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Dilemma at RF Energy Harvesting Relay: Downlink
Energy Relaying or Uplink Information Transfer?

Deepak Mishra, Swades De, and Dilip Krishnaswamy

Abstract—Performance of RF powered communication net-
work is bottlenecked by short downlink energy transfer range
and doubly-near-far problem faced in uplink information trans-
fer to Hybrid Access Point (HAP). These problems can be
resolved by cooperation of an RF energy harvesting node R
present between HAP and RF energy harvesting information
source S. However, there lies a dilemma at R on whether to
transfer its harvested energy to S or to act as an information relay
for transferring its data to HAP in a two-hop fashion. This paper
resolves this dilemma at R by providing insights on its optimal
positions suited for either energy relaying (ER) or information
relaying (IR). It also investigates the possibilities of integrated
ER and IR along with the regions where neither ER nor IR
will be useful. In this regard, while considering Rician fading
channels and practical nonlinear RF energy harvesting model,
the expression for mean harvested dc power at S via energy
transfer from HAP and ER from R is first derived. The closed-
form outage probability expression is also derived for decode-
and-forward relaying with maximal-ratio-combining at HAP over
Rician channels. Using these expressions insights on optimal
relaying mode is obtained along with global-optimal utilization
of harvested energy at R for ER and IR to maximize the delay-
limited RF-powered throughput. Numerical results validate the
analysis and provide insights on the optimal relaying mode.

Index Terms—Integrated information and energy relaying,
practical RF energy harvesting model, Rician fading, outage
analysis, throughput maximization, generalized convexity

I. INTRODUCTION

Radio frequency (RF) energy transfer (ET) has drawn wide
recent attention due to its capability of providing controlled
energy replenishment of low-power wireless devices. Unlike
the inductive and magnetic resonant coupling based non-
radiative ET approaches, radiative RF-ET bestows benefits [2]
like relaxed node-alignment requirements, beamforming capa-
bility, and possibility of transmitting both energy and informa-
tion over the same signal. This has led to the emergence of two
attractive solutions for powering next generation networks: (a)
Wireless Powered Communication Network (WPCN) [3] and
(b) Simultaneous Wireless Information and Power Transfer
(SWIPT) [4]. In WPCN, uplink information transfer (IT) is
powered by downlink ET from Hybrid Access Point (HAP),
whereas in SWIPT both ET and IT occur in same direction.

Despite the merits of RF-ET, there are some bottlenecks in
its widespread usage. Major challenges [5] include wireless
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propagation and energy dissipation losses, low energy sen-
sitivity, low rectification efficiency at low input power, and
doubly-near-far problem [6] in WPCN. Therefore, investiga-
tion of new paradigms is needed for efficient WPCN operation.

A. Related Art

Various aspects of cooperative relaying have got recent
research attention [5]–[20] to overcome doubly-near-far pro-
blem [21] in WPCN and large difference between energy
and information sensitivities (−10 dBm versus −60 dBm)
in SWIPT. The authors in [5]–[10], [16]–[20] considered
energy harvesting relay where an energy constrained node uses
the harvested energy for cooperation. Optimal RF harvesting
energy relay placement was investigated in [5] for maximizing
the received power in two-hop RF-ET, both with and without
distributed beamforming. In [6], a nearby node to HAP was
considered to act as energy harvesting information relay for the
farther node. A harvest-then-cooperate protocol was proposed
in [7], where the relay node close to HAP harvests energy
during downlink ET from HAP and then uses this energy
for uplink information relaying (IR). The authors in [19]
investigated instantaneous and delay-constrained throughput
maximization for RF-powered full-duplex MIMO relay system
by designing receive and transmit beamformers while optimi-
zing the time-splitting parameter. A three-node RF-powered
relay system was studied in [20] to maximize the ergodic
throughput by optimizing the mode switching rule and transmit
power jointly under the data and energy causality constraints.

Different from [6], [7] which considered fixed relaying,
the approach in [8] dynamically decides whether the nearby
node should act like an information relay for far node or
not. Further in [9], the roles as source, destination, or relay,
for the nodes were dynamically decided. Optimal allocation
of harvested energy at relay, due to SWIPT from multiple
sources for forwarding data to their respective receivers, was
considered in [10]. In [16] a greedy protocol was proposed
for switching between energy harvesting and data relaying
to minimize outage probability in amplify-and-forward (AF)
energy harvesting relay network without direct link. In [17]
this work was extended to distributed multi-relay selection
with decode-and-forward (DF) two-hop IT. More recently, a
relay selection scheme, incorporating channel conditions and
battery status, was proposed in [18] to choose one among mul-
tiple AF energy harvesting relays for IT. Furthermore, energy
cooperation and sharing strategies have been proposed in [11],
[12] to overcome dynamics of ambient energy harvesting and
enable perpetual operation. In another set of works [13]–[15],
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Fig. 1: Network topology for the RF-powered integrated 2-hop full-
duplex energy relaying and half-duplex decode-and-forward IR.

relay-powered communications was considered, where energy-
sufficient relay transfers energy to RF harvesting nodes.

B. Motivation and Contributions

In recent studies, harvested energy at relay is either used for
energy relaying (ER) [5] or IR [6]–[10], [16]–[20]. Though
[13]–[15] studied tradeoff in ET and IR efficiency assuming
energy-rich relay, these works along with [11], [12] did not
investigate RF harvesting relay assisted ER possibilities. This
work fills this existing research gap. It studies optimal utiliza-
tion of harvested energy at RF-energy harvesting (EH) relay
for ER and/or IR to enhance the performance of two-hop RF-
powered delay-limited network with direct link availability.
Key contributions of this work are six-fold: (1) As shown in
Fig. 1, a novel system model is presented to investigate the per-
formance of RF-powered integrated information and Energy
Relaying (i2ER) in WPCN (Section II). (2) Mean harvested
energy due to full-duplex ER over Rician fading channels
with distributed beamforming is derived while considering
practical RF harvesting model (Sections III). (3) Closed-form
expressions for outage probability and normalized throughput
are obtained for half-duplex DF-IR over Rician channels with
Maximal Ratio Combining (MRC) (Section IV). (4) Analytical
insights on optimal mode selection policy at RF harvesting
relay are provided (Section V). (5) Global-optimal utilization
of harvested energy at EH relay is obtained by efficiently
solving the nonconvex delay-limited throughput maximization
problem (Section VI). (6) Numerical results validate the ana-
lysis and give insights on optimal harvested energy utilization
in ER and IR for varying relay positions (Section VII).

C. Novelty and Scope

To the best of our knowledge, this is the first work that
considers i2ER in WPCN and resolves the “dilemma” at RF
harvesting relay on whether to perform ER, IR, or i2ER by
jointly optimizing cooperation in ET and IT. We also present
novel analyses on full-duplex ER with distributed beamforming
and half-duplex DF-IR with MRC over Rician channels.

Results presented in this paper demonstrate the importance
of i2ER, because in static node deployment scenarios where
the relay position is fixed or the set of available routers are
known, mode selection (ER or IR) becomes critical. This work

providing insights on optimized mode of cooperation with
RF harvesting relay (for energy, information, or both) can be
extended to multi-node scenarios, allowing IR on one path and
ER on other for greater end-to-end efficiency depending on the
position of the relays. Energy beamforming [3] can also be ap-
plied over the proposed optimized cooperation for further en-
hancement of achievable gains. Though the widespread utility
of the proposed system architecture is constrained by the low
RF-ET range [2], [5], there are some practical applications that
can benefit from this proposal. These include low power EH
nodes in small cell networks, miniature RF-powered sensing
devices for indoor applications, and EH nodes in Internet-of-
Things. Furthermore, with the advancement in RF-EH circuits
technology [22], [23], this limited end-to-end RF-ET range
will be significantly increased due to improvement in both
RF-to-dc rectification efficiency and receive energy sensitivity.
Another attractive solution to improve the performance of
the proposed RF-powered i2ER is by implementing the full-
duplex IR. However this improvement comes at the expense
of implementing loopback interference suppression with the
help of sophisticated electronic schemes or spatial domain
precoding techniques that require perfect channel estimation.
So there is a need for low-cost energy-efficient full-duplex IR
techniques for RF-powered relaying systems.

II. SYSTEM MODEL

Here we present the i2ER system model that includes
transmission protocol, network topology, and wireless channel,
along with the energy consumption and RF harvesting models.

A. Integrated Information and Energy Relaying in WPCN

We consider RF-EH relay R assisted full-duplex two-hop
downlink ET to RF-EH information source S and DF half-
duplex uplink IT to HAP A (cf. Fig. 1). We assume that
A and S are composed of single omnidirectional antennas,
whereas R has two directional antennas; one pointing in the
direction of A – essentially for efficient EH at R and effective
IR from R-to-A, and other directed towards S for efficient
downlink ER and improving the quality of S-to-R uplink
IT. Although half-duplex IR can be conducted using a single
omnidirectional antenna at R, two directional antennas are
considered to minimize the dissipation losses in downlink
ER and uplink IR. Also, this helps in implementing two-
hop full-duplex ER because RF energy signals do not contain
any information to be lost during full-duplex operation. The
role of full-duplex relaying in ER phase is to ensure that R
can simultaneously harvest energy from A as well transfer
energy to S in the Nsth slot. Moreover, as the dimensions of
the directional and omnidirectional antennas are similar [24]
and the storage capacity of commercially available efficient
compact supercapacitors [25] is large enough to store the
harvested energy over multiple slots Ns, the form factor and
storage capability are not a concern in the proposed i2ER
architecture. The entire i2ER process can be divided into three
phases, as highlighted in Fig. 1 and Table I:
(1) RF-ET over Ns slots: Apart form single-hop ET from A

to R and S over Ns slots, last or (Ns)th slot of this phase
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TABLE I: Description of operations in RF-powered communication
with energy and information relaying possibility.
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also involves two-hop full-duplex ET from R to S using
βα fraction of energy harvested EhR at R over Ns slots.

(2) IT from S to A and R during (Ns + 1)th slot using its
energy harvested over Ns slots.

(3) IT from R to A in (Ns + 2)th slot using β (1− α)
fraction of harvested energy EhR at R.

Following the summary given in Table I, we note that the
four possible relaying modes are: no relaying (NR), ER, IR,
and i2ER. In NR (i.e., neither ER nor IR) mode, indicator
variable β is set to zero. β = 1 for other modes represents
that R uses α fraction of its harvested energy EhR for ER and
remaining fraction for IR. Thus α = 1 and α = 0 respectively
represent ER and IR scenarios, whereas 0<α< 1 represents
the i2ER mode. Here it is worth noting that, since the energy
harvested over a single slot is very low (as shown later in
Fig. 3), we have considered Ns > 1 slots for RF-ET because
it helps in incorporating the hardware limitations of RF-EH
communication [2], [5] while giving insights on the practically
realizable rate-constrained sustainable throughput performance
(cf. Section VII). Also, in order to have sufficient harvested
energy at R for efficient RF-ET to S, ER is considered only
in the Nsth slot. Further, due to the usage of two directional
antennas at R, the leaked energy from R in the unintended
direction, that could be recycled by its receiver, is neglected.

B. Network Topology

To avoid blocking of direct ET and IT paths between A
and S, we consider parallel topology [5] for relay placement.
Considering static node deployment, A and S are respecti-
vely located on Euclidean plane with coordinates (0, 0) and
(dAS , 0). Here dAS is the distance between A and S. R is
positioned at

(
xR , yR0

)
, where yR0

is the minimum non-
blocking distance [5] from Line-of-Sight (LoS) path between
A and S. However, it is worth mentioning that the proposed
i2ER model and the analysis hold for any arbitrary relay
placement topology ensuring the availability of unaffected
direct link between A and S, e.g., elliptical topology [13].

C. Channel Model

All the links are considered independent and experience
flat quasi-static Rician block fading [13], where the average
channel power gains

∣∣hij ∣∣2 = E
[∣∣hij ∣∣2] =

GiGj

(dij )
n

(
λ
4π

)2
,

∀i, j = {A,R,S}. Here Gi and Gj represent antenna gain
for transmitting node i and receiving node j; λ is the wa-
velength of transmitted RF signal; n is path loss exponent;

d
ij

corresponds to distance between nodes i and j. Rician
channel model helps in incorporating the effect of strong LoS
component in RF-ET over short range IT links. Rician fading
also includes Rayleigh fading [6]–[10] as its special case. To
reduce signalling overhead at energy-constrained R and S,
we assume that knowledge about statistics of channel state
information (CSI), instead of instantaneous CSI, for all links
is available at A via pilot signals received from R and S.

D. Energy Consumption and RF Harvesting Model

We assume that S uses its entire harvested energy for IT. So
with unit slot duration T = 1 s, energy or power consumption
at S during IT is: PtS + P tx

con, where P tx
con is static power

consumption independent of transmit power PtS . Generally
P tx

con ≈ 0 in cooperative WPCN and SWIPT [6]–[10]. We note
that RF energy reception does not consume any power [2], [5].
The consumption at R for IR is accounted as [26, Table I]:
Erx

con + R0E
rx
bit, where Erx

con is static consumption and R0E
rx
bit

is consumption in reception and decoding of R0 bits.
The harvested dc power Ph is a nonlinear function of

received RF power Pr [5]. To this end, we present a piecewise
linear approximation for establishing a relationship between
Ph and Pr using a piecewise linear function L (·). Mathema-
tically, Ph = L (Pr) can be defined as:

Ph ,


0, Pr < Pth1 ,

MiPr + Ci, Pr ∈
[
Pthi ,Pthi+1

]
,∀ i=1, .., N,

Not applicable, Pr > PthN+1
,

(1)

where Pth = {Pthi | 1≤ i≤N+1} mW are thresholds on Pr
that define the boundaries for N linear pieces with slopeM =
{Mi | 1 ≤ i ≤ N} and intercept C = {Ci | 1 ≤ i ≤ N} mW.

We have used the above approximation L (·) because this
simple linear relationship between Pr and Ph helps in gaining
insights on global-optimal harvested energy utilization and
proving conditional-unimodality of throughput maximization
problem (P1) in α (cf. Section VI).

III. DOWNLINK RF ENERGY TRANSFER AND ENERGY
RELAYING OVER RICIAN CHANNELS

The energy signals YAR and YAS received respectively at
R and S in one slot of ET from A are given by:

YAN = XeA
√
PtA |hAN | e−ιΘAN +ℵN , ∀N = {R,S} , (2)

where XeA is the zero mean and unit variance energy signal
transmitted by A, and PtA is the transmit power of A. |hij |
and Θij =

(
2πdij
λ − φij

)
respectively represent the amplitude

and phase of the Rician channel fading coefficient for the
link between node i and node j, where i, j = {A,R,S}.
Here 2πdij

λ represents the phase difference due to free space
path delay and φij represents the sum of all other phases that
include phase weights introduced for synchronization, errors
due to the local oscillator variations, excess path phase from
obstacles, etc. [27]. Lastly, ℵi represents zero mean additive
white Gaussian noise with variance σ2 as received at node i.
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Using (2) and ignoring EH from noise power [6]–[15], the
received power at R and S in each slot due to RF-ET from
A is given by (3) where † denotes the complex conjugate.

PrAN =
∣∣∣(YAN ) (YAN )

†
∣∣∣ = PtA |hAN |2 , ∀N = {R,S} . (3)

As the received powers PrAS and PrAR at S and R
involve the square of Rician distributed |hAN |, they fol-
low noncentral-χ2 distribution with respective Rice fac-

tors and means as
(
KAS , µPAS =

PtAGAGS

(dAS )
n

(
λ
4π

)2)
and(

KAR , µPAR =
PtAGAGR

(dAR)
n

(
λ
4π

)2)
. We next discuss the basic

probabilistic measures for the received power over Rician
channels and then use them for deriving the mean harvested
energy at S due to RF-ET from A, both with and without ER.

A. Basic Properties of Rician Fading Channels

For Rician fading, the channel power gains follow
noncentral-χ2 distribution with two degrees of freedom. Thus,
the probability density function (PDF) fPr of received power
Pr, ∀x ≥ 0, is given by:

fPr (x,K, µP ) =
e
− (K+1)x

µP
−K

µP (K + 1)−1
I0

(
2

√
K(K + 1)x

µP

)
, (4)

where K is Rice factor, µP is mean received power, and Im (·)
is the modified Bessel function of the first kind with order m.
The Cumulative Distribution Function (CDF) FPr of Pr is:

FPr (x,K, µP ) = 1−Q1

(√
2K,

√
2(K + 1)x/µP

)
, (5)

where Q1 (·, ·) is first order Marcum Q-function [28]. Moment
generating function (MGF) ΦPr of Pr can be obtained as:

ΦPr (ν,K, µP )
(a)
=

(
K + 1

K − ινµP + 1

)
e

ιKνµP
K−ινµP+1

(b)
=

(
K + 1

K − ινµP + 1

)
e

K(K+1)
K−ινµP+1−K . (6)

Here (a) is obtained by using [29, eq. (2.17)] and (b) is
obtained after a rearrangement in (a).

B. Single-Hop RF-ET from A to S and R
First we obtain mean harvested power PhAS at S and PhAR

at R in each slot dedicated for RF-ET from A. Using Ph =
L (Pr) as defined in (1) along with PDF fPr and CDF FPr
of received power Pr defined in (4) and (5), the PDF fPh of
harvested dc power Ph is obtained as:

fPh (x,K, µP ) ,

1
Mj

fPr

(
x−Cj
Mj

,K, µP

)
FPr

(
PthN+1

)
− FPr (Pth1)

, (7)

where x satisfies Pthj ≤ x−Cj
Mj
≤ Pthj+1

, ∀j ∈ 1, . . . , N . Thus,
using (7), the mean harvested dc powers PhAN where N =
{R,S} are derived below:

PhAN = E [PhAN ] =
∞∫
0

x fPhAN

(
x,KAN , µPAN

)
dx

=
N∑
j=1

MjPthj+1
+Cj∫

MjPthj+Cj

x (KAN+1)e
−

(KAN +1)(x−Cj)
MjµPAN

−KAN

MjµPAN

×
I0

2

√
KAN (KAN +1)(x−Cj)

MjµPAN


FPrAN (PthN+1)−FPrAN (Pth1)

dx

(c)
=
∞∑
k=0

N∑
j=1

MjPthj+1
+Cj∫

MjPthj+Cj

x e
−

(KAN +1)(x−Cj)
MjµPAN

−KAN(
MjµPAN

)k+1
(k!)2

× (KAN + 1) [KAN (KAN + 1) (x− Cj)]k
FPrAN

(
PthN+1

)
− FPrAN (Pth1)

dx

=
∞∑
k=0

N∑
j=1

e−KAN (KAN )
k
[gN ,j(Pthj )−gN ,j(Pthj+1)]

(KAN+1)(k!)2[FPrAN (PthN+1)−FPrAN (Pth1)]
,

(8)

where gN ,j
(
Pthj

)
, Cj (KAN + 1) Γ

(
k + 1,

(KAN+1)Pthj
µPAN

)
+

MjµPN Γ

(
k + 2,

(KAN+1)Pthj
µPAN

)
. Each term in Taylor series

expansion of I0 (·) used in (c) can be upper bounded as:(
KAN (KAN +1)(x−Cj)

MjµPAN

)k
(k!)2

(d)

/
(4KAN (KAN+1))

k

(k!)2

(e)

≤

(
2 e (KAN +1)

k

)2k

2πk ≤
(

2 e (KAN+1)
k

)2k

. (9)

Here (d) is obtained by knowing that generally (x− Cj) ≤
4MjµPAN , as from (5) Pr (Pr > 4µP ) < 0.009, ∀K ≥ 1, and
(e) is obtained using the Stirling’s approximation [30]: j! ≈√

2π e−j jj+
1
2 . From (9) we note that the contribution of hig-

her order terms k > ln
(

1
ε

) [
2W0W0W0

(
log( 1

ε )
4e(KAN+1)

)]−1

is very

less than ε, where ε� 1 and W0W0W0 (x) is the Lambert function
(principal branch) [31]. However, in general for high Rice
factor KAN ≥ 10, even considering only first k = e (KAN+1)
summands provides a very tight match to the infinite series

because the product term
x (KAN+1)
MjµPAN

e−KAN e
− (KAN +1)(x−Cj)

MjµPAN

decays very fast with increasing KAN . This has been nu-
merically validated later in Fig. 3 where (8) is shown to be
equivalent to the sum of first 30 summands.

So, with T = 1 s as slot duration, mean harvested energy
EhR at R via RF-ET from A over Ns slots is: EhR ,
PhARNs. Similarly for NR and IR (i.e., no ER modes), the
mean harvested energy at S is: EnoER

hS
, PhASNs. However

for ER and i2ER modes, mean harvested energy at S via single
hop ET from A over Ns−1 slots is: ENs−1

hS
, PhAS (Ns − 1).

Next we find energy harvested at S, via two-hop ET from R,
in the last slot of RF-ET phase in ER and i2ER modes.

C. Mean Energy Harvested in Nsth Slot due to Two-Hop ER

The received energy signal YRS at S in the Nsth slot due
to ER from R is given by:

YRS = XeR
√
βαPtR |hRS | e−ιΘRS + ℵS , (10)
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where XeR is the zero mean, unit variance energy signal
transmitted byR using its energy harvested EhR over Ns slots
and PtR is the transmit power of R. β is indicator variable for
relaying with α as fraction of EhR allocated for ER. |hRS | and
ΘRS =

(
2πdRS
λ − φRS

)
respectively represent the amplitude

and phase of Rician fading coefficient for R-to-S link. So, we
note that if ER takes place from R to S , i.e., α > 0, then S
receives two energy signals YAS and YRS in the Nsth slot and
the received power at S in the Nsth slot is different from (3).
Thus using (3) and (10), the random received power P2hop

rS at
S in (Ns)th slot of ER phase, due to vector addition of energy
signals received from A and R, is given by [5, eq. (14)]:

P2hop
rS =

∣∣∣(YAS + YRS ) (YAS + YRS )
†
∣∣∣ = |YAS |2 + |YRS |2

+ 2 |YAS | |YRS |
∣∣∣e−ι(ΘAS−ΘRS )

∣∣∣ = PrAS + βαPrRS

+ 2
√
PrASβαPrRS e−ψ

2
cos

(
2π (dAS − dRS )

λ

)
, (11)

where ψ2 is the root mean square phase error term incorpora-
ting the errors due to the local oscillator variations, excess path
phase from obstacles, etc. [27]. ψ2 is in radians and e−ψ

2 is
unit-less. Here vector addition of RF signals of same frequency
received from A and R is considered because these energy
waves can combine constructive or destructively depending on
their respective in-phase or out-of-phase addition [5]. So, mean
received power P2hop

rS = E
[
P2hop
rS

]
, obtained using linearity of

expectation and independence of PrAS and PrRS , is:

P2hop
rS = E [PrAS ] + βαE [PrRS ] + 2

√
βαE

[√
PrAS

]
×E

[√
PrRS

]
e−ψ

2
cos

(
2π (dAS−dRS )

λ

)
= µPAS+βαµPRS

+ 2
√
βα µ√

PAS
µ√
PRS

e−ψ
2
cos

(
2π (dAS − dRS )

λ

)
, (12)

where µPRS ,
(EhR+EiR)GtRGS

(dRS )
n

(
λ
4π

)2
with µPAS =

PtAGAGS

(dAS )
n

(
λ
4π

)2
and EhR as defined in Section III-B. Here

EiR is the unused harvested energy which is available as the
residual or initial energy at R when NR mode was selected
in previous transmission block. The accumulated energy EiR
is zero when any other relaying mode is chosen. µ√

PAS
and

µ√
PRS

in (12) are respectively obtained by substituting µPAS
and µPrRS in place of µP in (13) providing E

[√Pr].
µ√Pr , e−

K
2

2

√
πµP
K+1

[
(K + 1) I0

(
K
2

)
+K I1

(
K
2

)]
. (13)

The above expression is obtained by finding the mean of
square-root of random variable Pr following noncentral-χ2

distribution with two degrees of freedom.
Using (12) and (13), the mean harvested power at S due to

ER in last slot of RF-ET phase is given by P2hop
hS

= L
(
P2hop
rS

)
.

The total energy harvested at S in Ns slots for ER and i2ER
modes is: EER

hStot
= ENs−1

hS
+ P2hop

hS
. For NR and IR, P2hop

hS
=

PhAS , which implies that EnoER
hS

= PhASNs.

IV. DF RELAY ASSISTED COMMUNICATION OVER RICIAN
CHANNELS WITH DIRECT LINK

For the RF-powered IT with T = 1 s, the transmit powers
PtR = EuhR+EiR and PtS = EuhS ofR and S depend on their

usable harvested energies EuhR = β
[

(1− α)PhARNs − P tx
con

−Erx
con − R0E

rx
bit

]+
and EuhS =

[
EER
hStot
− P tx

con

]+
for IT, as

discussed in Sections II-D and III. Here [x]
+

= max {0, x}.
With PtS as transmit power of S and XiS as zero mean and
unit variance information signal, the received signals at R and
A due to uplink IT from S in (Ns + 1)th are:

YSN = XiS
√
PtS |hSN | e−ιΘSN + ℵN , ∀N = {A,R} . (14)

From the received information symbol YSR , R forwards the
decoded zero mean, unit power signal X̂iS to A using its
harvested energy with transmit power PtR in a two-hop half-
duplex fashion in the (Ns + 2) th slot. The RF signal, thus
received at A is given by:

YRA = X̂iS
√
PtR |hRA | e−ιΘRA + ℵA . (15)

For Rician fading channel model, the instantaneous signal-to-
noise ratio (SNR) γ = Pr

σ2 follows the weighted noncentral-χ2

distribution with two degrees of freedom. Using (14) and (15),
the received SNRs γSR , γRA , and γSA of S-to-R, R-to-A, S-
to-A links, respectively, are given by:

γN1N2
=
PrN1N2

σ2
=
PtN1

σ2

∣∣hN1N2

∣∣2 , (16)

∀ (N1,N2) = {(S,R) , (R,A) , (S,A)} . Due to the availabi-
lity of the direct link and MRC of received signals at A, the
received SNR at A involves the sum of γSA and γRA . Next we
derive the distribution of this sum to obtain the closed-form
expressions for outage probability and normalized throughput
at A due to IT from S using harvested energy.

A. Sum of Two Weighted Noncentral-χ2 Random Variables

The distribution of sum of two positive weighted noncentral-
χ2 random variables can be obtained in terms of Laguerre
expansions [32, eq. (3.5)]. However, due to the involvement of
complicated recursions in PDF and CDF expressions, its usage
has been limited and an integral definition was used in [13].
Here, we present simple expressions for PDF and CDF of this
sum by using series expansion of exponential function. The
PDF fPr1+Pr2 of sum of two positive weighted noncentral-
χ2 random variables Pr1 and Pr2 having respective Rice factor
and mean as

(
K1, µP1

)
and

(
K2, µP2

)
is given by:

fPr1+Pr2

(
x,K1, µP1

,K2, µP2

)
=

1

2π

∫ ∞
−∞

e−ινx ΦPr1
(
ν,K1, µP1

)
ΦPr2

(
ν,K2, µP2

)
dν

(f)
=

1

2π

∞∫
−∞

∞∑
j=0

∞∑
k=0

(
K1(K1+1)

K1−ινµP1
+1

)j+1(
K2(K2+1)

K2−ινµP2
+1

)k+1

dν

j! k!K1K2 eK1+K2+ινx

(g)
=

∞∑
j=0

∞∑
k=0

(
K1(K1 + 1)

µP1

)j+1(
K2(K2 + 1)

µP2

)k+1

xj+k+1
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×
1F1

(
j + 1; j + k + 2;

(
K2+1
µP2

− K1+1
µP1

)
x

)
K1K2 j! k! Γ(j + k + 2) e

K1+
(K2+1)x
µP2

+K2

, (17)

where (f) is obtained by substituting series expansion of

ex =

∞∑
k=0

xk

k!
in (6). (g) is obtained by using a readily available

result given by [28, eq. (3.384.7)] in (f). 1F1 (a; b;x) =

Γ(b)
1∫
0

ext ta−1(1−t)b−a−1dt

Γ(b−a)Γ(a) =

∞∑
k=0

(a)k x
k

(b)k k!
is the confluent hy-

pergeometric function of the first kind [28], and (a)k, (b)k are
the Pochhammer symbols defined as: (a)k = Γ(a+k)

Γ(a) . Γ (x) =
∞∫
0

tx−1e−tdt is the gamma function. As e−Ki
∣∣∣∣e Ki(Ki+1)
Ki−ινµPi

+1

∣∣∣∣ <
1 ∀i = {1, 2}, e

Ki(Ki+1)
Ki−ινµPi

+1−Ki and e−Ki

j!

(
Ki(Ki+1)

Ki−ινµPi+1

)j
are integrable, and we can swap the integration and double
summation [30, Theorem 16.7] in (f) to obtain the result
given by (17). Further, the Lagrange remainder Rj in j-
term finite Taylor series approximation of exponential function

e
Ki(Ki+1)

Ki−ινµPi
+1−Ki with z∈

(
0, Ki(Ki+1)

Ki−ινµPi+1

)
is given by:

|Rj | = e−Ki

∣∣∣∣∣ ez

(j+1)!

(
Ki(Ki+1)

Ki−ινµPi+1

)j+1
∣∣∣∣∣

(h1)
< (Ki)

j+1

(j+1)!

(h2)

≤ (eKi)
j+1

√
2π(j+1)j+1+1

2

(h3)
<
(

eKi
j+1

)j+1

, (18)

where (h1) is obtained by using z< Ki(Ki+1)
Ki−ινµPi+1 and

(
νµPi

)2
> 0; (h2) is obtained using the Stirling’s approximation [30]:
j! ≈

√
2π e−j jj+

1
2 ; and (h3) holds as

√
2πj > 1. Using (18),

the minimum numbers of terms j∗ to ensure that the Lagrange
remainder Rj∗ after considering j∗ terms is less than ε, i.e.,

|Rj∗ | < ε, is given by: j∗ ≥ log
(

1
ε

) [
W0W0W0

(
log( 1

ε )
eKi

)]−1

− 1.

To gain further insight, we note that for high Rice factor values
Ki ≥ 10, j∗ ≈ eKi = 2.72Ki.

PDF of Pr1 +Pr2 for Rayleigh fading case (K1 = K2 = 0)
can be obtained in simple form from (17) by considering single
term j = k = 0 in double summation with K1,K2 → 0:

f Ray
Pr1+Pr2

(
x, µP1

, µP2

)
=

e
− x
µP1 − e

− x
µP2

µP1
− µP2

, ∀x ≥ 0. (19)

The CDF of Pr1 + Pr2 , obtained using series representation

of 1F1 (a; b;x) =
∞∑
i=0

(a)ix
i

(b)ii!
in (17), is given by:

FPr1+Pr2

(
x,K1, µP1

,K2, µP2

)
=

∞∑
i=0

∞∑
j=0

∞∑
k=0

Kj
1K

k
2 (j + 1)i

eK1+K2

×
(
K1 + 1

µP1

)j+1(
K2 + 1

µP2

)−i−j−1(
K2 + 1

µP2

− K1 + 1

µP1

)i

×

[
Γ(i+ j + k + 2)− Γ

(
i+ j + k + 2, (K2+1)x

µP2

)]
(j + k + 2)i i! j! k! Γ(j + k + 2)

. (20)

Γ (a, x) =
∫∞
x
ta−1e−tdt is upper incomplete gamma

function. As with a = j + 1 < j + k + 2 = b, (a)ix
i

(b)ii!
≤ xi

i! ,
we note that j∗ for the Lagrange remainder Rj∗ in the Taylor
series expansion of 1F1 (a; b;x) to be less than ε, is lesser than
in case of Lagrange remainder in the Taylor series expansion
of exponential function e (x). Hence, although (20) involves
three series, each of the three infinite sum-terms converge very
quickly. Also we show later in Fig. 4 that practically this CDF
reduces to a finite sum with only 30 summands in each series.

Similarly using (19), the expression for CDF of Pr1 + Pr2
for Rayleigh fading channels is:

F Ray
Pr1+Pr2

(
x, µP1

, µP2

)
= 1−

µP1
e
− x
µP1 − µP2

e
− x
µP2

µP1
− µP2

. (21)

Using (19) and (21), the i2ER performance over Rayleigh
fading channels can be investigated.

B. Outage Analysis for RF-powered DF-IR with MRC

The outage probability pout is the probability that the data
rate received at A during IT (and IR) phase (of duration 1 or
2 slots depending on relaying mode) falls below a spectral
efficiency threshold R0 bits/sec/Hz or bps/Hz. Considering
half-duplex DF-IT from S to A via R with MRC at A due to
direct link availability, the outage probability pIR

out for IR or
i2ER over the Rician channels is given by:

pIR
out

(i1)
= Pr

(
1

2
log2 (1 + min {γSR , γRA + γSA}) < R0

)
= Pr

(
min {γSR , γRA + γSA} < 22R0 − 1

)
= 1− Pr

(
γSR > 22R0 − 1

)
Pr
(
γRA + γSA > 22R0 − 1

)
(i2)
= 1−

[
1− FPrSR

(
22R0 − 1,KSR ,

µPSR
σ2

)] [
1−

FPrRA+PrSA

(
22R0 − 1,KRA ,

µPRA
σ2

,KSA ,
µPSA
σ2

) ]
,

(22)

where (i1) is due to half-duplex DF-IR with MRC [13]. (i2) is
obtained using (16) and fact that γN1,N2

follows noncentral-χ2

distribution with two degrees of freedom, Rice factor KN1N2
,

and mean
µPN1N2

σ2 =
PtN1

GN1
GN2(

dN1N2

)n
σ2

(
λ
4π

)2
, ∀ (N1,N2) =

{(S,R) , (R,A) , (S,A)}. So pIR
out in (22) can be obtained

in closed-form by using CDFs defined in (5) and (20) with
appropriate arguments as mentioned in (22). Also, using (21)
along with K = 0 in (5) and (22), the outage probability
pIR,Ray
out for IR over Rayleigh fading channels is given by:

pIR,Ray
out = 1− 1

µPRA − µPSA

[
µPRA e

−(22R0−1)
(

σ2

µPRA
+ σ2

µPSR

)

− µPSA e
−(22R0−1)

(
σ2

µPSA
+ σ2

µPSR

)]
. (23)

Further, for no IR cases, i.e., NR and ER modes, pout = pnoIR
out ,

obtained using (5), is defined below:

pnoIR
out = 1−Q1

(√
2KSA ,

√
2(KSA+1)(2R0−1)σ2

µPSA

)
. (24)
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Start

Decision II

One-hop IT

Two-hop IR

NR mode

ER mode

IR mode

i2ER mode
(ER or not?)

Decision II
(ER or not?)

Decision I
(IR or not?) Yes

Yes

Yes

No

No

No

Fig. 2: Decision tree for optimal relaying mode selection policy.

C. Achievable Normalized Throughput in RF-powered i2ER

Normalized throughput τ is the amount of successfully
transmitted data per unit time in each communication slot.
Considering a delay-limited scenario with rate constraint
(outage threshold) of R0 bps/Hz at A for IT phase of 1 or
2 slots (Table I), τ for different relaying modes is:

τ ,


R0(1−pnoIR

out)
Ns+1 , NR (β = 0) and ER (β = α = 1)

2R0(1−pIR
out)

Ns+2 , IR (β = 1, α = 0) and i2ER (β = 1).
(25)

V. OPTIMAL MODE SELECTION AT RF-EH RELAY

We now discuss the insights on which mode to choose
among NR, ER, IR, and i2ER. This optimal mode selection
policy for efficient outage performance basically involves two
main decision making: (i) Two-hop IT with IR or single-hop
IT without IR (Section V-B), and (ii) RF-powered S-to-A IT
with ER or without ER (Section V-A). Fig. 2 summarizes
the decision making process in the optimal relaying mode
selection policy. Subsequently, we derive conditions for the
improved performance of cooperative ER, IR, and i2ER modes
over non-cooperative NR mode.

A. Feasibility of Energy Relaying (ER) Mode

First we derive conditions for improved performance of ER
over NR. ER mode is useful when the transmit power PtS
of S, based on its harvested energy EER

hStot
from A and R

jointly, is more than the harvested energy EnoER
hS

from A alone,
i.e., without ER. Knowing EnoER

hS
= PhASNs and PhAS ≈

L
(
µPAS

)
, EER

hStot
defined in Section III-C can be rewritten as:

EER
hStot

=ENs−1
hS

+ P2hop
hS

= PhAS (Ns − 1) +

L
(
µPAS + βαµPRS + µ0

√
βαµPAS µPRS

)
, (26)

where µ0 , cos
(

2π(dAS−dRS )
λ

)[
(K + 1) I0

(
K
2

)
+K I1

(
K
2

)]2
×πe−K−ψ

2

2(K+1) . Using (26) and discussion in Sections III-C
and IV-B, PtS using harvested energy EER

hStot
over Ns slots is:

PtS = EER
hStot
−P tx

con = PhAS (Ns−1)+Mj

(
µPAS + βαµPRS

+ µ0

√
βαµPAS µPRS

)
+ Cj − P tx

con,∀j ∈
{

(1 ≤ j ≤ N)∧(
Pthj ≤µPAS+βαµPRS+µ0

√
βαµPAS µPRS ≤Pthj+1

)}
.(27)

Next we present an important result on utility of ER mode
based on the variation of α.

Lemma 1: With EER
hStot

> P tx
con, the transmit power PtS of

S based on its harvested energy EER
hStot

via RF-ET from A
and ER from R is either: (i) concave increasing function of
α when energy signals received at S in the Nsth slot from A
and R add up constructively, or (ii) strictly-convex in α when
energy signals from A and R lead to destructive interference.

Proof: First of all we note that, the value of µ0 containing
cosine term cos (·) represents constructive or destructive inter-
ference of energy signals from A and R. µ0 > 0 always leads
to constructive interference, i.e., EER

hStot
> EnoER

hStot
. However if

µ0 < 0, then received energy signals at S in Nsth slot may
add up destructively to cause EER

hStot
≤ EnoER

hStot
.

As ∂2PtS
∂α2 = −

µ0Mj

√
αβµPAS

µPRS
4α2 , we can observe that

PtS is concave in α if µ0 ≥ 0; otherwise it is a con-
vex function of α ∀µ0 < 0. We also note that, since
∂PtS
∂α = 1

2βµPRSMj

(
µ0µPAS√

αβµPAS
µPRS

+2
)

, PtS is strictly

increasing function of α ∀µ0 ≥ 0 ∧ β = 1. On other
hand, if µ0 < 0, a unique feasible critical point αgER ={
α
∣∣∣ (∂PtS∂α = 0

)
∧ (0 ≤ α ≤ 1)

}
is defined as: αgER ,

µ2
0µPAS

4βµPRS
. Thus, for µ0 < 0 if α ≤ αgER , then PtS is a

decreasing function of α. However when 4αgER < α ≤ 1,
PtS is an increasing function of α and even for µ0 < 0,
L
(
µPAS + βαµPRS + µ0

√
βαµPAS µPRS

)
> PhAS , which

leads to the improved ER performance over NR.
Remark 1: Though µ0<0 leads to destructive interference

of signals from A and R, i.e., L
(
µPAS +βαµPRS

)
≥L
(
µPAS

+βαµPRS+µ0

√
βαµPAS µPRS

)
, EER

hStot
>EnoER

hStot
, if α > 4αgER .

Remark 2: ER is always beneficial over NR ∀α > 0 if µ0 ≥
0 and ∀α > 4αgER if µ0 < 0.
Hence, we conclude that ER is preferred over NR when
energy signals received at S from A and R are combined
constructively. The chances of ER performing better than NR
increase with increasing PtR which leads to a higher µPRS
because it helps in meeting the condition α > 4αgER .

B. Feasibility of Information Relaying (IR) Mode

Now we obtain the feasibility conditions for improved
performance of IR over NR mode.

Lemma 2: The normalized delay-limited throughput τ in IR
is more than NR if and only if one of these two conditions
hold: (i) pIR

out ≤ pnoIR
out or (ii) pnoIR

out < pIR
out <

(Ns+2)pnoIR
out+Ns

2(Ns+1) .

Proof: Firstly, τNR
τIR

=
(Ns+2)(1−pnoIR

out)
2(Ns+1)(1−pIR

out)
and 1

2 <
Ns+2

2(Ns+1) <

1,∀Ns>0. For τIR>τNR, we require pnoIR
out >p

IR
out−Ns(1−p

IR
out)

Ns+2 ,
which is true ∀pIR

out ≤ pnoIR
out . Thus, for τIR > τNR, either pIR

out ≤
pnoIR
out or pnoIR

out < pIR
out <

(Ns+2)pnoIR
out+Ns

2(Ns+1) . As pnoIR
out = Pr

(
γSA <

2R0−1
)

and pIR
out = Pr

(
min {γSR , γRA + γSA} < 22R0 − 1

)
,

it is worth noting that the outage threshold of 2R0 for IR is
two times the outage threshold R0 for NR.
Following this result, we next discuss the conditions where
outage probability pIR

out in IR and i2ER modes is better than
outage probability pnoIR

out in no IR modes, namely NR and ER.
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Lemma 3: To ensure that pIR
out < pnoIR

out , the following average
SNR conditions should be met: (i) E [γSR ] > E [γSA ]

(
E [γSA ]

+2
)

and (ii) E [γRA ] > E [γSA ] (1 + E [γSA ]).
Proof: Please refer to Appendix A

Remark 3: With E [γSA ] > 0, Lemma 3 implies that for
feasibility of IR, E [γSR ] > E [γRA ]. Or, IR is feasible when
R is placed relatively closer to S to strengthen S-to-R link.

Corollary 1: Outage performance for IR is better than NR
if relay placement (RP) (dSR , dRA) lies in the set SIR ,{

(dSR , dRA)

∣∣∣∣(dSR < dSA

GR
GD

(2+E[γSA ])
1
n

)
∧
(
dRA < dmax

RA

)}
.

Proof: From Lemma 3, we note that to ensure
pIR
out < pnoIR

out , two average SNR conditions (i) and (ii)
should be met. Condition (i) on simplification results in the
following relationship between S-to-R and S-to-A distances:

dSR <
dSA

GR
GD(

2+
(NsPhAS−P tx

con)GAGSλ2
(4πσ)2(dSA)

n

) 1
n

= dSA

GR
GD

(2+E[γSA ])
1
n

.

Similarly, condition (ii) puts an upper bound dmax
RA

on
R-to-A distance dRA to meet the EH requirements of
R for efficient IR, which is given by: dRA < dmax

RA
,{

dRA

∣∣∣∣ 16π2E[γSA ](1+E[γSA ])σ2(dRA)
n

βGAGRλ2(PhARNs(1−α)+EiR−P tx
con−Erx

con−R0Erx
bit)

= 1

}
.

These bounds on dSR and dRA form the feasible RP set SIR
for enhanced outage performance of IR over NR.

C. Insights on Optimal Mode Selection Policy

Using the observations in Sections V-A and V-B, now we
provide insights on the mode to be selected among NR, ER,
IR, and i2ER based on the two decision making (cf. Fig. 2)
for minimizing outage probability. From Lemma 2, improved
outage performance in IR or i2ER mode also implies that their
throughput performance is better than ER or NR mode.

1) Decision I: IR or no IR?: From Lemma 3 and Corol-
lary 1, we note that if relay placement (dSR , dRA) ∈ SIR,
then the outage probability pIR

out in two-hop IT in IR and
i2ER modes is better or lower than the outage probability
pnoIR
out in single-hop IT in ER and NR modes. So with the

available statistical CSI, decoding capability of R based on
its harvested energy and S-to-R link quality is decided. Only
when decoding capability is sufficiently large such that either
of IR or i2ER modes perform better than ER or NR modes,
R invests its harvested energy on IR. Otherwise, it utilizes its
energy for ER or saves it for future if a NR is chosen.

Further, as i2ER with α = 0 reduces to IR mode, the
feasibility conditions for i2ER mode are similar to as in IR
mode, which are mentioned in Lemma 3. However, when
both IR and i2ER are feasible, i.e., pIR

out < pnoIR
out for α = 0,

then i2ER can provide better performance than IR by allowing
integrated IR and ER, as discussed next.

2) Decision II: ER or no ER?: The decision for ER depends
on whether the received energy signals from A and R add
constructively or destructively. The conditions for preferring
ER over NR mode based on the value of α and µ0 have been
presented in Lemma 1 and Remark 2.

When IR mode is feasible, then for µ0 ≥ 0, i2ER can
provide better outage performance if

∂E[γRA+γSA ]
∂α ≥ 0. In

other words, if both E [γSR ] and E [γRA + γSA ] are increasing

in α, then from Theorem 1 (Section VI-B), pIR
out in i2ER is a

decreasing function of α implying that its outage performance
with α > 0 is better than that of IR mode having α = 0.

VI. OPTIMAL SHARING OF HARVESTED ENERGY AT R
Following the observations in previous section, now we

optimize α to efficiently utilize the available harvested energy
at R for ER and IR. First we formulate the optimization
problem, followed by its generalized-convexity proof and the
joint global-optimal solution (R∗0, α

∗, β∗).

A. Optimization Formulation

We intend to maximize the normalized throughput τ by
efficiently dividing harvested energy at R over Ns slots, i.e.,
α fraction for ER and remaining (1− α) fraction for IR. As
τ defined in (25) is a function of rate constraint R0 bps/Hz
to be met at A during the IT phase of 1 or 2 slots, we also
find maximum achievable rate R0 that can be met with high
probability 1 − pthout, where pthout � 1. This is denoted by
constraint C1 in throughput maximization problem (P1).

(P1) : maximize
R0, α, β

τ , subject to: C1 : pout ≤ pthout,

C2 : α ≥ 0, C3 : α ≤ 1, C4 : β ∈ {0, 1} . (28)

Here β = 1 or β = 0 is respectively based on whether to
go for relaying (ER, IR, or i2ER) or not (NR). As (P1) is
nonconvex, it is difficult to jointly optimize R0, α, and β. So,
we break the problem (P1) into two parts, i.e., first solve
outage minimization problem (P2) to find optimal α that
minimizes pIR

out. After that we use monotonicity of pout in
R0 to iteratively solve (P1).

(P2) : minimize
α

pIR
out, subject to: C2 and C3. (29)

Remark 4: Using the statistical CSI along with the system
parameters mentioned in Sections II, III, and IV, energy-rich
A solves (P1) and informs R and S respectively about the
optimal relaying mode (α∗, β∗) and optimal R∗0 to maximize
the normalized delay-limited throughput.

B. Generalized-Convexity of Outage Minimization Problem

Here we present some important results in the form of
Lemma 4, Corollary 2, and Theorem 1, that will be useful
in proving conditional generalized-convexity [33] of (P2).

Lemma 4: The average SNR E [γRA + γSA ] for S-R-A link
is: (a) strictly concave in α if µ0 > 0 and (b) convex function
of α for µ0 ≤ 0 with unique stationary point denoted by αgIR .

Proof: Using linearity of expectation in E [γRA + γSA ],

E
[
γRA + γSA

]
= E [γRA ] + E [γSA ] =

µPSR
σ2

+
µPSA
σ2

=

(
(1−α)PhARNs+EiR−P

tx
con−E

rx
con−R0E

rx
bit

(β GR)−1(dRA)
n

+
PhAS (Ns−1)+MjP2hop

hS
+Cj−P tx

con

(GS)−1(dSA)
n

)
GA
σ2

(
λ
4π

)2
,

∀j∈
{
(1 ≤ j ≤ N) ∧

(
Pthj ≤P2hop

hS
≤Pthj+1

)}
, (30)
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where P2hop
hS

= µPAS + βαµPRS + µ0

√
βαµPAS µPRS . From

∂2E[γRA+γSA ]
∂α2 = −

GSGAλ
2µ0Mj

√
αβµPs

µPRS

4(4π)2σ2α2(dSA)
n , we note that

depending on whether µ0 > 0 or µ0 ≤ 0, E [γRA + γSA ] is
respectively strictly concave or convex in α. Further, it may

also be noted that
∂E[γRA+γSA ]

∂α = GAλ
2

(4πσ)2

[(
µ0µPs√

αβµPs
µPRS

+

2

)
βGSµPRS

Mj

2(dSA)
n − βGRNsPhAR

(dRA)
n

]
, using which the unique

gradient point αgIR , satisfying
∂E[γRA+γSA ]

∂α = 0, is given by:

αgIR = 1
4β

[
(dRA)

n
GSµ0

√
µPAS

µPRS
Mj

(dSA)
n
GRNsPhAR−(dRA)

n
GSµPRS

Mj

]2

. So for

µ0 ≤ 0, E [γRA + γSA ] is strictly decreasing in α ∈ (0, αgIR)
and strictly increasing in α ∈ (αgIR , 1).

Corollary 2: The average SNR E [γSR ] for S-to-R link is
concave increasing in α if µ0 > 0, and strictly-convex function
of α for µ0 ≤ 0 with unique critical point αgER , if it exists.

Proof: As defined in Section IV-B, the average SNR
E [γSR ] for S-to-R link is given by:

E [γSR ] =
µPSR
σ2

=
PtSGSGR
σ2 (dRS )

n

(
λ

4π

)2

(31)

where PtS is defined in (27). As E [γSR ] is positive affine
function of PtS , from Lemma 1 we observe that E [γSR ] is
respectively concave increasing and strictly-convex in α for

µ0 > 0 and µ0 ≤ 0. The unique critical point αgER =
µ2
0µPAS

4βµPRS
for µ0 ≤ 0, if exists, is defined in Lemma 1.

Theorem 1: The complimentary CDFs (CCDFs) FPrSR
and FPrRA+PrSA of received powers PSR and PRA + PSA
are respectively positive increasing log-concave functions of
E [γSR ] and E [γRA + γSA ].

Proof: Please refer to Appendix B.
By using these results, the conditional-pseudoconvexity and
global-optimality of (P2) are discussed next.

Theorem 2: As the objective function of (P2) is pseudocon-

vex in α ∈
{

[0 , 1] , µ0 > 0

[αgER , αgIR ] , µ0 ≤ 0,
and constraints C2, C3

are affine functions of α, there exists a unique global-optimal
solution α∗ ∈ [αgER , αgIR ] that minimizes pIR

out.
Proof: Please refer to Appendix C.

C. Global Optimal Allocation of Harvested Energy at Relay

Theorem 3: The global optimal utilization of harves-
ted energy at R for minimizing pIR

out is given by α∗ ,

argmin
α={0,αout,1}

{
pIR
out

∣∣∣
α=0

, pIR
out

∣∣∣
α=αout

, pnoIR
out

∣∣∣
α=1

}
, with

αout ,


αoutmin, αoutcri < αoutmin,

αoutcri , αoutmin ≤ αoutcri ≤ αoutmax,

αoutmax, otherwise.
(32)

Here αoutmin,max
{z+µ2

0µPAS
Mj+

√
µ2
0µPAS

(
2z+µ2

0µPAS
Mj

)
2βµPRS

Mj
, 0,

αgER

}
, αoutcri ,

{
α
∣∣∣(∂pIR

out

∂α =0
)
∧ (0<α< 1)

}
, αoutmax,min

{
1,

αgIR , 1−
Erx

bitR0+Erx
con+P

tx
con−EiR

NsPhAR

}
, and z,−2

(
Cj+µPASMj+

(Ns−1)PhAS−P tx
con

)
+µ2

0µPASMj with P2hop
hS
∈
[
Pthj ,Pthj+1

]
.

Proof: As pIR
out is pseudoconvex or unimodal1 in α ∈

[αgER , αgIR ] ∀µ0 (cf. Theorem 2), the global-optimal solution
α∗ is given by the unique mode αoutcri , defined in (C.3)
by solving ∂pIR

out

∂α = 0, if it exists in the feasible region
defined by C2–C3 for µ0 > 0 or satisfies condition αoutcri ∈
[αgER , αgIR ] , ∀µ0 ≤ 0. However if αoutcri > αoutmax or αoutcri <
αoutmin, then due to the corresponding monotonically decreasing
or increasing trend of pIR

out with α, global-optimal α∗ is
given by the two corner points αoutmax and αoutmin, respectively.
αoutmax ensures that C3 is satisfied, αout ≤ αgIR ∀µ0 ≤ 0
and PtR > 0. Similarly, αoutmin ensures that C2 is satisfied,
αout ≥ αgER ∀µ0 ≤ 0 and PtS > 0. As for µ0 ≤ 0, pIR

out

respectively follows monotonically increasing and decreasing
trend with α, for α < αgER and α > αgIR , optimal α∗ is given
by one of the three potential candidates, i.e., α ∈ {0, αout, 1}.
Also, it may be noted that for µ0 > 0, αout = αoutcri itself.

Remark 5: Although α = 1 is shown as a feasible solution
for (P2) to minimize pIR

out, α = 1 leads to PtR = 0 implying
that no communication takes place from R-to-A, i.e. no IR
for α = 1. So if α∗ = 1, then pout = pnoIR

out as given by (24).

D. Iterative Scheme to Maximize Normalized Throughput τ

Now we try to maximize τ by jointly optimizing R0, α, and
β in problem (P1). Since (P1) is nonconvex and has combi-
natorial aspect due to inherent mode selection in definition of
τ given in (25), we make use of Theorem 3 to find optimal
α∗ for a given R0 with β = 1. In this regard we present an
iterative scheme, named Algorithm 1, that helps in maximizing
τ by iteratively optimizing α and R0. Here while optimizing
R0 to meet certain quality-of-service (QoS) requirement, we
need to ensure that corresponding pout < pthout (constraint C1).

The iterative scheme starts with finding R0 that satisfies
pnoIR
out ≤ pthout for ER and NR modes, denoted by RER

0 and
RNR

0 , respectively. These RER
0 and RNR

0 values are obtained by
finding inverse of the CDF function of PrSA using Algorithm 2
with α = β = 1 and α = β = 0, respectively. With initial
R0 being R

(0)
0 = Ns+2

2(Ns+1) max{RER
0 , RNR

0 }, we find optimal
α∗ minimizing pIR

out by using Theorem 3. If 0 < α∗ < 1 with
β(1) = 1, then this implies that neither of NR or ER modes
can provide the optimal R∗0, or in other words, R∗0 > R

(0)
0 .

So α∗ = α(1) with R0 = R
(0)
0 results in a p∗out which is

lower than pthout and the Algorithm 1 continues. This decrease
in p∗out implies that we can achieve higher R0 due to the
improved end-to-end SNR quality. Next we find updated R0,
denoted by R

(1)
0 , satisfying pIR

out ≤ pthout for i2ER by using
inverse of CDF of min {PrSR ,PrRA + PrSA} with E [PrSR ]
and E [PrRA + PrSA ] defined using α = α∗. The iterative
process continues till

∣∣∣R(i)
0 −R

(i−1)
0

∣∣∣ ≤ ξR0 , where ξR0 � 1

is the acceptable tolerance. Algorithm 1 terminates with the
optimal R∗0, α

∗, β∗ that provide maximum τ∗ by selecting
the optimal relaying mode and maximum achievable rate R∗0

1It may be noted that unimodality (having unique minima) of a single
variable function is equivalent to its pseudoconvexity [34].
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Algorithm 1 Iterative scheme to maximize normalized throughput
τ by jointly optimizing R0, α, β

Input: Relay position (dRA , dSR), system and channel parameters
(cf. Section II), with tolerances pthout, ξR0 , ξ

Output: Maximized throughput τ∗ along with optimal R∗0 , α∗, β∗

(A) Initialization
1: Call Algorithm 2 to find ΥER =

{
Υ

∣∣∣∣∣∣∣pthout−FPrSA(Υ,KSA ,

µPSA
σ2

)∣∣∣ ≤ ξ
}

for S-to-A link in ER mode with Pr =

PrSA , α = 1, β = 1, and p̂out = pthout

2: Call Algorithm 2 to find ΥNR =
{
Υ

∣∣∣∣∣∣∣pthout−FPrSA(Υ,KSA ,

µPSA
σ2

)∣∣∣ ≤ ξ
}

for S-to-A link in NR mode with Pr =

PrSA , α = 0, β = 0, and p̂out = pthout
3: Set i← 0, R

(0)
0 ← Ns+2

2(Ns+1)
log2 (1 + max {ΥER, ΥNR})

(B) Recursion
4: repeat (Main Loop)
5: Set i ← i + 1, α∗(i) ← α∗ that minimizes pIR

out for
achieving rate R(i−1)

0 in i2ER using Theorem 3

6: Call Algorithm 2 to find Υ
(i)
SRA =

{
Υ

∣∣∣∣∣∣∣pthout − (1 −
[
1−

FPrSR

(
Υ,KSR ,

µPSR
σ2

) ] [
1− FPrRA+PrSA

(
Υ,KRA ,

µPRA
σ2 ,

KSA ,
µPSA
σ2

)])∣∣∣∣ ≤ ξ
}

in i2ER with Pr = min{PrSR ,

PrRA + PrSA}, α = α∗(i), β = 1, p̂out = pthout

7: Set R(i)
0 ← 1

2
log2

(
1 + Υ

(i)
SRA

)
8: until

(∣∣∣R(i)
0 −R

(i−1)
0

∣∣∣ ≤ ξR0

)
(C) Termination with Optimal Solution

9: Set R0,1 =log2 (1+ΥER), R0,2 =log2 (1+ΥNR), R0,3 =R
(i)
0

10: Set j∗ ← argmax
1≤j≤3

R0,j , and optimal {R∗0, α∗, β∗} is given

by


{R0,1, 1, 1} , j∗ = 1 (ER mode)
{R0,2, 0, 0} , j∗ = 2 (NR mode){
R0,3, α

∗
(i), 1

}
, j∗ = 3 (i2ER mode (IR if α∗(i) = 0))

with pout ≤ pthout. Thus, with increasing iteration (i), {R(i)
0 }

monotonically increases (i.e., R(i+1)
0 > R

(i)
0 ) because of

monotonically improving end-to-end SNR due to the optimal
relaying mode selection for increasing {R(i)

0 }.
Fast Convergence of Algorithms 1 and 2: Due to strict

monotonicity and pseudoconvexity of pout in R0 and α
respectively, α∗(i) in each iteration can be found efficiently
and in general Algorithm 1 converges to acceptable optimal
solution R∗0 in two to three iterations only.

Similarly, Algorithm 2 employing a modified version of
Newton-Raphson method, provides fast convergence to the
inverse Υ of CDF FPr , where Υ is defined in steps 1, 2, and 6
of Algorithm 1 for Pr in different relaying modes, due to the
following properties: (i) FPr is monotonically increasing in
Υ. (ii) FPr is continuously differentiable positive log-concave
in Υ ∈ [0,∞). (iii) ∂FPr

∂Υ is continuously differentiable log-
concave function of Υ. (iv) E

[Pr
σ2

]
provides a very good

starting point. We noted that with conventional update equation
Υ(i)←Υ(i−1) + F

(i−1)−[1−p̂out]
fPrSA (Υ(i−1),KSA ,

µSA
σ2

)
in standard Newton-

Raphson method, iterations sometimes diverge. To overcome
this drawback we consider the usage of log function with
which convergence improves significantly. Via extensive nu-

Algorithm 2 Iterative scheme to obtain inverse Υ = FPr
−1 (p̂out)

satisfying p̂out = FPr (Υ,K, µP )

Input: CDF FPr , PDF fPr , and mean
µP
σ2 of Pr

σ2 along with α, β,
K, and tolerance ξ for acceptable outage probability p̂out. Here
Pr ∈ {PrSA ,min {PrSR ,PrRA + PrSA}}.

Output: Inverse Υ∗=

{
Υ

∣∣∣∣∣ ∣∣p̂out − FPr (Υ,K, µPσ2

)∣∣≤ξ} of FPr

1: Set i← 0
2: if (Pr = PrSA) then
3: Set Υ(0)←

µPSA
σ2 , F

(0)←1−FPrSA
(

Υ(0),KSA ,
µPSA
σ2

)
4: else if (Pr = min {PrSR ,PrRA + PrSA}) then

5: Set Υ(0) ←
min

{
µPSR

, µPSA
+µPRA

}
σ2

6: Set Fa
(0) ← 1− FPrSR

(
Υ(0),KSR ,

µPSR
σ2

)
,

7: Set Fb
(0)← 1−FPrRA+PrSA

(
Υ(0),KRA ,

µPRA
σ2 ,KSA ,

µPSA
σ2

)
8: Set F

(0) ← Fa
(0) · Fb

(0)

9: repeat (Main Loop)
10: Set i← i+ 1
11: if (Pr = PrSA) then

12: Set Υ(i) ← Υ(i−1) +
F

(i−1)
[
log2

[
F

(i−1)
]
−log2[1−p̂out]

]
fPrSA

(
Υ(i−1),KSA ,

µPSA
σ2

)
13: Set F

(i) ← 1− FPrSA
(

Υ(i),KSA ,
µPSA
σ2

)
14: else if (Pr = min {PrSR ,PrRA + PrSA}) then
15: Set Υ(i) ← Υ(i−1) +

[
log2

[
F

(i−1)
]
− log2 [1−p̂out]

]
×F (i−1)

[
Fb

(i−1)
fPrSR

(
Υ(i−1),KSR ,

µPSR
σ2

)
+ Fa

(i−1)

×fPrRA+PrSA

(
Υ(i−1),KRA ,

µPRA
σ2 ,KSA ,

µPSA
σ2

)]−1

16: Set Fa
(i) ← 1 − FPrSR

(
Υ(i),KSR ,

µPSR
σ2

)
, Fb

(i) ←

1− FPrRA+PrSA

(
Υ(i),KRA ,

µPRA
σ2 ,KSA ,

µPSA
σ2

)
17: Set F

(i) ← Fa
(i) · Fb

(i)

18: until
(∣∣∣p̂out − (1− F (i)

)∣∣∣ ≤ ξ)

merical results, we have found that on an average Algorithm 2
converges to acceptable tolerance ξ in less than 20 iterations.

E. Some Additional Insights on Key System Parameters

1) Deciding Ns Slots Dedicated for RF-ET: Since the end-
to-end ET efficiency is very low, we need to allocate sufficient
time for ET so that both S and R have sufficient harvested
energy to carry out uplink IT at a desirably rate R0. The rate
of change of τ for NR mode with Ns is:

∂τ

∂Ns
= R0

(Ns+1)2

[
(2R0−1) fPrSA

(
2R0−1,KSA ,

µPSA
σ2

)
Ns µPSA

[
(Ns+1)

(
µPSA

+P tx
con

)]−1

−
(

1− FPrSA
(

2R0 − 1,KSA ,
µPSA
σ2

))]
. (33)

From (33) we note that for low values of R0, ∂τ
∂Ns

< 0,
implying that τ in NR is a decreasing function of Ns because
for low R0, PDF fPrSA is lower than CCDF

[
1−FPrSA

]
and

thus Ns can be set as the minimum, i.e., 2 slots. However if
R0 is high for meeting the demands of high QoS applications,
then τ initially increases till Ns = N∗s and for Ns > N∗s it
decreases with increased Ns. Here the optimal Ns for NR,
denoted by N∗s , is obtained by solving ∂τ

∂Ns
= 0.
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2) Insights on Optimal Relay Placement (ORP): Although
this work focuses on solving the dilemma of R on whether to
cooperate in downlink ER to S or uplink IR to A based on
its relative placement between A and S , here we give insights
on ORP for different relaying modes.

For ER mode, detailed investigation on the ORP in two-
hop RF-ET was carried out in [5]. It was observed that ORP,
always lying in the constructive interference region, depends
on the end-to-end distance dAS . If dAS is relatively low then
ORP lies in the constructive interference region closer to the
RF-EH device S, whereas if dAS is relatively high then ORP
lies closer to RF source A. We have obtained similar results
as plotted in Fig. 6 and discussed in Section VII-B.

Regarding IR mode, it is difficult to obtain the closed-form
results for ORP due to high composite non-linearity. However
by exploiting the behavior of DF-IR protocol, we provide a
suboptimal RP solution that provides tight approximation to
the global-ORP. As the DF-IR performance is bottlenecked by
the minimum of the SNR of S-to-R link and the SNR due
to MRC, we present a suboptimal RP that improves the SNR
of the bottleneck link by making the two SNRs equal. This
RP solution is obtained by solving E [γSR ] = E [γSA + γRA ].
Further as E [γSA ] > 0, R is placed closer to S to ensure that
E [γSR ] > E [γRA ] The goodness of this suboptimal solution
providing insights on the features of the global optimal RP
solution is investigated numerically in Section VII-B.

Finally with the above discussions on ORP in ER and IR,
we note that the ORP in i2ER not only lies closer to S to
ensure efficient IR but also it should fall in the constructive
interference region to ensure efficient ER. This claim is also
numerically validated later in Section VII-C.

VII. NUMERICAL RESULTS AND DISCUSSION

We conduct numerical investigation on performance of
WPCN under different relaying options: NR, ER, IR, or i2ER.
Unless otherwise stated, the considered system parameters are:
PtA = 30 dBm, GA=GS=1 dBi, GR=6.1 dBi, σ2 =−100
dBm, λ=0.328 m, yR0

={0.25, 0.05}m [5] for dAS = {1, 2}
m, n=2, T =1 s, ψ2 =0.175 rad [5], P tx

con =0 W, Erx
con = 0.927

mJ [26], Erx
bit = 93.53 µJ [26], EiR = 0 J, K = 10 dB for all

the links, and tolerances as ξR0
= 10−3, ξ = 10−6.

Using (1), the piecewise linear approximation Ph = L (Pr)
for Ph (in mW) at the output of the commercially available
Powercast P1110 RF harvester [24] can be obtained with
Pth = {0.282, 0.501, 1.0, 3.548, 25.119, 100} mW as six re-
ceived threshold powers dividing the harvested-received power
characteristic of P1110 into N = 5 linear pieces having
slope M = {0.857, 0.786, 0.485, 0.733, 0.465} and intercept
C = {−0.223,−0.194, 0.107,−0.772, 5.948} mW.

The accuracy of approximation (1) can be observed from the
fact that root mean square error (RMSE) in approximating the
measured results given in [5, Fig. 5(b)] is less than 0.0003 and
corresponding R-square statistics value is more than 0.9997.

A. Validation of Analysis

First, we validate the analytical expression for EER
hStot

derived
using (8) and (12). Analytical results in Fig. 3 are generated
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Fig. 3: Variation of EER
hStot

with relay position (xR , 0.25 m) and Ns.
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Fig. 4: Validation of expression (20) for CDF of sum of two
weighted noncentral-χ2 random variables.

using only first 30 summands of series in (8). The simulation
results on mean harvested power at S for varying relay position
(xR , 0.25 m) and Ns are generated by finding mean of 107

random realizations of harvested dc power PhAS obtained
by applying (1) on random received power PrAS following
noncentral-χ2 distribution. A close match between analytical
and simulation results as observed in Fig. 3 validates the
analysis in Section III with a RMSE of less than 10−4. From
Fig. 3 it is observed that, in comparison to energy harvested
EnoER
hS

in no ER case, EER
hStot

in ER is affected by constructive
and destructive interference of energy signals received from
A and R. However with increasing Ns, the destructive inter-
ference region decreases due to increased EhR , which results
in improved ER gain with higher RF-ET from R.

Next we validate the outage analysis carried out in
Section IV. We have considered only first 30 summands for
each of the three series in (20) for generating analytical results
depicted by solid line in Fig. 4 and different line styles in
Fig. 5. We first validate expression (20) for CDF of sum of
two weighted noncentral-χ2 random variables in Fig. 4 for
different values of Rice factor K and means µP1

and µP2
.

After that analytical expression (22) for pIR
out is validated in

Fig. 5. Monte-Carlo simulation results matching closely with
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Fig. 5: Variation of pout in IR and NR with xR , dAS , Ns. R0 is
respectively 14 and 12 bps/Hz for dAS as 1 and 2 m.
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Fig. 6: Comparison of τ in ER and IR modes. Stars denote ORP.

analytical results, with a RMSE of 0.0031 and 0.00034 for
results plotted in Figs. 4 and 5, validate the analysis for
FPr1+Pr2 and pIR

out, respectively. Results plotted in Fig. 5 show
that, IR is advantageous over NR only when R is closer to S
than A, i.e., xR

dAS
> 1

2 . Minimum pIR
out is achieved when R

is very close to S. We also note that outage performance is
improved with increasing Ns due to increase in PtR , which
enhances quality of R-to-A IT link.

B. Energy Relaying versus Information Relaying

We now compare the achievable normalized throughput τ
performance of ER with IR in Figs. 6(a) and 6(b) for varying
xR , dAS , R0 (in bps/Hz) with Ns = 5 and Ns = 10, respecti-
vely. Results plotted in Fig. 6(a) show that τ for IR mode is
more than that of ER mode if: (a) xR > 0.58 m for dAS = 1
m and (b) 1.05 < xR < 1.6 m for dAS = 2 m. Similarly for
Ns = 10 as plotted in Fig. 6(b), τ in IR is more than that of ER
∀xR > 0.48 m if dAS = 1 m and ∀xR > 0.99 m if dAS = 2
m. This shows that ER is better than IR if R is positioned
closer to A, and vice-versa. Further, the ORP for IR is very
close to information source S. Whereas ORP in ER, which
is affected by continuous constructive-destructive interference
cycles, is very close to S for dAS = 1 m, and it is very close
to A for dAS = 2 m. From Fig. 6(a) we also notice that when
R is placed very close to S, it may lead to weakening of
R-to-A link, and hence violating the upper bound dmax

RA
on

dRA . This leads to the degraded IR performance in compa-
rison to ER (or NR) as mentioned in Lemma 3 and Corol-
lary 1. For the four considered combinations of (Ns, dAS ) =
{(5, 1m), (5, 2m), (10, 1m), (10, 2m)}, the numerically found
global ORP solutions for IR as plotted in Fig. 6 are x∗

R
=

{0.76, 1.44, 0.78, 1.52} m with respective optimal throughput
being τ∗ = {3.8587, 3.2803, 2.3240, 1.9923} bps/Hz. The
corresponding suboptimal RP solutions x̂∗

R
and their respective

throughput τ̂∗ are given by x̂∗
R

= {0.75, 1.43, 0.76, 1.47} m
and τ̂∗ = {3.8586, 3.2802, 2.3239, 1.9921} bps/Hz. Thus, the
difference in throughput performance of suboptimal RP for IR
mode is less than 0.0071%.
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Fig. 7: Variation of τ with α, xR for Ns = 10, dAS = 1m. Joint
optimal along with optimal α for each xR also plotted.
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C. Efficient Utilization of Harvested Energy at R
In Fig. 7, we plot the variation of τ with relay position(
xR , yR0

= 0.25 m
)

and α for R0 = 14 bps/Hz. Results
show that for lower xR , α = 1 is optimal which implies
that ER is a better mode for low xR . As xR increases and
goes beyond 0.42 m, optimal α reduces and is equal to zero
(IR) for destructive interference cycle and α 6= 0 (i2ER)
for constructive cycle (cf. zoomed plot in Fig. 6(b)). Fig. 7
shows that joint optimal solution that maximizes τ in i2ER is(
α∗ = 0.02, x∗

R
= 0.76m

)
. This implies that, if relay position

is controllable then R should be placed close to S with higher
share of harvested energy at R allocated for IR. Also, the
difference in throughput performance of the suboptimal RP is
0.756 m, which is less than 0.0034%.

In Fig. 8, we plot the optimal relaying mode along with
achievable τ for varying xR

dAS
. Considering four combinations

of (Ns, dAS ) = {(5, 1m), (5, 2m), (10, 1m), (10, 2m)}, R0 =
{23, 19, 24, 20} bps/Hz for NR and ER, and R0 = {13.6, 11.6,
14, 12} bps/Hz for IR and i2ER. These values are based on
maximum R0 achievable in each mode such that resulting
pout ≤ 10−2. WhenR is close toA, i.e., xR

dAS
< 0.44, there are

only two optimal modes possible: ER for constructive interfe-
rence regions and NR for destructive interference regions. In
contrast, as shown in Fig. 8, IR or i2ER is selected as optimal
mode when R is close to center or S. When Ns is sufficiently
high and R is placed close to S, WPCN can benefit from both
IR and ER (i2ER mode is optimal) in constructive regions. IR
is optimal when R is close to S and dAS is large which leads
to need for alternate IR link due to weakening of S-to-A link.

For the relay positions in Fig. 8 where NR was selected
(as denoted by “ × ” mark), we next investigate the effect
of energy accumulation at R due to the unused harvested
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TABLE II: Investigting the effect of energy accumulation at R during the NR modes plotted in Fig. 8.

I: Ns = 5, dAS = 1Ns = 5, dAS = 1Ns = 5, dAS = 1 m II: Ns = 10, dAS = 1Ns = 10, dAS = 1Ns = 10, dAS = 1 m III: Ns = 5, dAS = 2Ns = 5, dAS = 2Ns = 5, dAS = 2 m IV: Ns = 10, dAS = 2Ns = 10, dAS = 2Ns = 10, dAS = 2 m
S. No. xRxRxR (m) Mode Blocks S. No. xRxRxR (m) Mode Blocks S. No. xRxRxR (m) Mode Blocks S. No. xRxRxR (m) Mode Blocks

1 0.20 ER 5 1 0.20 ER 3 5 0.52 ER 4 1 0.20 ER 2
2 0.22 ER 5 2 0.22 ER 3 6 0.56 ER 7 2 0.44 ER 3
3 0.24 ER 3 3 0.24 ER 2 7 0.76 ER 20 3 0.48 ER 6
4 0.26 ER 2 8 0.80 ER 22 4 0.52 ER 2
5 0.50 ER 2 III: Ns = 5, dAS = 2Ns = 5, dAS = 2Ns = 5, dAS = 2 m 9 0.84 ER 9 5 0.56 ER 2
6 0.52 ER 4 S. No. xRxRxR (m) Mode Blocks 10 0.88 ER 2 6 0.76 ER 4
7 0.54 ER 6 1 0.20 ER 4 11 0.92 ER 2 7 0.8 ER 10
8 0.56 ER 7 2 0.44 ER 5 12 1.08 ER 6 8 0.84 ER 11
9 0.58 ER 6 3 0.48 ER 12 13 1.76 IR 2 9 0.88 ER 5

10 0.60 ER 4 4 0.52 ER 11 14 1.80 IR 2
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Fig. 9: Enhancement in pout and τ for IR, ER, and i2ER over NR.

energy EiR that is available at the beginning of future trans-
mission block(s) of these NR cases. The corresponding results
showing the number of NR transmission blocks after which
a relay position becomes suitable for relaying (ER / IR) due
to accumulated energy are tabulated in Table II. The optimal
relaying mode that is eventually selected for utilizing all the
accumulated energy over previous NR blocks is also listed.

The results in Table II show that mostly ER mode is selected
when the accumulated energy is sufficient such that the feasi-
bility conditions for ER mode (as discussed in Section V-A)
are met, implying that ER mode is better than NR. IR mode
is selected only in the two cases where the x-coordinate xR
of relay placement was such that R was placed very close to
S and the feasibility conditions for IR mode (as discussed
in Section V-B) are met. Also, the number of consecutive
transmission blocks where NR was selected before the unused
energy harvested over these blocks became sufficient for
making use of the RF-EH relay R in terms of ER, IR, or i2ER
vary from 2 (minimum) to as high as 22 blocks. Although there
is no general trend, it is noted that lower end-to-end distance
dAS cases require lesser NR transmission blocks for making
use of unused harvested energy at R for relaying. On the
other hand, the larger number of blocks are required to have
sufficient amount of energy atR which ensures that α > 4αgER

(cf. Remark 1), or in other words for ER with α = β = 1, to
ensure that µPRS = (EhR + EiR)

GtRGS

(dRS )
n

(
λ
4π

)2
> µ2

0µPAS .

Fig. 9 plots average improvement
(

max{pnoIR
out−p

mode
out ,0}×100%

pnoIR
out

)
in pout and average increase

(
max

{
τmode − τNR, 0

})
in τ ∀

mode = {ER, IR, i2ER}. Results show that i2ER offers the
maximum improvement in pout and τ over NR, and is closely
followed by IR. It is noted that, due to cooperative diversity
maximum achievable τ , 2R0

Ns+2 = {3.886, 3.314, 2.333, 2}
in IR and i2ER, is slightly more than the achievable τ ,
R0

Ns+1 = {3.833, 3.167, 2.182, 1.818} in ER and NR modes at
four combinations of (Ns, dAS ). Due to this, IR offers a higher
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Fig. 10: Variation of τ∗ for advanced RF-EH circuits.

throughput gain than ER (Fig 9(b)) and in the process lower
outage improvement (Fig 9(a)) for dAS = 1 m. Although ER
provides lesser increase in τ than IR, ER offers more stable
performance (cf. Figs. 6(a), 6(b)). IR is advantageous when
R is close to S, specifically when (dSR , dRA) lies in the set
SIR defined in Corollary 1. The importance of IR, ER, and
i2ER increases with increasing WPCN range dAS because
direct link gets weakened and the role of additional relay link
becomes more prominent. From Fig. 9(b) we also observe that,
though increasing Ns improves IR and i2ER gains, it actually
degrades ER performance because this increase in energy is
not sufficient to provide high rate over increased Ns slots.

D. Investigating the Impact of Advanced RF-EH Circuits

Now we investigate performance of the proposed protocol
and optimized solutions for larger end-to-end RF-ET range
dAS achieved with the help of advanced RF-EH circuits which
are currently under research [22], [23] and will be available
commercially in future. With these advancements in RF-EH
technology, we can efficiently harvest input RF powers as low
as −20 dBm at a rectification efficiency of 0.5 (or 50%). Also
this RF-to-dc rectification efficiency does not degrade and can
be maintained constant at 0.5 for all RF input powers ≥ −20
dBm. With this setting, RF-ET range dAS can be improved
from 2 m to 10.3 m. For this improved RF-ET range we
have plotted the optimal relaying mode along with maximum
normalized throughput τ∗ for varying relay positions and R0

in Fig. 10. Here we have also considered setting Ns as N̂∗s to
meet a rate requirement of at least R0 with high probability
greater than 0.99 even for NR mode. Following the discussion
in Section VI-E1, N̂∗s is respectively obtained as 35 slots and
140 slots for R0 = 12 bps/Hz and R0 = 14 bps/Hz.

Results plotted in Fig. 10 show that, for larger dAS = 10.3
m the performance of both ER and IR gets affected. On one
hand, the gap between ER and NR is reduced due to decrease
in ER efficiency because of low energy harvested at R over
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Fig. 12: Investigating α∗ in jointly-optimized solution of (P1).

larger A-to-R distance and low energy delivered to S over
larger R-to-S distance. Whereas, the performance of IR and
i2ER with low N̂∗s = 35 slots is poorer than ER for R0 =

12 bps/Hz because energy harvested at R over N̂∗s slots for
larger A-to-R distances, denoted by larger xR , is not sufficient
to meet the decoding costs. However when N̂∗s = 140 slots
for meeting R0 = 140 bps/Hz, IR and i2ER perform better
than ER even for larger A-to-R distances because now the
energy harvested over such large number of slots is sufficient
for meeting the decoding costs.

E. Performance for Jointly-Optimized (R∗0, α
∗, β∗) in (P1)

Now we investigate the maximum normalized throughput
τ∗ performance achieved by jointly optimizing (R∗0, α

∗, β∗) in
(P1) for different QoS requirements represented in terms of va-
rying outage probability threshold pthout =

{
10−2, 10−3, 10−4,

10−5, 10−6
}

. Variation of optimized τ∗ along with optimal
mode with pthout, xR , Ns, and dAS is potted in Fig. 11. It is
observed that τ∗ for pthout = 10−5 is 13.29% lower than for
pthout = 10−3 due to reduced R∗0. Comparing with results in
Fig. 8 having fixed R0, results in Fig. 11 with optimized R∗0
show that with decreasing pthout (stricter QoS requirement),
IR and i2ER modes become more useful for meeting high
R0 requirements. The corresponding optimal α∗ is plotted in
Fig. 12 for dAS = 1 m. Optimal α∗ for dAS = 2 m is noted in
Fig. 11 itself with NR, ER, and IR having optimal (α∗, β∗) as
(−, 0), (1, 1), (0, 1), respectively. From Figs. 11 and 12, it is
observed that in general optimal α∗ decreases with increased
distance dAR =

√
x2
R

+ y2
R0

between A and R, except during
destructive interference cycle (cf. Figs. 6(a) and 6(b)) where
α∗ ≈ 0. From Fig. 12 it also is noted that optimal α∗ in i2ER
for dAS = 1 m increases with decreased pthout.

Next, we investigate the tradeoff between the optimized
τ∗ and acceptable outage probability (QoS) requirement pthout.
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mized τ and outage requirement
pthout in (P1) for varying xR , Ns.
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Fig. 14: Improvement provided
by optimized i2ER model over
benchmark WPCN model [21].

Results plotted in Fig. 13 for dAS = 1 m show that achievable
normalized throughput τ∗ respectively decreases by 30.9% and
28.3% for Ns = 5 and Ns = 10 slots when pthout is increased
from 10−2 to 10−6. Further it is also noted that R placed
closer to S (i.e., higher xR ) helps in achieving higher τ∗,
with Ns = 5 providing higher τ∗ than Ns = 10 slots.

Finally, we present the throughput performance enhance-
ment results achieved with the help of optimized i2ER model
over the benchmark WPCN model with NR. Results plotted
in Fig. 14 show that improvement in optimal τ∗ increases
monotonically with increased QoS requirement (i.e., decreased
pthout) for all four combinations of (Ns, dAS ). In fact as pthout
decreases from 10−2 to 10−6, optimized i2ER improves the
throughput performance of NR from 10% to up to 30%.

VIII. CONCLUDING REMARKS

This paper has investigated efficient utilization of harvested
energy at RF harvesting relay R for either downlink ER, or
uplink IR, or i2ER, to maximize the normalized throughput τ
for information transfer from an energy-constrained source S
to an energy-surplus HAP A. While considering i2ER, closed-
form expressions for mean harvested energy at S and outage
probability at HAP A with MRC over Rician channels have
been derived. Using these expressions, analytical insights on
optimal relaying mode have been provided along with global-
optimal sharing of harvested energy at R for maximizing τ
while ensuring very low outage probability pthout in achieving
rate R0. The analysis has been validated by simulation results.
Via numerical investigation it has been observed that, when R
is close to A, ER and NR are the optimal modes. On other
hand, when R is close to S, IR and i2ER are more beneficial.
In general, R positioned closer to S, with higher share of
harvested energy allocated for IR, provides higher τ . Overall in
comparison to benchmark NR mode, i2ER having advantages
of both IR and ER offers an average outage improvement of
22% for fixed R0 and up to 30% improvement in τ by jointly-
optimizing (R∗0, α

∗, β∗) for pthout = 10−6. Thus, this paper
provides a benchmark for further investigation on optimized
i2ER aspects for improving the performance of WPCNs.

APPENDIX A
PROOF OF LEMMA 3

From (22), pIR
out=1− FPrSR · FPrRA+PrSA , where FPrSR

, 1−FPrSR
(

22R0−1,KSR ,
µPSR
σ2

)
and FPrRA+PrSA , 1−
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FPrRA+PrSA

(
22R0−1,KRA ,

µPRA
σ2 , KSA ,

µPSA
σ2

)
. Similarly

from (24), pnoIR
out = 1−FPrSA = FPrSA

(
2R0−1,KSA ,

µPSA
σ2

)
.

As 0 ≤ FPrRA+PrSA , FPrSR ≤ 1, pIR
out < pnoIR

out can be ensu-

red by showing that FPrSA ≤ min
{
FPrSR , FPrRA+PrSA

}
.

Considering same Rice factor for all links, i.e., KSA =
KSR = KRA = K, first we derive the condition for
FPrSA < FPrSR . We prove later in Theorem 1 that
FPrSA and FPrSR , both following same distribution, are
increasing functions of their respective means E [γSA ] and
E [γSR ]. As FPrSA = Pr (log2 (1 + γSA) > R0) and FPrSR
= Pr

(
1
2 log2 (1 + γSR) > R0

)
, FPrSA < FPrSR is equiva-

lent to showing E [log2 (1 + γSA)] < E
[

1
2 log2 (1 + γSR)

]
.

Since it is difficult to obtain closed-form expression for
E [log2 (1 + γSA)], we consider an alternative. From Jensen’s
inequality [35] for expectation of concave transformation g (·)
of random variable X , we note that E [g (X)] ≤ g (E [X]). As
log2 (·) is an increasing concave function, FPrSA < FPrSR
requires that log2 (1+ E [γSA ]) < 1

2 log2 (1 + E [γSR ]), which
on simplification results in E [γSR ] > E [γSA ] (E [γSA ] + 2).

Now we prove part (ii) of the lemma. As
FPrRA+PrSA = Pr

(
1
2 log2 (1 + γSA + γRA) > R0

)
, FPrSA

< FPrRA+PrSA is equivalent to Pr (log2 (1 + γSA) > R0) <
Pr (log2 (

√
1 + γSA + γRA) > R0). Due to monotonically

increasing nature of log (·) function, this condition implies
that we need to show that the random variable 1 + γSA
is lower than random variable

√
1 + γSA + γRA , where

γSA , γRA ≥ 0. Therefore, for a given γSA this condition
reduces to γRA > γSA (1 + γSA). To gain further insight,
we consider the expected approximation of this relationship
given by: E [γRA ] > E [γSA ] (1 + E [γSA ]). This condition
poses an upper bound on α given by:

α <
PhARNs+EiR−P

tx
con−E

rx
con−R0E

rx
bit

PhARNs

− (NsPhAS−P
tx
con)GA(1+E[γSA ])(dSR)

n

PhARNsGR(dSA)
n . (A.1)

As minimum α = 0 can be achieved in IR mode, it gives the
maximum value of E [γRA ].

APPENDIX B
PROOF OF THEOREM 1

1) Log-concavity of FPrSR in E [γSR ]: Using composite
definition for CCDF FPrSR = (F1 ◦ F2)

(
µPSR

)
, where F1

(
F2

(
µPSR

))
=Q1

(√
2KSR ,

√
F2

(
µPSR

))
and F2

(
µPSR

)
,

2(KSR+1)σ2

(22R0−1)
−1
µPSR

, log-concavity of FPrSR in µPSR requires:

∂2 log(F1(F2))
∂µPSR

2 =

(
∂F2

∂µPSR

)2 [
1
F1

∂2F1

∂F2
2
−
(

1
F1

∂F1

∂F2

)2
]

+ 1
F1

∂2F2

∂µPSR
2
∂F1

∂F2
≤ 0. (B.1)

As generalized Marcum Q-function Qν

(√
a,
√
b
)

is log-
concave in b ∈ [0, 1) ∀ν ≥ 1, a ≥ 0 [36], [37], non-
negativity of KSR , R0, and σ2

µPSR
implies log-concavity of

F1 (F2) = Q1

(√
2KSR ,

√F2

)
in F2. This shows that first

summation term in (B.1) is non-positive because ∂2 log(F1)
∂F2

2
=

1
F1

∂2F1

∂F2
2
−
(

1
F1

∂F1

∂F2

)2

≤ 0. Also from [37], FPrSR =

F1 (F2) = Q1

(√
2KSR ,

√F2

)
is strictly decreasing in F2.

This implies that FPrSR ∈ [0, 1] is positive increasing function
of µPSR because ∂F2

∂µPSR
< 0. Finally using ∂2F2

∂µPSR
2 =

4(KSR+1)(22R0−1)σ2

µPSR
3 ≥ 0, log-concavity of positive increasing

FPrSR in scaled transformation E [γSR ] =
µPSR
σ2 is proved.

2) Log-concavity of FPrRA+PrSA in E [γRA + γSA ]: First
observe that MGF ΦPr is strictly log-concave in µP , i.e.,
∂2 log(ΦPr )

∂µ2
P

= −ν
2(2K2+3K−ιµP ν+1)

(K−ιµP ν+1)3 < 0. As log-concavity
is preserved under composition with affine function [35],
log-concavity of ΦPr1

(
ν,K1, µP1

)
in µP1

also implies
its log-concavity in µP1

+ µP2
. Similarly log-concavity

of ΦPr2
(
ν,K2, µP2

)
in µP2

implies its log-concavity
in µP1

+ µP2
. Also as log-concavity is preserved under

positive product and integration [13], [35], fPr1+Pr2 =
∞∫
−∞

e−ινx

2π ΦPr1
(
ν,K1, µP1

)
ΦPr2

(
ν,K2, µP2

)
dν is log-

concave in µP1
+ µP2

. Further FPr1+Pr2 =
∞∫
x

fPr1+Pr2dx

is also log-concave in µP1
+ µP2

. From (20) we note that
FPr1+Pr2 is decreasing function of both µP1

and µP2
.

This proves that FPrRA+PrSA is increasing log-concave in

E [γRA ] ,E [γSA ], and E [γRA + γSA ] =
µP1

+µP2

σ2 .

APPENDIX C
PROOF OF THEOREM 2

Before providing the proof for Theorem 2, we present two
useful results in Lemma 5 and 6.

Lemma 5: The product FPrSR · FPrRA+PrSA is a positive
log-concave function of α, ∀µ0 > 0.

Proof: Let us consider pIR
out = 1 − [(G1 ◦ H1) (α)] ·

[(G2 ◦ H2) (α)], where the composite functions
(G1 ◦ H1) (α) = FPrSR and (G2 ◦ H2) (α) = FPrRA+PrSA .
So, G1 = FPrSR is a function of E [γSR ] and
G2 = FPrRA+PrSA is a function of E [γRA + γSA ]. Whereas
H1 = E [γSR ] and H2 = E [γRA + γSA ] are functions of α.
Next we prove log-concavity of G1 (H1 (α))G2 (H2 (α)).

∂2 log2[G1(H1(α))G2(H2(α))]
∂α2 =

[
G′1(H1(α))H′′1 (α)
G1(H1(α)) +

G′2(H2(α))H′′2 (α)
G2(H2(α))

]
︸ ︷︷ ︸

first term

+
2∑
i=1

[H′i(α)]
2

[
Gi(Hi(α))G′′i (Hi(α))−[G′i(Hi(α))]

2

[Gi(Hi(α))]2

]
︸ ︷︷ ︸

second and third terms

(C.1)

where G′1 (H1(α)) =
∂FPrSR
∂E[γSR ]

, G′′1 (H1(α)) =
∂2FPrSR
∂E[γSR ]

2 ,

G′2 (H2(α)) =
∂FPrRA+PrSA
∂E[γRA+γSA ]

, G′′2 (H2(α)) =
∂2FPrRA+PrSA

∂E[γRA+γSA ]
2 ,

H′1(α) =
∂E[γSR ]
∂α , H′′1 (α) =

∂2E[γSR ]
∂α2 , H′2(α) =

∂E[γRA+γSA ]
∂α , and H′′2 (α) =

∂2E[γRA+γSA ]
∂α2 . Observe that

the second and third terms in (C.1) are non-positive because
∂2G1
∂H2

1
=
G1(H1(α))G′′1 (H1(α))−[G′1(H1(α))]

2

[G1(H1(α))]2
≤ 0 and ∂2G2

∂H2
2

=
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G2(H2(α))G′′2 (H2(α))−[G′2(H2(α))]
2

[G2(H2(α))]2
≤ 0 due to log-concavity of

G1 = FPrSR in H1 = E [γSR ] and G2 = FPrRA+PrSA in
H2 = E [γRA + γSA ] as proved in Theorem 1. Further from
Corollary 2 and Lemma 4, we note that H1 = E [γSR ] and
H2 = E [γRA + γSA ] are concave functions of α for µ0 > 0.
So in first term of (C.1), H′′1 (α) ≤ 0 and H′′2 (α) ≤ 0. Also
from Theorem 1, G1 and G2 are positive increasing functions of
H1 and H2 respectively. So in first term, G′1 (H1(α)) > 0 and
G′2 (H2(α)) > 0, which proves ∂2 log2[G1(H1(α))G2(H2(α))]

∂α2 ≤ 0,
∀µ0 > 0, because it is sum of three non-positive terms.
For µ0 ≤ 0, log-concavity of FPrSR ·FPrRA+PrSA in α may
not hold, so following result is given.

Lemma 6: For µ0 ≤ 0, αgER ≤ α ≤ αgIR , FPrSR ·
FPrRA+PrSA is a pseudoconcave function of α.

Proof: To prove pseudoconcavity [34], we show that
FPrSR · FPrRA+PrSA is unimodal in α.

∂FPrSR
·FPrRA+PrSA
∂α =

[
−2NsPhARGRGA

(dRA)
n

∂FPrRA+PrSA
∂E[γRA ]

+
(

2 +
µ0µPAS√

αβµPAS
µPRS

)
µPRSGSMj

(
GA

(dSA)
n

∂FPrRA+PrSA
∂E[γSA ]

+ GR
(dSR)

n

FPrRA+PrSA
FPrSR

∂FPrSR
∂E[γSR ]

)]
βλ2FPrSR

32π2σ2 . (C.2)

Using (C.2), the critical point of FPrSR · FPrRA+PrSA with
respect to α is given by:

αoutcri ,

{
α

∣∣∣∣ √α = µ0

2

√
µPAS

µPRS
β

[
µPRS −Ψ

]−1
}
,(C.3)

with Ψ ≥ µPRS to ensure
√
α ≥ 0. Here Ψ ,

PhARNsGAGR
(dRA)

n

∂FPrRA+PrSA
∂E[γRA ]

[
GSµPRSMj

(
GA

(dSA)
n

∂FPrRA+PrSA
∂E[γSA ]

+
∂FPrSR
∂E[γSR ]

FPrRA+PrSA
GR

FPrSR (dSR)
n

)]−1

. From increasing nature of Ψ in α ∈

[αgER , αgIR ] ∀µ0 ≤ 0 (cf. Proposition 1),
µ0
√
µPAS

µPRS

2
√
β
(
µPRS

−Ψ
) is

decreasing in α. Further as
√
α is strictly increasing in α, if

∃αoutcri ∈ [αgER , αgIR ], then it has to be unique because a strictly
increasing and strictly decreasing function can cross each other
only at a single point. This proves that FPrSR · FPrRA+PrSA
is positive pseudoconcave in α ∈ [αgER , αgIR ] for µ0 ≤ 0.

Proposition 1: For µ0 ≤ 0, Ψ, as defined below (C.3) in
Lemma 6, is an increasing function of α ∈ [αgER , αgIR ] because

of the following reasons: (i)
∂FPrRA+PrSA

∂E[γRA ]
is a increasing

function of α, (ii)
∂FPrRA+PrSA

∂E[γSA ]
is a decreasing function

of α, (iii) FPrRA+PrSA is decreasing in α, (iv) FPrSR is a

increasing function of α, and (v)
∂FPrSR
∂E[γSR ]

is decreasing in α.

Proof: From Theorem 1, we note that FPrSR and
FPrRA+PrSA are positive increasing log-concave functions

of E [γSR ] and E [γRA + γSA ] respectively. Also,
∂E[γRA ]

∂α =

− GAλ
2

(4π)2σ2

βGRNsPhAR
(dRA)

n shows that E [γRA ] is strictly decrea-

sing in α. Using these we observe that, though FPrRA+PrSA
is positive increasing function of E [γRA ], its rate of increase

is decreasing in E [γRA ], i.e.,
∂FPrRA+PrSA

∂E[γRA ]
is decreasing

function of E [γRA ]. Or in other words,
∂FPrRA+PrSA

∂E[γRA ]
is in-

creasing function of α because E [γRA ] is a strictly decreasing
function of α. This proves part (i). Similarly, as E [γSA ] is an

increasing function of α,
∂FPrRA+PrSA

∂E[γSA ]
is decreasing function

of α, which proves part (ii). So, numerator of Ψ is increasing
in α because it is product of positive constant PhARNsGAGR

(dRA)
n

and a positive increasing function
∂FPrRA+PrSA

∂E[γRA ]
.

Next we show that denominator GSµPRSMj

(
GA

(dSA)
n

∂FPrRA+PrSA
∂E[γSA ]

+
∂FPrSR
∂E[γSR ]

FPrRA+PrSA
GR

FPrSR (dSR)
n

)
of Ψ is a decre-

asing function of α. FPrRA+PrSA is a decreasing function
of α because E [γRA + γSA ] is decreasing in α ∀µ0 ≤ 0 and
α ≤ αgIR (cf. Lemma 4). This proves part (iii) of Proposition 1.
From Theorem 1, FPrSR is positive increasing function of
E [γSR ], and hence increasing function of α also because
E [γSR ] is increasing in α. This proves part (iv). However
its rate of increase is decreasing in E [γSR ]. Or in other

words,
∂FPrSR
∂E[γSR ]

is decreasing function of α because E [γSR ]

is a strictly increasing function of α, which proves part (v).
Observing results (ii)–(v), along with the fact that sum and
product of positive decreasing functions is also decreasing,
we note that the denominator of Ψ is decreasing in α. Finally,
as the ratio of positive increasing and decreasing functions is
an increasing function, Ψ with its numerator and denominator
respectively being positive increasing and decreasing functions
of α proves that Ψ itself is positive increasing in α.

Now we use the above two results to prove Theorem 2.
From Lemma 5 we note that FPrSR ·FPrRA+PrSA is positive
log-concave function of α ∈ [0 , 1] , ∀µ0 > 0. Further as
a positive differentiable log-concave function defined over
a convex set is pseudoconcave in nature [13, Lemma 5],
FPrSR · FPrRA+PrSA is also pseudoconcave in α, ∀µ0 > 0.
From Lemma 6, we observe that FPrSR · FPrRA+PrSA is
pseudoconcave function of α ∈ [αgER , αgIR ]. This proves that
pIR
out = 1 − FPrSR · FPrRA+PrSA is a positive pseudoconvex

function of α ∈
{

[0 , 1] , µ0 > 0

[αgER , αgIR ] , µ0 ≤ 0.
Thus, pseudocon-

vexity of objective function along with convexity of C2–C3
and [38, Theorem 4.3.8] shows that (P2) has unique global-
optimal α∗ ∈ [αgER , αgIR ] that minimizes pIR

out.
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