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Abstract: Self-sustainability of wireless sensor nodes is the need of the hour to realise ubiquitous wireless networks. To this end,
the authors investigate practical feasibility of a sustainable green sensor network with solar-powered nodes. They propose simple-
yet-efficient (i) analytical circuit model for solar-assisted supercapacitor charging and (ii) statistical model for characterising the
solar intensity distribution. Combining these circuit and statistical models, they derive a novel solar charging rate distribution for
supercapacitor. For analytical insights, they also propose an ideal diode-based tight approximation for the practical supercapacitor
charging circuit model. Accuracy of these proposed analytical models are validated by extensive numerical simulations based on real-
world solar intensity profile and panel characteristics. The derived solar charging rate distribution is used to investigate the energy
outage probability of a sensor node for a given sensing rate. The results suggest that, for an energy outage probability of 0.1, at
New Delhi, a 40 F supercapacitor and a 3 W solar panel can support the operation of Waspmote with six on-board gas sensors at a
rate of 65 samples per day. Furthermore, they use the proposed models to estimate the practical supercapacitor and panel sizes for
sustainable operation at different geographical locations with varying sensing rate.

1 Introduction

Miniaturization of sensors has made wireless sensor network
(WSN) technology available for applications such as toxic gas
sensing, video surveillance. However, the energy consump-
tion of these sensors often surpasses that of highest energy
consuming component (radio) of a traditional wireless sensor
node [1]. Energy harvesting has emerged as a potential green
solution to address this demand [2]. Among the available
ambient sources for harvesting, solar energy has the high-
est power density and though solar energy is uncontrollable,
it can be predicted as a function of location and time [3–
5]. Such a useful energy source, when characterized properly
can meet the device’s energy demand with minimal hardware
resources, i.e., solar panel and supercapacitor sizes.

Although there exists many recent deployments [6, 7] of
such WSN with high energy consuming sensors, feasibility of
a sustainable operation of such network with the available
resources needs to be evaluated for a given location before
the actual deployment of nodes. In this work, an air pollu-
tion monitoring WSN has been considered where the nodes
harvest solar energy for sustainable operation.

1.1 Motivation and Scope

In order to optimally use the harvested energy, [8–10] focus
on developing transmission policies rather than how the
energy is harvested. The study in [11] considered that the
harvested energy is proportional to the solar intensity. How-
ever, this assumption is not very practical as the present
generation solar energy harvesting nodes use supercapacitors,
where the rate of harvesting depends on the residual voltage
in the supercapacitor apart from the available solar inten-
sity. A simulation model for charging a supercapacitor using
solar panel was developed in [3]. Instead of using practical
solar panel models [12, 13], the study in [3] used a sim-
ple model, and the charging parameters were found through
experiments. So, there is a need to develop an analytical
charging model for a solar harvesting sensor node to eval-
uate its performance directly from the parameters available
in the solar panel datasheet, solar intensity distribution at

the location of deployment interest, and the sensor node’s
energy consumption. Moreover, dimensioning of solar panel
and supercapacitor sizes for WSN applications is still missing
in the literature.

In this work we address this gap by proposing simple, yet
practical, analytical models to accurately characterize the
sustainability of a solar energy harvestingWSN node. Though
for analysis we consider a periodic data collection applica-
tion [14] where the sensor nodes are equipped with wake-up
receiver for green data communication, the findings are appli-
cable to sustainability studies of any solar harvesting WSNs
irrespective of the type of data collection.

1.2 Contributions

The key contributions of this work are as follows:

1. A novel distribution model is proposed to characterize the
spatio-temporal randomness of solar intensity which can be
used at any geographical location on earth.
2. Solar charging rate of supercapacitor is derived for two
circuit-level analytical models of solar panel.
3. Solar charging rate distribution and energy outage prob-
ability are derived using solar intensity distribution models,
which are also validated by simulations.
4. Numerical investigation on the tradeoff between energy
outage and sustainable sensing rate is carried out at different
places with widely varying solar intensity profiles.
5. Insights on practical supercapacitor and solar panel sizes
required to meet a sustainable rate demand are presented.

2 Prior Art

2.1 WSN architectures for solar energy harvesting

Solar energy harvesting WSN deployments can either be
indoors [15] or outdoor [6], where data is typically collected
by the base station via multi-hop data transfer. In order to
increase the lifetime of WSN, the nodes are grouped into clus-
ters and the cluster-heads aggregate the data from its cluster
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Fig. 1: Circuit for charging a supercapacitor using solar panel.

nodes and sends it to remote base station. Dynamic cluster-
ing via LEACH protocol [16] helps in further increasing the
lifetime. However, such protocols may not be needed in solar
energy harvesting WSNs as they harvest sufficient energy.
Recently, there have been proposals to use heterogeneous
nodes, where the cluster-heads harvest solar energy, while the
nodes in the cluster harvest energy from RF waves either sent
by cluster-heads or by a mobile entity [17]. However, the high
energy consuming nodes for air pollution monitoring WSN
require solar energy to support its high energy consumption.
In this work we consider all nodes are equipped with solar
panels, and a mobile entity collects data from each node so
that not much energy is wasted during data communication.

2.2 Solar energy harvesting circuitry

Earlier designs of nodes with solar energy harvesting capa-
bility used to have rechargeable batteries [18–20]. With the
advancement in the supercapacitors, modern sensor node
design incorporates them as their primary energy reservoir of
energy and a battery as a secondary energy storage in order
to prevent energy outage [21, 22]. Further, in the sensor node
design mentioned in [23–26], only a supercapacitor supports
the operation of the node. In all these mentioned works, a
solar panel is connected to the energy reservoir (battery or
supercapacitor) through an external diode D1 as shown in
Fig. 1. D1 prevents the energy reservoir from discharging
through the solar panel and thereby protects solar panel. In
order to have a low complexity node, majority of the works
on solar harvesting wireless sensor nodes, including commer-
cially available LibeliumWaspmote [27], do not use maximum
power point tracking based charge controller.

2.3 Supercapacitor and solar panel sizing

In [28], a closed-form expression was developed to obtain the
battery size for a solar-energy harvesting WSN node such
that the node attains an energy-neutral operation in long-
term. However, the parameters required in the closed-form
expression have to be found experimentally. Although the
work in [15] provides insights on the indoor light intensity
and mention that it can be used to find the supercapacitor
size, its calculation is not straight forward. In [29], superca-
pacitor size was computed considering that the energy spent
in activities other than communication e.g., in sensing and
data logging, is zero. This consideration cannot be used in
energy harvesting applications where consumption due to
sensing is significantly higher compared to that of radio. The
work in [30] reported computation of number of batteries
and solar panels that are required to maintain the operation
of a solar-powered cellular base stations using average solar
intensity. However, these findings cannot be used directly
in WSNs due to their significantly different form-factor and
power consumption requirements as compared to that of a
cellular network. Also for solar harvesting WSN applications,

instead of calculating the required number of solar panels,
focus should be on the number of solar cells required which
make up a solar panel.

3 System Model and Problem Definition

In this section we first outline the WSN architecture consid-
ered along with the energy consumption model adopted at
the sensor node. Next we discuss the characteristics of solar
power communication, followed by the objective of this work.

3.1 Network Architecture and Energy Consumption Model

We consider a pollution monitoring application, where static
nodes are deployed to sense and store the air quality data of
a field, while a mobile entity visits each node sequentially
and collects the sensed data. Apart from the basic build-
ing blocks, i.e., ultra-low power micro-controller, sensing unit,
communication unit, and memory, a field node is considered
equipped with a passive wake-up receiver [31, 32], solar panel,
and a supercapacitor. The mobile entity contains a wake-up
transmitter and a wireless gateway for data collection [33].

In order to increase its lifetime, a sensor node operates in
a duty-cycled fashion, i.e., it alternates between sleep state
with a very low consumption and active state during which
it senses and logs data. The node’s sensing duty cycle (Dc)
with Nsn on-board sensors and sensing rate of rs samples per
day is given by Dc = rs(tNsn

r +Nsntw)
td

, where tNsn
r is the sum

of response times of Nsn sensors, tw is the time for logging
one sensor sample and td is the duration of a day in seconds.

After arriving at the node, the mobile entity sends a wake-
up signal. Upon wake-up, the node switches on its radio into
receive mode. On successful reception of a hello message from
the mobile entity, the node sends an acknowledgement along
with the status of stored data. This two-way handshake com-
pletes the data transfer by the node. The average power
consumption (Pavgcons) of a sensor node is given by (1), where
fent is the frequency of arrival of mobile entity at a node,
PNsn
se is the average power consumption ofNsn sensors during

sensing. Pw and Psl are the average power consumptions dur-
ing data logging and sleep state, respectively. Po and to are
respectively the average power and time for communication
(both handshaking and sensed data transfer).

3.2 Solar Powered Communication

Availability of abundant solar energy during sunlight hours
and a solar energy harvester (solar panel) offers the poten-
tial for perpetual operation of energy-constrained wireless
sensor nodes. From (1) it can be inferred that the node’s
power consumption increases with the number on-board sen-
sors Nsn and the sensing rate rs, which ultimately leads to an
increase in consumption due to storing and transferring the
sensed data. In order to continuously support the operation
of node, drained energy of the node’s supercapacitor needs to
be replenished using the energy harvested by the solar panel.

Energy is harvested via a solar panel, which acts as a volt-
age limited current source [12]. Generated solar current of a
panel at any time is a function of available solar intensity (G).
The maximum voltage to which the solar panel can charge an
energy storage device is strongly impacted by number of solar
cells (NS) connected in series. Due to loss of the generated
energy by the series and the shunt resistances (respectively
denoted by RS and RP ), the output current (IM ) and voltage
(VM ) of the solar panel are lesser than their original values
at the source.

To characterize the efficacy of solar harvesting system, we
first investigate the solar charging characteristics and pro-
pose a statistical distribution model for the stochastic solar
intensity profile to derive the solar charging rate (Γ) of a
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Pavgcons = td
td + fentto

(
Dc(tNsn

r PNsn
se +NsntwPw)

tNsn
r +Nsntw

+ (1−Dc)Psl

)
+ fenttoPo
fentto + td

. (1)

supercapacitor in a field node. Subsequently, we develop a
mathematical formulation for computing the energy outage
probability pout as a function of Γ and Pavgcons. Finally, we
derive the field node’s sizing parameters, i.e., supercapacitor
value C and the number of series connected solar cells NS .

4 Solar Charging Rate Characterization

As shown in Fig. 1, a supercapacitor C can be directly con-
nected across the solar panel in order to store the available
solar energy [34]. As alluded in Section 2, diode D1 protects
the solar panel from supercapacitor. We consider D1 to be
ideal, i.e., the cut-off voltage V extx for D1 is zero. This is a
reasonable assumption as V extx = 0.15 V for a Schottky diode
which is typically negligible in comparison with the output
voltage VM of a solar panel. Refering to Fig. 1, when this
D1 is forward biased, the voltage VC across supercapacitor
is equal to VM , which is a function of solar intensity G and
charging time t. Solar charging rate Γ can be defined as the
rate of change of voltage VC across the supercapacitor, i.e.,
Γ = dVC

dt . We next discuss the characteristics of a solar panel
before deriving Γ.

4.1 Circuit Model

Behavior of the solar panel in standard testing conditions
(STC), i.e., with G = 1000 W/m2, solar cell temperature
T = 298 K can be analyzed from its datasheet parameters,
such as, open circuit voltage (VOC), short circuit current
(ISC), voltage at maximum power (Vmp), current at max-
imum power (Imp), and number of solar cells in series NS .
However, the working of a solar panel at any given operating
conditions can be analyzed only using the equivalent circuit
models for solar cells as in [12] [13]. Solar panel with NS solar
cell unit in series acts as a resultant solar cell with series resis-
tance, shunt resistance, and diode ideality factor NS times
that of the original solar cell unit [12]. Using Kirchoff’s laws
for the equivalent circuit of solar panel shown in Fig. 1, it
can be inferred that the solar panel output voltage VM and
current IM are governed by the following relationships:

IM = Iirr − I0
(

exp
[
qVRP

NSnkT

]
− 1
)
−

VRP

NSRP
, (2)

where VRP
= VM + IMNSRS , k and q are respectively the

Boltzmann’s constant and charge of an electron, I0 and n
denote the reverse saturation current and ideality factor for
diode D1. The unknown circuit parameters n, Iirr, I0, RS ,
RP at any operating conditions are related to the circuit
parameters at STC (super-scripted by STC) as follows [12]:

Iirr = ISTCirr

(
G

GSTC

)(
1 + α

′

T

(
T − TSTC

))
, (3a)

I0 = ISTC0

(
T

TSTC

)3
exp
[
ESTCg

kTSTC
− Eg
kT

]
, (3b)

n = nSTC , RS = RSTCS , RP = RSTCP

(
G

GSTC

)
, (3c)

where α
′

T in (3a) is the relative temperature coefficient
of short circuit current and Eg in (3b) is the band
gap energy of silicon diode, given by: Eg = 1.16− 7.02×
10−4T 2 (T − 1108)−1.

For small solar panels used in wireless sensor networks,
α
′

T is rarely given in the datasheet. In [12] it has been
experimentally found out that α

′

T ≈ 0, which we consider
in our subsequent development. Further, we also assume
nSTC = 1.3 as suggested in [35]. The remaining four cir-
cuit parameters at STC

(
ISTCirr , ISTC0 , RSTCS , RSTCP

)
can

be extracted by substituting datasheet parameters in three
equations obtained from equation (2) at the short cir-
cuit condition (VM = 0, IM = ISC), open circuit condition
(IM = 0, VM = VOC), and the maximum power point con-
dition (VM = Vmp, IM = Imp). Finally the expression of
RSTCP is obtained at maximum power point using the con-
dition

(
dP
dVM

= 0, VM = Vmp, IM = Imp
)
and substituting

datasheet parameters in it. Note that P = VM IM is the power
of solar panel. Further, after re-arranging the terms in (2), IM
can be written as a function of VM as:

IM = A−B
qNSRSReff

, (4a)

where A = qRS(IeffNSRP − VM ), (4b)

B = knTNSReffW

 exp
[

qRP [Ieff NS RS +VM ]
knNS T Reff

]
qI0RPRS

knReffT

 ,
(4c)

Ieff = I0 + Iirr, Reff = RS +RP , (4d)

and W(·) is the Lambert function [36].
For gaining more insights on the solar panel behaviour, we

consider a special case of solar panel that is discussed next.

4.2 Solar Charging Rate for Practical Solar Panel Model

Since the supercapacitor is in series with the solar panel when
D1 is forward biased, input charging current of the superca-
pacitor (IC) is same as that of the output current IM of the
solar panel. Therefore, IC = IM = C dVC

dt .
From equations (9) and (4a) we have the solar charging

rate Γp for the practical solar panel model as:

Γp = dVC
dt

= A−B
qNSRSReffC

∣∣∣∣
VM =VC

. (5)

Useful insights can be obtained when the composite Lam-
bert function present in the expression of B (cf. (5) and
(4c)) is replaced with a simpler function. Next, we propose an
approximation function for the composite Lambert function.
Additionally, we show later how it can be used to analytically
derive the output voltage of the solar panel until which the
approximate solar panel model is valid.

Proposition 1. The composite Lambert function of VC in
(4c) can be approximated with a Gaussian function as:

B ≈ knTNSReff (a11G+ a12) exp

[
−
(
VC − bavg1
cavg1

)2
]
, (6)

where a11, a12, bavg1 , cavg1 are functions of solar intensity G.
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Table 1 System parameters for 3 W panel at STC.
Parameter Symbol Value

Parameters of solar panel from datasheet
Maximum power PST C

max 3 W

Voltage at PST C
max V ST C

mp 6.9 V

Current at PST C
max IST C

mp 0.44 A

Short circuit current IST C
SC 0.47 A

Open circuit voltage V ST C
OC 8.49 V

Number of cells NS 14

Derived parameters of solar cell unit

Series resistance RST C
S 0.04891 Ω

Parallel resistance RST C
P 2207.82 Ω

Solar current IST C
irr 0.47001 A

Reverse saturation current IST C
0 6.0234 nA

Proof: Below, we propose a tight Gaussian approximation for
the composite Lambert function in B as defined in (4c).

B

knTNSReff
≈ a1 exp

[
−
(
VC − b1
c1

)2]
, (7)

Here the variable a1 is a linear function of solar intensity G
and variables b1 and c1 have negligible minor variations with
G. Therefore, the Gaussian function shown in right hand side
of equation (7) can be replaced by a similar Gaussian function
with new values of a1 (denoted by anew1 ), and both b1, c1
replaced with their average values bavg1 , cavg1 , respectively.
Moreover, it is found that anew1 can be fitted into a linear
function of G, i.e., anew1 ≈ a11G+ a12, where a11 and a22
are constants. So, (7) can be rewritten as:

a1 exp
[
−
(
VC−b1
c1

)2]
≈ (a11G+ a12) exp

[
−
(
VC−bavg

1
cavg

1

)2
]
.

(8)
Validity of this proposition is demonstrated for a 3 W solar

panel whose parameters are listed in Table 1. The tempera-
ture of solar cell is considered to be T = 298 K. As shown
in equation (3a), Iirr and RP vary with solar intensity G.
Simulation results suggest that the parameters b1 and c1
respectively can be replaced with their averages bavg1 = 11.62,
cavg1 = 2.076, whereas anew1 = 0.002828G+ 4.091 is obtained
by using a linear fit for a1 as a function of solar intensity G.
Fig. 2 shows the composite Lambert function and its corre-
sponding Gaussian function for different values of G obtained
using bavg1 , cavg1 and the the linear fit for anew1 . Inset figure
clearly shows a good match between the composite Lambert
function in B and the Gaussian fitting function. �

Next, to gain further analytical insights on charging rate in
practical solar panel model we propose a tight approximation.

4.3 Approximate Solar Panel Model

To get a closed-form expression for solar charging rate we
propose an approximation for practical solar panel model fol-
lowing the approximate diode model [37] for diode D2. As
per the approximate diode model, the reverse saturation cur-
rent I0 for diode D2 is zero below its cut-off voltage (V intx ).
As a number of solar cells are connected in series inside the
solar panel, D2 typically has a cut-off voltage V intx which is
much higher than the cut-off voltage V extx of D1. Next we
explain how the expression for solar charging rate gets sim-
plified whenD2 is either reverse biased or forward biased with
I0 = 0 assumption.
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Fig. 2: Gaussian fitting function for Lambert function of VC .

By putting I0 = 0 in (4a), the output voltage VM and
current IM in approximate solar panel model are related as:

IM = IirrNSRP − VM
NSReff

. (9)

Fig. 3 shows the VM–IM characteristics of a 3 W solar
panel; the panel parameters are listed in Table 1. At different
intensities the performance of practical and approximate solar
panel models are shown using solid and dashed lines, respec-
tively. Square boxes in Fig. 3 indicate the cut-off voltage V intx
of D2 of solar panel which is determined considering that the
output current difference between the two solar panel mod-
els is less than 10−3. Note that, V intx > 5 V, which is much
higher than the cut-off of D1 V

ext
x = 0.15 V for zener diode.

When forward bias voltage of the diode D2 is below V intx ,
D2 acts as an open circuit, during which most of the gener-
ated solar current Iirr flows to the supercapacitor due to a
large value of shunt resistance RP . However, when the for-
ward bias of the D2 is above V intx , D2 acts as a short circuit
and all the generated solar current flows through it. There-
fore, when D1 is forward biased, the supercapacitor charges
only during the reverse bias of D2 and the maximum voltage
(V max
C ) to which the supercapacitor charges is equal to V intx .
After rearranging the terms of (9) and integrating, we get:

tac = CNSReff ln
(
NSRP Iirr − Vres
NSRP Iirr − VC

)
, (10)
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Fig. 3: Output characteristics of solar panel.
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where tac is the time taken for the supercapacitor to charge
from its residual voltage Vres to final voltage VC . Note that
(10) is valid only when VC > Vres, i.e., when D1 is for-
ward biased. After re-arranging the terms in (10), VC can
be written as a function of time t or tac . So, VC = (Vres −
NSRP Iirr) exp

[
−t

CNSReff

]
+NSRP Iirr when the D1 for-

ward biased and VC = Vres when the D1 reverse biased.
Based on this, the solar charging rate Γa for approximate
solar panel model is given as:

Γa = dVC
dt

= NSRP Iirr − Vres
CNSReff

exp
[

−t
CNSReff

]
. (11)

The approximate model of solar panel is obtained by using
the approximate model for diode D2; its reverse saturation
current is 0 below the cut-off voltage V intx . From Fig. 1, it
can be noted that the voltage across D2 is dependent on
voltage VC of the supercapacitor C. Since D1 is considered
to be ideal, when the VC < V intx , D2 is reverse-biased. There-
fore, no solar current flows through D2 and during this time
the supercapacitor C charges. Moreover, it ceases to charge
once its voltage VC close to V intx , during which all the solar
current flows through the diode D2. Therefore, the closed
form equation of supercapacitor voltage evolution is valid
only when the output solar panel voltage VM is below D2’s
cut-off voltage V intx . V intx can be found by making the current
across the D2 to be negligible. In other words, V intx is the bias
voltage value until when B (defined in (4c)) is negligible with
respect to A (defined in (4b)). This can be mathematically
written as:

B � A, or,B < min{A}. (12)

We get min{A} when VC = V intx . By considering that B is
always below the lowest value of A by an acceptable value x,
(12) can be re-written as:

B = min{A} − x. (13)

By equating (13) and (6) and re-arranging the terms, we get
the maximum voltage V max

C up to which a supercapacitor is
charged using the approximate solar panel model:

V max
C = bavg1 + cavg1

√
ln
[
knTNSReff (a11G+ a12)

min{A} − x

]
.

(14)
Note that VmaxC is equal to V intx since VmaxC is also same
as the maximum voltage till which approximate solar panel
model is valid. This development will be used later in
Section 6 for the harvested energy characterization.

5 Proposed Solar Intensity Distribution

In this section we model the empirical solar intensity readings
obtained from the publicly available data-sets provided by
National Renewable Energy Laboratory (NREL) [38].

5.1 Empirical Dataset for Solar Intensity Profile

A solar intensity distribution model can be developed based
on the intensity data collected at different times of day [30].
To this end, from the solar intensity dataset of a particular
location obtained from the NREL dataset [38], we develop
a single distribution model for characterizing the intensity
profile. For example, we consider all available hourly intensity
G values for New Delhi, over 15 years (2000− 2014) to find
a single solar panel size that is suitable for all solar intensity
conditions. We next present how these samples can be well
fitted into a polynomial-fit based mixture distribution.

5.2 Polynomial-fit Based Mixture Distribution

We observe that the solar intensity G = 0 during night. As
this corresponds to nearly half the 24-hour duration of a day,
the probability of solar intensity being 0 is maximum (≈ 0.5)
out of all other intensity values. Therefore, the probability
density function (PDF) of solar intensity G is captured by
the summation of weighted dirac-delta function δ(·) defined
for the solar intensity G value 0 and the weighted polynomial
function fp defined over rest of the positive intensity values.
PDF fpolG = Pr [G = g] of solar intensity G is given by:

fpolG (g) = wdδ(g) + wpf
pol(g), with wd + wp = 1, (15a)

Here wd, wp are the positive weights associated respectively
with dirac-delta and polynomial functions, and they represent
the relative frequencies of various solar intensity values. For
example, the available data from New Delhi shows that the
probability of occurrence of solar intensity value g = 0 is wd =
0.5076. Thus, wp = 0.4924. Further,

δ(g) =
{

1, g = 0
0, otherwise, (15b)

fpol(g) =
m∑
i=0

qig
m−i, 0 < g ≤ max{g}. (15c)

where m denotes the order of polynomial function and qi is
the ith coefficient of the polynomial.

5.3 Validation of Proposed Distribution Model

The order of the polynomial and its coefficients depend on
the required goodness-of-fit of the distribution. We have per-
formed fitting using least squares algorithm so that the area
under the curve over 0 < G < max{G} is equal to 1. From
the available New Delhi data set with max{G} = 988, Fig. 4
shows the polynomial fit of solar intensity with m = 20.
Goodness-of-fit parameter values of 0.000088 and 0.999969
respectively in terms of Root Mean Square Error and R-
square validate that there is negligible error between the
actual and the polynomial-fit based mixture distribution.

The cumulative distribution function (CDF) F polG of solar
intensity at New Delhi region using a polynomial-fit based
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Fig. 4: Validation of polynomial-fit based mixture distribu-
tion of G.
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mixture distribution is given by:

F polG (ϕ) = Pr(G ≤ ϕ) =
ϕ∫
0

fpolG (g)dg

=


0 ϕ < 0
0.5076 0 ≤ ϕ < 0+

0.5076 + 0.4924
20∑
i=0

qiϕ
21−i

21−i 0+ ≤ ϕ ≤ 988

1 ϕ ≥ 988.

(16)

6 Stochastic Harvested Energy Characterization
and Its Applications

For harvested energy characterization, we first derive the
solar charging rate distribution with both approximate and
practical models, where we use the results of circuit analy-
sis in Section 4 and solar energy distribution model proposed
in Section 5. Then, we derive the energy outage probability
and estimate the practical supercapacitor and panel sizes to
enable sustainable solar harvesting network operation.

6.1 Solar Charging Rate Distribution

6.1.1 Solar Charging Rate Distribution FΓa
using Approxi-

mate Solar Panel Model: Using (11), the CDF FΓa
(γa) of

charging rate Γa in case of approximate solar panel model is
given by:

FΓa
(γa) = Pr[Γa ≤ γa]

= Pr
[
Iirr ≤

Vres
NSRP

+
γaCReff
RP

exp
[

t

CNSReff

]]
,

(17a)

which on using (3a) reduces to:

FΓa
(γa) = Pr[G ≤ ζ] = FG(ζ). (17b)

Here FG is the CDF of solar intensity G, and ζ is defined as:

ζ ,
GSTC

(
Vres + γaNSCReff exp

[
t

CNSReff

])
NSRP I

STC
irr

(
1 + α

′
T (T − TSTC)

) (17c)

6.1.2 Solar Charging Rate Distribution FΓp
using Practi-

cal Solar Panel Model: FΓp
(γp) is derived similarly as the

derivation of FΓa
(γa). To obtain a closed-form expression for

FΓp
(γp), we use the tight approximation (7) for the composite

Lambert function in (5). The CDF FΓp
(γp) of solar charging

rate Γp is given by:

FΓp
(γp) = Pr[Γp ≤ γp] = Pr[G ≤ ν] = FG(ν), (18a)

where ν is given by (18b) in which VC depends on Γp (cf.
(5)).

6.2 Energy Outage Probability (pout)

If VC(t) is the voltage across the supercapacitor at time t,
the voltage at time t+ ∆t is given by:

VC(t+ ∆t) = VC(t) + Γ∆t

−

(
VC(t)−

√
V 2
C(t)− 2Pavgcons∆t

C

)

= Γ∆t+

√
V 2
C(t)− 2Pavgcons∆t

C
. (19)

where Pavgcons is the average power consumption of the wireless
sensor node and Γ is the solar charging rate. Energy outage
occurs when VC(t+ ∆t) is lower than the minimum threshold
voltage Vl of the supercapacitor, or in other words, when
Γ < Ψ, where:

Ψ ,
Vl −

√
V 2
res − 2Pavg

cons∆t
C

∆t , (20a)

where, Vres is the residual voltage of supercapacitor. Using
(20a), the energy outage probability pout can be written as:

pout = Pr[Γ < Ψ] = FΓ(Ψ). (20b)

Therefore, pout in the two cases of the model are given by:

pout =

{
FΓa

(Ψ) = FG(ζ)
∣∣
γa=Ψ, Approximate

FΓp
(Ψ) = FG(ν)

∣∣
γp=Ψ, Practical. (20c)

6.3 Solar Panel Size Estimation

The load connected in parallel to the supercapacitor of Fig. 1
needs a minimum voltage V min

load to operate, and it works
till the voltage across it is within a maximum V max

load . For
example, Waspmote [27] operates between V min

load = 3.3V and
V max
load = 4.2V . Similarly, there is a lower voltage limit V min

C
below which capacitor should not be discharged, while it
should not be charged above a maximum voltage level V max

C .
For example, a Taiyo Yuden LIC1235RS3R8406 supercapac-
itor [39] has V min

C = 2.2V and V max
C = 3.8V . We define the

voltages Vmax and Vmin as follows:

Vmax , min{V max
C , V max

load } (21a)

Vmin , max{V min
C , V min

load}. (21b)

For an energy harvesting wireless sensor node deployed
at a location whose maximum solar intensity is Gmax, the
number of series connected solar cells Np

S needed in case of
a practical solar panel model can be found by substituting
VM = Vmax + V extx , IM = 0, T = Tref , G = Gmax in (2), and
solving for Np

S . The conditions used to find Np
S for practical

solar panel ensures that the supercapacitor can be charged
up to a maximum voltage of Vmax.

In order to ensure the validity of approximate solar panel
model in an average sense and also charge the supercapacitor

ν =
qRS [VC − I0NSRP ] +GSTCNSReff

[
γpqRSC + knTa12 exp

(
−
[
VC−bavg

1
cavg

1

]2)]
qNSRPRSI

STC
irr

[
1 + α

′
T

(
T − TSTC

)]
− knTNSReffa11GSTC exp

(
−
[
VC−bavg

1
cavg

1

]2) (18b)
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to a maximum voltage Vmax, solar panel size Na
S should be

such that during sunlight hours, on an average, output voltage
VM of the solar panel has a linear current characteristic for
all the voltages in the range [Vmin, Vmax]. By substituting
VM = Vmax, IM = Iirr −∆I, T = TSTC , G = Gmax in (2),
the unknown quantity Na

S can be calculated. Note that ∆I
is a small value compared to Iirr.

6.4 Supercapacitor Size Estimation

For a fixed solar panel size, we first calculate the supercapac-
itor size C = C1 such that the excess energy can be stored.
Excess energy is the difference between the total energy that
can be harvested and the energy consumed by the load dur-
ing the time when sunlight is available. Additionally, we select
the supercapacitor’s size such that at time t = tstart (i.e., at
the start of day light time) it begins to charge from a voltage
VC(tstart) = Vmin, and by the end of sunlight time t = tend
the supercapacitor builds up its voltage to VC(tend) = Vmax.

By taking expectation on both sides of (19) we get:

E[VC(t+ ∆t)] = E[Γ]∆t+ E

[√
VC(t)− 2Pavgcons∆t

C1

]
, (22)

where, ∀ t ∈ [tstart, tend −∆t] and the average solar charging
rate E[Γ] is a function of capacitor size, intensity profile, and
solar panel parameters.

The details for finding C1 using the update equation
(22) for an approximate solar panel model are provided in
Algorithm 1.

Although (22) is generic in nature, for practical solar panel
model, solar charging rate Γp can only be expressed in terms
of VC(t+ ∆t) instead of VC(t) and ∆t. Hence, to find C1 suit-
able for a practical solar panel, we re-write (19) by replacing
t with t−∆t and take an expectation on both sides to get:

E [VC(t−∆t)] = E

[√
(VC(t)− Γp∆t)2 + 2Pavgcons∆t

C1

]
(23)

∀ t ∈ [tstart + ∆t, tend]. As solar charging rate Γp for a prac-
tical solar panel is a complex function of solar intensity G
(cf. (5), (4b), and (6)), the right hand side of (23) is hard to
compute after transformation of random variable G. Next we
discuss some approximations to find the bounds for C1.

The upper bound Cu1 is obtained when the available solar
energy is stored such that there is no consumption by the

Algorithm 1 Estimating C1 for approximate solar panel
model.
Input: Solar intensity dataset D, solar panel parameters,

Vmax, Vmin, Pavgcons
Output: Supercapacitor size C1

1: tend = ∆t
⌈

86400
∆t ×

|D>0|
|D|

⌉
2: Z1 = RP I

ST C
irr

C1ReffGST C exp
(

−∆t
C1NSReff

)
3: Z2 = 1

C1NSReff
exp
(

−∆t
C1NSReff

)
4: Set t← 0, VC(t)← Vmin

5: for i ∈
{

1, . . . , tend∆t

}
do

6: E[Γa]← Z1E [G > 0]− Z2VC(t+ (i− 1)∆t)
7: E[VC(t+ i∆t)]← E[Γ]∆t+√

VC(t+ (i− 1)∆t)− 2Pavg
cons∆t
C1

8: VC(t+ i∆t)← E[VC(t+ i∆t)]
9: Solve VC(tend) = Vmax to find C1

Algorithm 2 Estimating bounds on super-capacitor size C1
for practical solar panel.
Input: Solar intensity dataset D, panel parameters, Pavgcons

Output: Supercapacitor size C1 ∈ [Cl1, Cu1 ]

1: tend = ∆t
⌈

86400
∆t ×

|D>0|
|D|

⌉
2: Y1 = RP I

ST C
irr

ReffC1GST C , Y2 = RP I0
ReffC1

, Y3 = 1
NSReffC1

, Y4 =
knTa11
qRSC1

, Y5 = knTa12
qRSC1

3: Set j ← 0, t← tend, VC(t)← Vmax
4: while j < 2 do
5: j ← j + 1
6: for i ∈

{
1, . . . , tend∆t

}
do

7: E [ΓP ] = Y1E [G > 0] + Y2 − Y3VC(t− i∆t)−

(Y4E [G > 0] + Y5) exp
[
−
(
VC(t−i∆t)−bavg

1
cavg

1

)2
]

8: if j=1 then
9: E [VC(t− i∆t)]← VC(t− (i− 1)∆t)−

E [Γp] ∆t
10: else
11: E [VC(t− i∆t)]← VC(t− (i− 1)∆t)−

E [Γp] ∆t+
√

2Pavg
cons∆t
C1

12: VC(t− i∆t)← E [VC(t− i∆t)]
13: Solve VC(0) = Vmin to find C1
14: if j = 1 then
15: Cl1 ← C1
16: else
17: Cu1 ← C1

sensor node, i.e., Pavgcons = 0. Thus, for a practical solar panel
model with charging rate Γp, (23) is re-written as:

E [VC(t−∆t)] = E [VC(t)]− E [Γp] ∆t ∀t ∈ [tstart + ∆t, tend].
(24)

By considering a non-zero average energy consumption,
i.e., Pavgcons 6= 0, the amount of solar energy to be harvested
is lower compared to the case when Pavgcons = 0. As a result, a
smaller supercapacitor Cl1 (lower bound) would be required.

As the terms (VC(t)− Γp∆t) and
√

2Pavg
cons∆t
C1

are positive,
the following relationship holds:√

(VC(t)− Γp∆t)2 +
(√

2Pavg
cons∆t
C1

)2
< (VC(t)− Γp∆t) +

√
2Pavg

cons∆t
C1

.

(25a)
By taking expectation on both sides of (25a) and using (23),

E [VC(t−∆t)] < E [VC(t)]− E [Γp] ∆t+
√

2Pavgcons∆t
C1

(25b)

∀t ∈ [tstart + ∆t, tend]. The detailed pseudo code for find-
ing the bounds on supercapacitor size C1 using the update
equations (24) and (25b) is provided in Algorithm 2.

Given the solar intensity distribution at a particular loca-
tion, parameters of the solar panel, and average power
consumption Pavgcons of the wireless sensor node connected to
supercapacitor, Algorithm 2 estimates the upper and lower
bounds of the required supercapacitor. For this, we start with
the assumption that at the end of a day, supercapacitor will
be at its maximum voltage Vmax. Update equations (24) and
(25b) are used to iterate through time in steps of ∆t such
that voltage at the beginning of a day is Vmin. In Algorithm
2 it is shown that, first the lower bound and subsequently
the higher bound are calculated. However, they can be com-
puted parallelly, since the operations are independent. It is
presented in this way so that we do not mention the same
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algorithm twice. Since the algorithm takes tend
∆t iterations to

compute, time complexity of the algorithm is O( tend
∆t ), where

∆t is an independent quantity, the lower the value, the more
accurate the result would be, at the cost of more time. tend
(in seconds) is day-light hours of a particular location.

Next, we find the supercapacitor size C2 by ensuring that
it is large enough to support the average load consumption
over the non-sunlight hours using the energy that is stored
at the beginning of non-sunlight hours, i.e., at t = tend. We
assume that VC(t) = Vmin at = tstart, and VC(t) = Vmax at
t = tend. Mathematically, C2 is given by:

C2 = 2Pavgcons

V 2max − V 2
min
× (tend − tstart) . (26)

7 Performance Evaluation and Discussion

The mathematical analysis presented till now is validated
using a bottom-up approach. First, the solar panel charac-
teristics presented in Fig. 3 are validated by comparing the
I-V characteristics of solar panel using experiments. Next, the
results for consumptions of various components of the Wasp-
mote are presented, which have been found to be in good
agrrement to the results presented in its datasheet [27]. Later,
the mathematical analysis presented on solar charging rate
CDF and the energy outage probability of the solar-energy
harvesting Waspmote are validated using simulations with
the help of solar intensity readings obtained for NREL [12]
database. Towards the end of the section, results on sizing of
both solar panel and supercapacitor are presented.

I-V characteristic of solar panel under test is found by con-
necting a rheostat across the solar panel. When the resistance
across the solar panel is 0, the solar panel is short-circuited,
therefore, voltage VSC = 0 and the short-circuit current ISC
is found. When the solar panel is disconnected from rheostat,
we get an open circuit condition, where IOC = 0 and VOC
is maximum. The remaining values of voltage and current of
solar panels are found by gradually increasing the resistance
from 0 to∞ The above approach is repeated for different val-
ues of solar intensity under controlled illumination in steps of
200 W

m2 . The results plotted in Fig. 5 suggests that the I-V
characteristics derived from the analytical model (shown by
dashed line) matches closely with experimental results (shown
by solid line).

We conduct numerical investigation for the proposed mod-
els by using the default system parameters mentioned next.
We consider a 3 W solar panel whose parameters are listed in
Table 1. Unless otherwise specified a 40 F supercapacitor is
considered with a residual voltage Vres equal to minimum
threshold voltage Vl = 3.3 V. In order to account for the
spatial variation of solar intensity G, we consider 2 differ-
ent geographic locations, namely, New Delhi, and Quebec

Fig. 5: Experimental validation of solar panel characteristics.

Table 2 Voltage and Current consumption of Waspmote [27] com-
ponents.
Component Voltage (V) Current (mA) Time(s)

Gas sensor
CO 5 3 1
NH3 5 12 0.25
NO2 1.8 26 30
VOC 2.5 32 30
CO2 5 50 90
CH4 5 61 30

Waspmote
Active 3.7 15
Sleep 3.7 180×10−3

Sensor board 3.3 2

MicroSD card
On 3.3 0.14
Write 1 byte 3.3 0.2 1.75×10−3

Read 1 byte 3.3 0.2 1.75×10−3

Radio
On 3.3 37.38
Transmit 1 byte 3.3 37.98 31.25×10−6

Receive 1 byte 3.3 37.68 31.25×10−6

city. The long term average solar intensity received during
sunlight time at these places are respectively 428 W/m2,
and 303 W/m2. We consider Libelium Waspmote [27] as the
sensor node, which is connected in parallel to the supercapac-
itor as shown in Fig. 1. Maximum of 6 gas sensors (carbon
monoxide (CO), ammonia (NH3), nitrogen dioxide (NO2),
carbon dioxide (CO2), volatile organic compounds (V OC),
and methane (CH4)) can be mounted on-board waspmote.
For calculating the average power consumption Pavgcons we
adopt the approach in [40] where consumptions due to all
operation states, namely, sense, datalog, sleep and communi-
cation, were considered. The consumption of all the individual
modules in the waspmote are provided in Table 2. From [27]
we obtain the size of data per sample as 21 + 4×Nsn bytes.
Further, using [27, 41] we get the overhead and the maximum
packet size respectively for communication as 18 bytes and 92
bytes.

7.1 Validation of Analysis

First of all, we validate the analytically obtained results for
the charging rate CDF FΓ and energy outage probability via
simulations. For simulation of FΓ with the data set of New
Delhi area, the solar intensity values obtained from NREL
are substituted in (3a). The solar current Iirr is substituted
in (11) to get Γa. This is used to obtain the simulated CDF
of solar charging rate FΓa

for approximate solar panel model.
Analytical CDF of solar charging rate FΓa

is obtained using
the closed-form expression for FΓa

in (17b). We plotted FΓa

for both polynomial-fit based mixture distribution ofG (using
(16)) against the numerical simulation in Fig. 6. A similar
method is followed to plot FΓp

for practical solar panel model
using (5), (18a), and (18b) in Fig. 6. We have repeated this
whole exercise for Quebec city area and plotted the results.

Fig. 6 shows that for both the locations, FΓa
and FΓp

found
using polynomial-fit based mixture distribution matches
closely with the simulation result. Moreover, the results
obtained for a particular location via both solar panel models
match. This is due to the fact that both solar panel models
behave in a similar fashion between the voltages of our inter-
est, i.e., Vmin = 3.3 V and Vmax = 3.8 V (cf. Fig. 3). It can be
noted from Fig. 6 that, for any CDF value, New Delhi area
has the higher solar charging rate due to its higher average
solar intensity compared to the Quebec city area.

As energy outage probability pout is itself a function of
FΓ, providing verification for FΓ in turn provides the pout
validation.
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Fig. 6: Validation of solar charging rate CDF for different
regions.

7.2 Trade-off between Energy Outage Probability pout and
Sampling Rate rs

At both the locations, a Waspmote with either 1 (CO) or all
6 on-board gas sensors and a 40 F supercapacitor are consid-
ered. For various values of pout, in Fig. 7 we have plotted rs
obtained from equations (20c) and (1). rs obtained at each
place for approximate model matches closely with that of
practical model of solar panel. Note that beginning from the
outage probabilities of 0.29 and 0.65 respectively for 1 sen-
sor and 6 sensors, the sampling rates become constant. This
is due to fact that each gas sensor has a minimum response
time and the samples taken with sampling rates greater than
it results in the sensor producing inaccurate results.

7.3 Results on Sizing the Components

7.3.1 Optimal Solar Panel Size: Considering diode D1 with
cut-off voltage V extx = 0.15 V and using the reference param-
eters in Table 1, we have calculated the number of solar cells
NS for both approximate and practical solar panel models
needed at both locations using the conditions mentioned in
Section 6.3. For computation of Na

S using approximate solar
panel model, we have assumed ∆I = 1 mA. The obtained
non-interger values for either of Na

S or Np
S , are rounded to

the next integer. As mentioned in Table 3, we get Np
S = 7 and

Na
S = 11 for both places. Since a higher value ofNp

S allows the
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Fig. 7: Sampling rate versus energy outage probability.

supercapacitor to be charged to a higher voltages VC > Vmax,
diode D1 with a higher cut-off voltage V extx should be used
instead of the zener diode such that the supercapacitor is only
charged up to Vmax.

7.3.2 Optimal Supercapacitor Size: The solar panel size
Na
S or Np

S computed above is used as the input in order
to calculate supercapacitor size C1, which is obtained using
Algorithm 1 for the approximate solar panel model. For
practical solar panel model, Cl1 and Cu1 are obatined using
Algorithm 2. We also computed supercapacitor size C2 using
(26). The supercapacitor sizes computed for both places by
assuming different number of sensors and sampling intervals
are shown in Table 3. While Nsn = 1 corresponds to a sin-
gle CO sensor, Nsn = 6 indicates that all 6 gas sensors are
on-board waspmote.

Since Cu1 is the supercapacitor size when the node just
harvests all the available solar energy, i.e., Pavgcons = 0, it is
unique which depends just on the location. For both solar
panel models at a particular location, C1 is the highest when
Nsn = 1 and sampling interval= 60 min, and lowest when
Nsn = 6 with sampling interval= 30 min. This is since C1 is
inversely proportional to the average power consumption of
sensor node. The supercapacitor values of C1, Cl1 and Cu1 are
much higher compared 270 F, which is the maximum super-
capacitor value that can be charged till 3.8 V available in the
market [39]. To this end, to realize the required high value, the
commercially available supercapacitors has to be connected
in parallel. The optimal value of the supercapacitor needed
to support a particular QoS (decided by Nsn and sampling
interval) is in the range [C2, C1], which can be decided based
on location of the place and the available budget.

Lastly, we would like to mention that the solar energy har-
vesting wireless sensor node with a supercapacitor size C1
and solar panel size Na

s as mentioned in the Table II is able
to provide zero energy outage probability when the residual
energy at the supercapacitor at the initial time is greater than
or equal to energy Emin + ∆E. Here, Emin is the energy of
the supercapacitor at Vmin = 3.3 V and ∆E is the additional
energy required as mentioned in last column of Table 3. This
energy ∆E ensures that the mentioned sustainable sampling
rate can be achieved with zero outage probability.

7.4 Discussion on Use Cases

7.4.1 Practical Solar Panel Model : Practical solar panel
model can be used when the load is directly connected across
the supercapacitor as the number NS of solar cells con-
nected in this way ensures that load voltage stays in its
working range [19]. As a result, the practical solar panel
model can be used for WSN deployments both indoors [15]
and outdoors [19] without any circuit for monitoring the
supercapacitor voltage.

7.4.2 Approximate Solar Panel Model : Approximate solar
panel model should be used when fast charging is required
on an average. Fast charging is achieved by ensuring that
the charging current is linear on average by restricting the
working range of the solar panel. However, we need a super-
capacitor monitoring and control circuit, which switches off
the charging path between solar panel and supercapacitor
when supercapacitor charges to Vmax, and switches on when
the supercapacitor voltage drops down below Vmax.

Fig. 3 demonstrated that, at certain solar intensities, the
approximate solar model matches closely with the practical
model. However, this is not true when the solar intensity G is
low (observed indoors) since the parallel resistance RP (which
is proportional to G) acts as a low resistance path for the
generated solar current Iirr. Therefore, in order to stay in
the linear operation region, a higher number of solar panels
NS would be required.
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Table 3 Solar panel and supercapacitor sizes.

Location Nsn Sampling Interval (min) C2 (F) Practical Approximate
Np

S Cl
1 (F) Cu

1 (F) Na
S C1 (F) ∆E (mJ)

New
Delhi

1 30 17.3
7

11508
17325 11

17325 1.440
1 60 16.7 11580 17326 1.396
6 30 664.4 2059 16673 55.439
6 60 340.3 3363 17000 28.396

Quebec
city

1 30 18
7

6029
11735 11

12251 1.473
1 60 17.4 6089 12252 1.429
6 30 692.1 597 11599 56.732
6 60 354.5 1069 11926 29.059

8 Concluding Remarks

In this work we have studied the sustainability of WSN
nodes powered by solar panels. We have obtained closed-form
expressions for solar charging rate distribution and energy
outage probability for both approximate and practical solar
panel models proposed in this paper. Extensive numerical
investigation have been conducted to validate accuracy of the
developed models and provide insights on the performance of
sensor node with varying practical system parameters, such
as, sensing rate and number of sensors on the node. Addi-
tionally, optimal sizes of supercapacitor and solar panel for
sustained the node operation under a given solar intensity dis-
tribution and average power consumption of the node have
been derived using the expected solar charging rate.

The analysis presented in this paper helps to identify the
necessary resources for sustainable operation of an energy
harvesting wireless sensor node even before deployment at
a particular location. In this analysis, a mobile entity-based
data collection has been considered. This study has not con-
sidered whether the cost of the whole network could be
further brought down by considering a large solar panel at the
mobile entity and RF energy harvester at the nodes. Since the
mobile entity can move around the field, it can place itself at
a position where a significant amount of energy can be har-
vested at any given time. We plan to investigate this aspect
in our future work.
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