. Accordingly, we proposed an upper bound
on this time interval based on the fading scenario and the limit
of acceptable error in estimation. We noted that there exists
a non-trivial trade-off between this upper bound and accuracy
of the proposed channel characterization.

On the basis of the proposed characterization, we intro-
duced definitions for short term outage probability and short
term channel capacity that accurately capture the short-term
variations of the wireless channel. The convergence of these
definitions with the existing classical definitions of outage
probability and channel capacity was also shown. Results
demonstrated that, when the proposed characterization is used
in the context of channel adaptive communication, energy
efficiency is as high as 2.94 times over its nearest approach.

We believe that the proposed channel characterization will
provide a benchmark for characterizing the temporally varying
wireless channel in context of URLLC. We also believe that it
will be a yardstick for estimating the inter-feedback duration
for the realization of large amount of data transfer in low
power and energy-constrained scenarios like WSNs and IoT.

APPENDIX A
ERROR OF ESTIMATE BASED CHOICE OF ζ(max)

From [51] we define standard error of estimate σe in terms
of ζ as:

σe(ζ) = σ̇Zζ
√

1− ρ2(ζ), (A-1)

where σ̇2
Zζ

= ζσ̇2
Z1

. The smaller the value of σe(ζ), the better
is the estimate of ζ. Hence we can see that, for a given set of
fD, Tp, P

σ2
o

, and K, σe(ζ) is a function of the temporal spacing
ζ · Tp between the samples under consideration. It should be
noted here that, like ρ(l), σ(l)

e is also an application specific
parameter and it is given as input by the user, on the basis
of which corresponding ζ(max) is calculated. Like in Section
V-A1, here also we consider the domain of [0, 2.4048] to deal
with the oscillatory nature of J0(·). We obtain ζ(max) in a way
that σe(ζ(max)) does not go above an acceptable threshold σ(l)

e .
It can be seen from Fig. 7(a) that, ρ(ζ) decreases monoton-

ically in the range 0 ≤ ζ ≤ 0.3827
fDTp

for a given set of fD and
Tp. Further, for a given set of fD, Tp, P

σ2
o

, and Rice factor K,
σ̇Zζ is an increasing function of ζ. Hence we conclude that
for a given set of system parameters, σe(ζ) is a monotonically
increasing function of ζ in [0, 0.3827

fDTp
]. Taking into account the

monotonic nature of σe(ζ) in [0, 0.3827
fDTp

], we obtain ζ(max) for

a given σ(l)
e as:

(P1) : ζ(max) =

ζ
∣∣∣∣∣∣ argmin

0≤ζ≤ 0.3827
fDTp

[
σ̇Zζ

√
1− ρ2(ζ)− σ(l)

e

]2 .

(A-2)
Considering the nature of σ̇Zζ

√
1− ρ2(ζ) in [0, 0.3827

fDTp
], we

can observe that the objective function of (A-2) is unimodal in
this region with the minimum being at σ̇Zζ

√
1− ρ2(ζ) = σ

(l)
e .

Accordingly we propose Algorithm 1 using Golden section
based line search [52] to solve (A-2).

Algorithm 1 Algorithm to find ζ(max)

Require: fD , Tp, P
σ2
o

, Rician K factor, σ(l)
e , and ξ ≥ 0

Ensure: ζ(max)

1: Define ζlb = 0 and ζub =
⌈

0.3827
fDTp

⌉
2: Define r(ζ) =

[
σ̇Zζ

√
1 − ρ2(ζ) − σ

(l)
e

]2
3: Set a = 0
4: Calculate ζp = ζub − 0.618(ζub − ζlb)
5: Calculate ζq = ζlb + 0.618(ζub − ζlb)
6: Calculate r(ζp) and r(ζq)
7: Set ∆g = ζub − ζlb

8: while ∆g > ξ do
9: if r(ζp) ≤ r(ζq) then

10: Set ζub = ζq , ζq = ζp, and ζp = ζub−0.618(ζub−ζlb)
11: else
12: Set ζlbg = ζp, ζp = ζq , and ζq = ζlb + 0.618(ζub− ζlb)
13: end if
14: Set a = a+ 1
15: Calculate r(ζp) and r(ζq)
16: Set ∆g = ζub − ζlb

17: end while
18: if r(ζp) < r(ζq) then
19: Set ζ(max) = ζp
20: else
21: Set ζ(max) = ζq
22: end if

Convergence of Algorithm 1: The proposed algorithm es-
timates ζ(max) by reducing the search space [ζlb, ζub] in
successive iterations. Due to the unimodal nature of the
objective function of (P1), the reduced search space always
contains the optimal ζ. Each iteration reduces the search
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Fig. 12. Illustration of convergence of Algorithm 1.

space by a factor of 0.618. For golden section method it
is known that the algorithm terminates after N iterations if(
ζub − ζlb

)
0.618N ≤ ξ, where ξ is the tolerance level [52].

In other words, for a given set of ζub, ζlb, and ξ,

N ≤
ln
(

ξ
ζub−ζlb

)
ln(0.618)

≈ 2 ln

(
ζub − ζlb

ξ

)
. (A-3)

Fig. 12 shows the convergence of Algorithm 1 with increasing
iterations. It can be observed that the convergence is faster in
the initial stages as the gap between ζlb and ζub reduces very
sharply in the first few iterations.

From Fig. 12(a) it can be seen that ζ(max) is higher for lower
node velocity and vice-versa, which reaffirms the observation
on Fig. 7(b). Fig. 12(b) shows the dependence of ζ(max) on
σ

(l)
e ; ζ(max) increases with increase in σ

(l)
e and vice-versa.

This is also intuitive, i.e., we can estimate the channel state
for a large number of time slots if we increase the limit
of acceptable error. This shows that there exists a trade-off
between quality of estimation and ζ(max), which had also been
observed in Fig. 7(b).

APPENDIX B
RATE ADAPTATION

In adaptive modulation (AM), thresholds are chosen ac-
cording to the desired bit error rate (BER). BER is given by
Pb = a1 exp

(
− a2Z(t)
ma3−a4

)
, where a1, · · · , a4 are modulation

specific real constants and m is the size of the chosen con-
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Fig. 13. Effect of currently sensed SNR on AM. System parameters: node
velocity = 20 kmph, slot duration Tp = 500 µs, Rice factor K = 4, P = 0
dBm, Ppilot = 10 dBm, ρ(l) = 0.8, and Pb = 10−3.

stellation [35]. For example, for M-ary quadrature amplitude
modulation (M-QAM), a1 = 2, a2 = 1.5, a3 = 1, and a4 = 1.

By classical AM, we imply that the modulation scheme m
is changed in each time slot based on the regular CSI feed-
back. In contrast, the proposed adaptive modulation scheme
receives feedback after every ζ(max) slots, based on minimum
acceptable reliability limit ρ(l) or acceptable standard error of
estimate threshold σ

(l)
e . Modulation scheme is chosen based

on the received feedback and this chosen scheme is used for
next consecutive ζ(max) slots, after which a feedback is again
available at Tx from the Rx end.

Fig. 13 shows the effect of the proposed characterization on
adaptive modulation, where we illustrate our claim over the
following constellations: BPSK, 4−, 8−, 16−, and 32-QAM.
Fig. 13(a) shows that the proposed characterization does not
provide an appreciable gain in terms of data transferred in
ζ(max) slots with respect to the classical AM. But its advantage
can be observed from Fig. 13(b), which shows the energy
efficiency to be as high as nearly 1.6 times above the energy
efficiency obtained in AM irrespective of δ.
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